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Abstract

By a theorem of Dobrow and Smythe, the depth of the kth node in
very simple families of increasing trees (which includes, among others,
binary increasing trees, recursive trees and plane ordered recursive
trees) follows the same distribution as the number of edges of the
form j − (j + 1) with j < k. In this short note, we present a simple
bijective proof of this fact, which also shows that the result actually
holds within a wider class of increasing trees. We also discuss some
related results that follow from the bijection as well as a possible
generalization.

1 Introduction

Increasing trees are rooted labeled trees where the nodes of a tree of size n

are labeled by distinct integers from the set {1, . . . , n} in such a way that
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the sequence of labels along any branch starting at the root is increasing.
There are various important families of increasing trees, such as binary in-
creasing trees, recursive trees or plane-oriented recursive trees. A general
framework for these instances is given by what is known as simple families
of increasing trees [3]; such a family T is characterized by a sequence of
non-negative numbers (ϕk)k≥0, where ϕ0 > 0. This sequence is called the
degree-weight sequence. We assume that there exists a k ≥ 2 with ϕk > 0 to
avoid trivialities.

Now we assign a weight w(T ) to any ordered tree T by w(T ) :=
∏

v ϕd(v),
where v ranges over all vertices of T and d(v) is the out-degree of v. Fur-
thermore, let L(T ) be the number of increasing labelings of T with inte-
gers 1, 2, . . . , |T |, as explained above, and define the total weights by Tn :=
∑

|T |=n w(T ) · L(T ). It follows that the exponential generating function

T (z) :=
∑

n≥1 Tn
zn

n!
satisfies the autonomous first order differential equation

T ′(z) = Φ
(

T (z)
)

, T (0) = 0, (1)

where Φ(t) =
∑∞

n=0 ϕnt
n. This equation follows easily from the fact that one

can describe a tree as a root node with several subtrees from the same family
attached to it (see for instance [3] or [4]).

Important special cases include Φ(t) = 1+t2, which corresponds to binary
increasing trees, Φ(t) = et (recursive trees), and Φ(t) = 1

1−t
(plane-oriented

recursive trees. In all these cases, the total weight can simply be interpreted
as the number of trees of given size within the family. Binary trees are
essentially equivalent to binary search trees, which in turn serve as an analytic
model for the famous Quicksort algorithm [7]. Plane-oriented recursive trees,
on the other hand, are a special instance of the well known Barabási-Albert
model [2] for scale-free networks (see also [5]), which is used as a simplified
growth model of the world wide web [1].

From a combinatorial point of view, it is interesting to note that binary
increasing trees are enumerated by the tangent numbers (see [9] for various
interesting bijections), while there are (n− 1)! recursive trees and (2n− 3)!!
plane-oriented recursive trees with n nodes.

A specific subclass of increasing trees is known as very simple families
[10] of increasing trees. The three aforementioned examples all belong to
this subclass, which is essentially characterized by the fact that the function
Φ(t) is either of the form (1 + ct)α for constants c, α of the same sign or of
the form ect for some positive constant c. These specific families have the
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property that they can be described via a tree evolution process, as pointed
out by Panholzer and Prodinger in [10].

A remarkable result by Dobrow and Smythe [6] states that the depth of
the kth node (i.e., the distance from the root) in a random increasing tree
from one of the very simple families follows the exact same distribution as
the number of edges between two vertices whose labels are ≤ k and differ
by exactly 1 (henceforth, we will simply call such edges 1-edges). See also
[10]. The aim of this short note is to show that this holds more generally for
simple families of increasing trees, and to present a simple bijective proof of
this fact. Several further corollaries follow as well, and the bijection can also
be generalized, see Section 3.

2 The bijection

Let us now describe a bijection Bk on the set of ordered increasing trees as
follows:

• If node j − 1 lies on the unique path from 1 to k in T and ℓ is its
successor on this path, then j takes the position of ℓ in Bk(T ) (i.e., it
is attached to j − 1 in the same position as ℓ in T ).

• If j ≤ k but node j − 1 does not lie on this path, then j takes the
position of j − 1 in Bk(T ).

• If j > k, then the positions of j in T and Bk(T ) are the same.

