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Abstract. We consider a recursive procedure for destroying rooted trees and isolating a leaf by removing

a random edge and keeping the subtree, which does not contain the original root. For two tree families,
the simply generated tree families and increasing tree families, we study here the number of random

cuts that are necessary to isolate a leaf. We can show limiting distribution results of this parameter for

simply generated trees and certain increasing trees.

1. Introduction

We consider the following edge-removal procedure in a size n rooted tree for isolating a leaf. Pick one
of the n − 1 edges of the tree at random and remove it. This separates the tree into a pair of rooted
trees; the tree containing the root of the original tree retains its root while the tree not containing the
root of the original tree is rooted at the vertex adjacent to the edge that was cut. Now we discard the
subtree containing the original root and continue this procedure in the other subtree, until we end at a
size 1 subtree, which contains a leaf. We are going to study for several tree families under the random
tree model a random variable Zn, which counts here the number of edges that will be removed from
a randomly chosen tree of size n by this edge-removal procedure until a leaf is isolated. Since all the
analyzed tree families can be considered as weighted trees, this means that for starting the edge-removal
procedure we choose a tree of size n with probability proportional to its weight. We can give limiting
distribution results of Zn for general simply generated tree families and some classes of so called increasing
tree families, which contain recursive trees as a special instance (see Subsection 2.2). Surprisingly the
multiple zeta function and it’s finite counterpart show up in the limit distribution for certain increasing
trees.
This edge-removal procedure is the counterpart of another edge-removal procedure, which was already
studied in more detail. In the latter procedure the subtree containing the original root of the tree is kept,
while the other subtree is discarded (thus it can be seen as the opposite version of the procedure studied
in the present paper) and then the procedure is continued recursively on the subtree containing the root
until the original root is isolated.
Best to our knowledge the procedure studied here and the results are new, but for the sake of completeness
we collect in the following some known results for the opposite procedure, which isolates the root. Meir
and Moon [13, 14] considered this edge-removal procedure (= cutting-down procedure) on a rooted tree
with n vertices. In papers [12,13] a random variable Xn was studied. This variable counts the number
of edges that will be removed from a randomly chosen tree of size n until the root is isolated for the two
important tree families unordered labelled trees (= Cayley trees) and recursive trees. For both tree families
they obtained exact and asymptotic formulæ for the expectation E(Xn) and also asymptotic formulæ resp.
bounds for the second moment E(X2

n). Limiting distribution results of Xn for some classes of so called
simply generated tree families, which contain Cayley trees as a special instance (see Subsection 2.1), are
given in [16]. The problem for so called non-crossing trees was considered in [17]. The results are extended
to general simply generated tree families in [9]: it turns out that for these tree families (after a suitable
normalization) Xn is asymptotically Rayleigh distributed. The random tree model is always assumed as
the underlying model of randomness.
We want to mention that also the following two-sided variant of the edge-removal procedure was consid-
ered in recent papers: after removing the randomly chosen edge one continues the procedure recursively
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on both of the obtained subtrees. Of course, when starting with a tree of size n, this two-sided variant
leads to n isolated nodes after n − 1 cuts, but one was interested in the total costs when isolating all
nodes in the tree, if one assumes that the cost incurred for selecting an edge and splitting the tree is
given by a toll function tn. For toll functions tn = nα with α > 0, asymptotic results for all moments
are obtained in [18] and limiting distribution results for some classes of simply generated tree families
are given in [5]. For Cayley trees this procedure is equivalent to a probabilistic model involved in the
Union–Find (or equivalence-finding) algorithm, which was analyzed first by Knuth and Schönhage [10].
Basically, to obtain our limiting distribution results for Zn we treat the recurrences appearing for the
probabilities P{Zn = m} via bivariate generating functions. This leads to exact solvable differential
equations. Extracting coefficients of the solutions appearing asymptotically is performed via singularity
analysis (see [7]), a complex-analytic technique that relates asymptotics of sequences to the local behaviour
of their generating functions in a neighbourhood of the dominant singularities.
Throughout this paper we use the abbreviations xl := x(x−1) · · · (x−l+1) and xl := x(x+1) · · · (x+l−1)
for the falling and rising factorials, respectively. Moreover, we use the abbreviations Dx for the differential
operator with respect to x, and Ex for the evaluation operator at x = 1.

