Axiomatische Mengenlehre I, WS 2005/2006 6. Übung, 2005-11-17

Definition: $cf(\alpha)$ bezeichne die Konfinalität von α .

Eine Kardinalzahl κ heißt regulär, wenn $\kappa = \mathrm{cf}(\kappa)$. Ansonsten heißt κ singulär. Jede Nachfolger-Kardinalzahl ist regulär (Beweis in der Vorlesung).

Wenn (X, <) eine Wohlordnung ist, dann sei $\operatorname{otp}(X, <)$ ihr Ordnungstyp (eine Ordinalzahl). Falls $X \subseteq \alpha$ für eine Ordinalzahl α dann setze $\operatorname{otp}(X) = \operatorname{otp}(X, \in)$.

Beispiel 1: κ, λ seien Kardinalzahl. Zeige:

- i) $\{ \text{otp}(\kappa, \lhd) : \lhd \text{ ist Wohlordnung auf } \kappa \} = \{ \alpha : \kappa \le \alpha < \kappa^+ \}.$
- ii) Wenn $A \subseteq B \subseteq \lambda$, dann ist $otp(A) \le otp(B) \le \lambda$.
- iii) $\{ otp(X) : X \subseteq \lambda \} = \lambda \cup \{ \lambda \}.$
- **Beispiel 2:** Sei κ regulär und (κ, \lhd) eine Wohlordnung. Zeige: Es gibt ein $X \subseteq \kappa$ s.d.:
 - $|X|=\kappa$, und auf X stimmt die Ordnung \lhd mit der Ordnung \in überein. Hinweis: Konstruiere X als aufsteigende Folge mit transfiniter Induktion der Länge κ .
- **Beispiel 3:** Wenn κ singulär ist, dann ist $\lambda = \operatorname{cf}(\kappa) < \kappa$ und κ ist disjunkte Vereinigung $\bigcup_{i \in \lambda} A_i$, $|A_i| < \kappa$ regulär.
- Beispiel 4: Beweise den Satz aus Beispiel 2 für beliebige Kardinalzahlen κ . Hinweis: Wenn κ singulär ist, dann ist $\lambda = \operatorname{cf}(\kappa) < \kappa$. Benütze Beispiel 3, und finde mit transfiniter Induktion der Länge λ finde $X_i \subseteq A_i$.
- **Beispiel 5:** Zeige: Sei λ Kardinalzahl, $\beta < \lambda$ und $\alpha = \beta^{\omega}$ (Ordinalzahl-Exponentiation). Zeige: $\alpha < \lambda$.
- **Beispiel 6:** Wenn $(A_i)_{i \in \kappa}$ s.d. $A_i \subseteq \kappa^+$ und $\operatorname{otp}(A_i) < \beta$, dann ist $\operatorname{otp}(\bigcup_{i \in \omega} A_i) < \beta \cdot \kappa$.
- **Beispiel 7:** Rado-Milner Paradoxon: Sei $\kappa \leq \alpha < \kappa^+$ und setze $\beta_n = \kappa^n$ (Ordinalzahl-Exponentiation). Zeige: Es gibt $(X_i)_{i \in \omega}$ s.d.:
 - $X_n \subseteq \alpha$, otp $(X_n) \le \beta_n$, und $\alpha = \bigcup_{n \in \omega} X_n$.

Hinweis: Induktion nach α . Der Nachfolge-Schritt ist sehr einfach. Für den Limes-Schritt, verwende Beispiel 5.