BLATT 5B (ZWEITER TEIL DER ÜBUNGEN FÜR DEN 23.11.)

DER GÖDELSCHE VOLLSTÄNDIGKEITSSATZ (DER PRÄDIKATENLOGIK)

- Vollständigkeitssatz: Aus einer Satzmenge Σ ist der Satz ϕ formal ableitbar $(\Sigma \vdash \phi)$ genau dann wenn aus Σ der Satz ϕ semantisch folgt $(\Sigma \models \phi)$.
- Vollständigkeitssatz, Variante 2: Eine Satzmenge Σ ist konsistent genau dann wenn sie erfüllbar ist. (Eine Satzmenge Σ heißt konsistent, wenn aus Σ kein Widerspruch (z.B. $\phi \wedge \neg \phi$) formal ableitbar ist. Eine Satzmenge Σ heißt erfüllbar, wenn es ein Modell von Σ gibt.)
- \bullet Kompaktheitssatz: Eine Satzmenge Σ ist erfüllbar genau dann wenn jede endliche Teilmenge von Σ erfüllbar ist.
- Downward Skolem Löwenheim: (Wir nehmen an die Signatur/Sprache ist abzählbar). Jedes erfüllbare Σ hat ein abzählbares Modell.
- Eine (konsistente) Satzmenge Σ heißt vollständig, wenn für jeden Satz ϕ (in der zugrundeliegenden Sprache/Signatur) gilt: $\Sigma \vdash \phi$ oder $\Sigma \vdash \neg \phi$.
- Eine (konsistente) Satzmenge Σ heißt \aleph_0 -kategorisch, wenn je zwei abzählbare Σ -Modelle isomorph sind.
- (32) Argumentiere (exakte Beweise nicht notwendig): Die beiden Varianten des Vollständigkeitssatzes sind "äquivalent" und implizieren den Kompaktheitssatz.
- (33) Argumentiere (exakte Beweise nicht notwendig): Aus dem Beweis des Vollständigkeitssatzes folgt der Downward Skolem Löwenheim.
- (Bemerkung: Ein "besserer" Beweis des Downward Skolem Löwenheims: Zu jedem Modell $\mathcal N$ und jeder Menge X gibt es ein "elementares Untermodell" $\mathcal M$ von $\mathcal N$ so daß $X\subseteq M$ und $|M|=\max(\aleph_0,|X|)$. Definitionen und Beweis kommt später in VO oder PS.)
- (34) Zeige: Jede \aleph_0 -kategorische Satzmenge Σ ist vollständig (Hinweis: Verwende Downward Skolem Löwenheim.)
- (35) Sei Σ die Menge aller Sätze der Signatur $\{0, 1, +, \cdot, <\}$ die in \mathbb{N} gelten (=wahr sind). Zeige: Σ ist nicht \aleph_0 -kategorisch.
- (Hinweis: Es gibt Nonstandard-Modelle von Σ , d.h. Modelle mit einem Element c das größer ist als alle "wirklichen" natürlichen Zahlen. Erweitere die Sprache um ein neues Konstantensmbol c und finde eine erweiterung Σ' von Σ die impliziert daß c "unendlich" ist. Dann verwende den Kompaktheitssatz und den Downward Skolem Löwenheim.)
- (36) Sei Σ wie in Beispiel (35). Wieviele abzählbare Modelle gibt es (modulo Isomorphie)?
- (Hinweis: (a) Es gibt jedenfalls höchstens 2_0^\aleph viele Modelle: OBdA (ohne Beschränkung der Allgemeinheit, auch Englsich wlog) ist die Grundmenge des Modells \mathcal{M} die Menge \mathbb{N} , dann wird \mathcal{M} festgelegt durch $+^{\mathcal{M}}: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ zusammen mit $0^{\mathcal{M}}, 1^{\mathcal{M}}, \cdot^{\mathcal{M}}, <^{\mathcal{M}}$. Für $0^{\mathcal{M}}$ gibt es nur $|\mathbb{N}| = \aleph_0$ viele Möglichkeiten, für $+^{\mathcal{M}}$ gibt es $|(\mathbb{N} \times \mathbb{N})^{\mathbb{N}}| = 2^{\aleph_0}$ viele Möglichkeiten etc, insgesamt also 2^{\aleph_0} .
- (b) Für jede Teilmenge A der ("wirklichen") Primzahlen gilt: Es gibt ein nonstandard Modell \mathcal{M} mit einem (unendlichen) Element c so dass für die ("wirklichen") Primzahlen p gilt: $\mathcal{M} \models p|c$ genau dann wenn $p \in A$. Wieviele solche Mengen A gibt es? In einem konkreten abzählbaren nonstandard Modell, wieviele Mengen A können "realisiert" werden?)

1