2. Preliminaries

2.1. Simply generated trees. Simply generated trees were introduced in [15] and they include several
important tree families as special instances, e. g. binary trees, unordered labelled trees, and ordered trees
(= planted plane trees). Moreover, they are strongly related to Galton-Watson branching processes, since
it is well known (see [1]), that random simply generated trees are essentially the same as conditioned
Galton-Watson trees obtained as the family tree of a Galton-Watson process conditioned on the given
total size.
A class T of simply generated trees can be defined in the following way. A sequence of non-negative real
numbers (ϕk)k≥0 with ϕ0 > 0 (ϕk can be seen as the multiplicative weight of a node with out-degree k) is
used to define the weight w(T ) of any ordered tree T by w(T ) :=

∏
v ϕd(v), where v ranges over all vertices

of T and d(v) is the out-degree (the number of children) of v. In order to avoid degenerate cases we
always assume that there exists a k ≥ 2 such that ϕk > 0. The family T consists then of all trees T with
w(T ) 6= 0 together with their weights w(T ). It follows further that for a given degree-weight sequence
(ϕk)k≥0 the generating function T (z) :=

∑
n≥1 Tnzn of the quantity total weights Tn :=

∑
|T |=n w(T ),

where |T | denotes the size of the tree T , satisfies the functional equation

T (z) = zϕ
(
T (z)

)
, (1)

where the degree-weight generating function ϕ(t) is given by ϕ(t) =
∑

k≥0 ϕktk.
The asymptotic behaviour of T (z) as solution of (1) is discussed in detail in [6] and we collect some
of their results concerning T (z) and the growth of its coefficients Tn, where we have to make only few
restrictions on ϕ(t). We will suppose that ϕ(t) has a positive radius of convergence R > 0 and assume
that there exists a minimal positive solution τ < R of the equation tϕ′(t) = ϕ(t).
Defining the period p := gcd{k : ϕk > 0}, it follows that equation (1) has exactly p solutions of smallest
modulus given by τj = ωjτ for 0 ≤ j ≤ p− 1, where ω is a primitive p-th root of unity. This leads to p
dominant singularities of T (z) at z = ρj with ρj = ωjρ and ρ = τ

ϕ(τ) = 1
ϕ′(τ) (T (z) is analytic for |z| ≤ ρ

except at z = ρj).
The local expansion around the singularity z = ρj is given by the following equation, where κj denotes
a certain constant:

T (z) = τj − ωj

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρj
+ κj

(
1− z

ρj

)
+O

((
1− z

ρj

) 3
2
)
. (2)

By applying singularity analysis one obtains the asymptotic expansion

Tn = p

√
ϕ(τ)

2πϕ′′(τ)
ρ−nn−

3
2
(
1 +O(n−1)

)
, (3)

provided that n ≡ 1 (mod p). (For n 6≡ 1 (mod p) Tn = 0 always holds.)
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We want to mention further that it is often advantageous to describe a simply generated tree family T
by the formal recursive equation

T = ©×
(
ϕ0 · {ε} ∪̇ ϕ1 · T ∪̇ ϕ2 · T × T ∪̇ ϕ3 · T × T × T ∪̇ · · ·

)
= ©× ϕ(T ), (4)

with © a node, × the cartesian product, and ϕ(T ) the substituted structure (see e. g. [19]).