The inverse operation B−1
k is equally simple:

• If vertices j and j + 1 are connected in T , then j lies on the path from
1 to k in B−1

k (T ), and the successor of j on this path takes the position
of j + 1.

• If j < k but vertices j and j + 1 are not connected, then the position
of j in B−1

k (T ) is the same as the position of j + 1 in T .

• If j > k, then the positions of j in T and B−1
k (T ) are the same.

It is easy to see that both operations are well-defined and inverses of each
other. Figure 1 shows an example with k = 9.

The following properties of the bijection are immediate:

3



1

2

3 4

56

7

8

9

10

11

12

1

2

34

5

67

8

9

10

11

12

Figure 1: The bijection in an example: T (left) and B9(T ) (right).

• For any increasing tree T with n ≥ k nodes, Bk(T ) is an increasing tree
with n nodes and the same outdegrees.

• Edges on the path between the root and k are mapped to 1-edges in
Bk(T ) whose ends are labeled with numbers ≤ k.

Since all outdegrees remain the same, the weights w(T ) and w(Bk(T ))
are also always the same, regardless of the degree-weight sequence ϕ. The
following results are obtained as a consequence. For very simple families
of increasing trees, these theorems occur in the aforementioned paper by
Dobrow and Smythe [6]:

Theorem 1 (Dobrow/Smythe, Theorem 5)
In a random increasing tree with n nodes from a simple family, the probability
that k is attached to j is exactly the probability that the last 1-edge with labels
≤ k is between j and j + 1.

More generally, the following holds:

Theorem 2 In a random increasing tree with n nodes from a simple family,
the probability that the ancestors of k are j1, j2, . . . , js in this order (j1 >

j2 > · · · > js) is the same as the probability that the only 1-edges with labels
between js and k are j1 − (j1 + 1), j2 − (j2 + 1), . . . , js − (js + 1).

Theorem 3 (Dobrow/Smythe, Theorem 7)
In a random increasing tree with n nodes from a simple family, the distribu-
tion of the depth of node k is the same as the distribution of the number of
1-edges with labels ≤ k. Furthermore, the probability that node j lies on the
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unique path between 1 and k is the same as the probability that there is an
edge between j and j + 1.

In particular, one has the following corollary:

Corollary 4 The probability that j lies on the path between 1 and k does not
depend on k.

Remark 1 None of the above theorems depends on the size of the increasing
tree. In the case of very simple families, which can be generated by a growth
process, this is essentially trivial, but it is quite surprising that this remains
true within the more general setting of simple families of increasing trees.

3 Generalization and conclusion

Our bijection provides a simple combinatorial explanation for several results
that were obtained in [6] by probabilistic techniques, with the additional
benefit that they generalize to a wider range of increasing trees, namely to
all simple families. The bijection can be generalized further to prove the
following:

Theorem 5 (Dobrow/Smythe, Theorem 6)
In a random increasing tree with n nodes from a simple family, the distri-
bution of the distance between nodes i and k (i < k) is the same as the
distribution of the sum of the distance between i and i+ 1 and the number of
number of 1-edges with labels between i + 1 and k.

To this end, consider a bijection Bi,k that is defined as follows:

• If i + 1 < j, node j − 1 lies on the unique path from 1 to k in T and ℓ

is its successor on this path, then j takes the position of ℓ in Bi,k(T ).

• If i + 1 < j ≤ k but node j − 1 does not lie on this path, then j takes
the position of j − 1 in Bi,k(T ).

• Vertex i + 1 takes the position of the node in T that lies on the path
between i and k and has the smallest label > i.

• If j ≤ i or j > k, then the positions of j in T and Bi,k(T ) are the same.
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See Figure 2 for an example with i = 4 and k = 12. Note that the path
between i and k is mapped to the path between i and i + 1 and a collection
of 1-edges, thereby proving Theorem 5.
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Figure 2: The generalized bijection in an example: T (left) and B4,12(T )
(right).

Unfortunately it seems that, even though we know now that the distribu-
tion of the depths and distances of nodes is related to the number of 1-edges,
it remains difficult to obtain precise results on this distribution if the variety
under consideration is none of the very simple families, cf. [8, 10]. How-
ever, we believe that the bijection presented in this note, and similar ones,
might also lead to new distributional results on distance-related parameters
in increasing trees.
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