2.2. Increasing trees. Increasing trees are labelled trees where the nodes of a tree of size n are labelled
by distinct integers of the set {1, . . . , n} in such a way that each sequence of labels along any branch
starting at the root is increasing. As the underlying tree model we use the simply generated trees but,
additionally, they are equipped with increasing labellings. We will thus speak about simple families of
increasing trees. A thorough study of families (= varieties) of increasing trees was conducted in [3].
A class T of a simple family of increasing trees can thus be defined in analogy to the definition of simply
generated tree families in the following way. A sequence of non-negative numbers (ϕk)k≥0 with ϕ0 > 0 is
used to define the weight w(T ) of any ordered tree T by w(T ) =

∏
v ϕd(v), where v ranges over all vertices

of T and d(v) is the out-degree of v (again, we always assume that there exists a k ≥ 2 with ϕk > 0).
Furthermore, L(T ) denotes the set of different increasing labellings of the tree T with distinct integers
{1, 2, . . . , |T |}, where |T | denotes the size of tree T , and L(T ) :=

∣∣L(T )
∣∣ denotes its cardinality. Then

the family T consists of all trees T together with their weights w(T ) and the set of increasing labellings
L(T ).
For a given degree-weight sequence (ϕk)k≥0 with a degree-weight generating function ϕ(t) :=

∑
k≥0 ϕktk,

we define now the total weights by Tn :=
∑
|T |=n w(T ) · L(T ). It follows then that the exponential

generating function T (z) :=
∑

n≥1 Tn
zn

n! satisfies the autonomous first order differential equation

T ′(z) = ϕ
(
T (z)

)
, T (0) = 0. (5)

Again it is sometimes advantageous to describe an increasing tree family T by the formal recursive
equation

T = ©1 ×
(
ϕ0 · {ε} ∪̇ ϕ1 · T ∪̇ ϕ2 · T ∗ T ∪̇ ϕ3 · T ∗ T ∗ T ∪̇ · · ·

)
= ©1 × ϕ(T ), (6)

where additionally ∗ denotes the partition product for labelled objects.
Three specific increasing tree families are of particular interest:
• Recursive trees are the family of non-plane increasing trees such that all node degrees are allowed.
The degree-weight generating function is ϕ(t) = exp(t). Solving (5) gives T (z) = log

(
1

1−z

)
and thus

Tn = (n− 1)!, for n ≥ 1. For a survey of applications and results on random recursive trees see [12].
• Heap ordered trees (also called plane recursive trees) are the family of plane increasing trees such that
all node degrees are allowed. The degree-weight generating function is ϕ(t) = 1

1−t . Equation (5) leads

here to T (z) = 1−
√

1− 2z and thus to Tn = (n−1)!
2n−1

(
2n−2
n−1

)
, for n ≥ 1. See also [12] for a survey on heap

ordered trees.
• Binary increasing trees (also called tournament trees) have the degree-weight generating function ϕ(t) =
(1 + t)2. This model is of special importance, since it is isomorphic to the model of binary search trees
(see [3] and the references therein for binary increasing trees and e. g. [11] for binary search trees). Thus
it must follow T (z) = z

1−z and Tn = n!, for n ≥ 1.

Driven from the inspection that all these important increasing tree families satisfy the equation Tn+1
Tn

=
c1n+ c2, with fixed constants c1, c2, for all n ≥ 1, we will consider such trees in more detail. Throughout
this paper we will call increasing tree families satisfying this equation very simple increasing tree fami-
lies, since it turns out from the characterization given below that the defining degree-weight generating
functions ϕ(t) are the same as obtained in [16].
We will give now an exact answer to the question, which degree-weight generating functions are actually
defining very simple increasing tree families.

Lemma 1. The total weights Tn of trees of size n in an increasing tree family satisfy for all n ∈ N the
equation

Tn+1

Tn
= c1n + c2, (7)
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if and only if the degree-weight generating function ϕ(t) =
∑

k≥0 ϕktk is given by one of the following
three formulæ.

Case A : ϕ(t) = ϕ0e
c1t
ϕ0 , for ϕ0 > 0, c1 > 0,

Case B : ϕ(t) = ϕ0

(
1 +

c2t

ϕ0

)d

, for ϕ0 > 0, c2 > 0, d :=
c1

c2
+ 1 ∈ {2, 3, 4, . . . },

Case C : ϕ(t) =
ϕ0

(1 + c2t
ϕ0

)−
c1
c2
−1

, for ϕ0 > 0, 0 < −c2 < c1.

2.3. The recursive approach. We will study the random variable Zn for the tree families considered
by treating the recurrence

P{Zn = m} =
n−1∑
k=1

qn,k P{Zk = m− 1}, for n ≥ 2, m ≥ 1, (8)

with initial values P{Z1 = 0} = 1 and P{Zn = 0} = 0, for n ≥ 2. Here the transition probabilities qn,k

are given as follows: qn,k denotes the probability that by choosing a random tree of size n from the given
tree family and removing a random edge the resulting subtree, which does not contain the original root
of the tree, is of size k.
An analogous approach, with transition probabilities qn,n−k, was used in [16] to study for simply generated
tree families the random variable Xn, i. e. the number of cuts to isolate the root of the tree. There one
had to make a strong assumption on the tree family in order to justify this recursive approach: it was
necessary that randomness is preserved by cutting off a random edge, which means that starting with a
random tree of size n and removing a random edge, the remaining subtree of size k containing the root
is actually a random tree of size k in this tree family. It turned out that exactly those tree families with
ϕ(t) given by Lemma 1 have this property and could be treated with the recursive approach. In [16] such
tree families are called very simple tree families.
For the random variable Zn studied in the present paper things are easier. For the tree families considered
it always holds that randomness is preserved by cutting off a random edge: after removing a random edge
from a random tree of size n, the subtree which does not contain the original root is always a random
tree of this tree family. This follows immediately from the formal recursive equations (4) and (6).

3. Results

We state here our findings for simply generated tree families and very simple increasing tree families with
ϕ(t) satisfying the assumptions made in Subsection 2.1 and Subsection 2.2 ,respectively. The proof of
these results are given in Section 4 and Section 5.

Theorem 1. For simply generated tree families with degree-weight generating function ϕ(t), with period
p and τ the minimal positive solution of the equation tϕ′(t) = ϕ(t), the random variable Zn, which counts
the number of random cuts that are required to isolate a leaf from a randomly chosen tree of size n with
the edge-removal procedure considered, converges in distribution, for n → ∞ with n ≡ 1 (mod p), to a
shifted Poisson distributed random variable Z, which has the distribution

P{Z = m} =
mλm−1

m!
e−λ, for m ≥ 0,

with parameter λ := log
(ϕ(τ)

ϕ0

)
.

Moreover, the r-th factorial moments E
(
Z

r
n

)
have the asymptotic expansion

E
(
Zr

n

)
= λr−1(λ + r) +O(n−1).

In particular, we get for the expectation E(Zn) and the variance V(Zn):

E(Zn) = λ + 1 +O(n−1), and V(Zn) = λ +O(n−1).
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Theorem 2. For a very simple increasing tree family with degree-weight generating function ϕ(t) given
by Lemma 1 with Tn+1

Tn
= c1n + c2, for all n ≥ 1. Let Zn be random variable , which counts the number

of random cuts that are required to isolate a leaf from a randomly chosen tree of size n with the edge-
removal procedure considered. Then, for a very simple increasing tree family, Zn converges for n → ∞
in distribution to a discrete random variable Z. The probabilities P{Z = m} are for m ≥ 0 given as the
coefficients of the probability generating function p(v) :=

∑
m≥0 P{Z = m}vm as given below.

p(v) =
∞∏

k=1

(
1 +

(c1 + c2)(v − 1)
k(c1k + c2)

)
=

Γ(1 + c2
c1

)

Γ
( 2c1+c2−

√
(2c1+c2)2−4c1(c1+c2)v

2c1

)
Γ
( 2c1+c2+

√
(2c1+c2)2−4c1(c1+c2)v

2c1

) .

Moreover, the r-th factorial moments E
(
Z

r
n

)
are given by the following exact formula.

E
(
Zr

n

)
= r!(c1 + c2)r

n−1∑
k1=1

1
k1(c1k1 + c2)

n−1∑
k2=k1+1

1
k2(c1k2 + c2)

· · ·
n−1∑

kr=kr−1+1

1
kr(c1kr + c2)

.

From Theorem 2 one gets the following corollaries, which contain results for particular increasing tree
families.

Corollary 1. Using the notation of Theorem 2, we give the following closed formulæ for the probabilities
P{Z = m} for recursive tree and binary increasing trees. For recursive trees we get

P{Z = m} = (−1)m
∑
k≥m

(−1)k π2k
(

k
m

)
(2k + 1)!

, (9)

which leads to the first few values P{Z = 1} = 1/2, P{Z = 2} = 3/8, P{Z = 3} = 5/16 − π2/48. For
binary increasing trees we obtain

P{Z = m} =
∑

k≥m+1

(−1)k π2k

22k(2k)!

k∑
j=m+1

(
k

j

)(
j − 1
m

)
(−1)j8j , (10)

which gives in particular P{Z = 1} = 1/3.

Note that the values given for P{Z = 1} are just as expected, since the average number of leaves in
recursive trees is ∼ n

2 for recursive trees and ∼ n
3 for binary increasing trees (see e. g. [3]).

Corollary 2. Using the notation of Theorem 2, we give for the instance c2 = 0 the following closed
formulæ for the r-th factorial moments of Zn resp. Z. In the context of the multiple zeta functions

ζ(a1, . . . , al) :=
∑

1≤n1<n2<···<nl

1
na1

1 na2
2 . . . nal

l

, ζN (a1, . . . , al) :=
∑

1≤n1<n2<···<nl≤N

1
na1

1 na2
2 . . . nal

l

, (11)

the factorial moments E
(
Z

r
n

)
can be expressed for c2 = 0 as follows:

E
(
Zr

n

)
= r!ζn−1(2, . . . , 2). (12)

Furthermore we obtain for c2 = 0 the following expression for the factorial moments E
(
Zr

)
:

E
(
Zr

)
= r!ζ(2, . . . , 2) = r!

π2r

(2r + 1)!
. (13)

We remark that our computations of E
(
Zr

)
give thus a further proof of the identity ζ(2, . . . , 2︸ ︷︷ ︸

r times

) = π2r

(2r+1)! ,

which was shown first in [8].

In Table 1 and 2 we collect some results of the limiting distribution of Zn for a few interesting simply
generated tree families and very simple increasing tree families respectively.
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Table 1. Limiting distribution results of Zn for some important simply generated tree families.

Tree family
Degree-weight

generating function ϕ(t)
Zn → Z, shifted Poisson distributed

with parameter λ, E(Zn) ∼ λ + 1, V(Zn) ∼ λ

Cayley trees ϕ(t) = et λ = 1

d-ary trees ϕ(t) = (1 + t)d, d ≥ 2 λ = d log
(

d
d−1

)
Ordered trees ϕ(t) = 1

1−t λ = log(2)

Motzkin trees ϕ(t) = 1 + t + t2 λ = log(3)

Strict binary trees ϕ(t) = 1 + t2 λ = log(2)

Table 2. Limiting distribution results of Zn for some important very simple increasing
tree families. Hn :=

∑
k≥1

1
k resp. H

(2)
n :=

∑
k≥1

1
k2 denote the first and second order

harmonic numbers.

Tree family ϕ(t) Tn+1
Tn

Zn → Z, with
p(v) =

∑
m≥0 P{Z = m}vm E(Zn)

Recursive trees et n p(v) = sin(π
√

1−v)

π
√

1−v

H
(2)
n−1

∼ π2

6 ≈ 1.6449

Binary increasing
trees (1 + t)2 n + 1 p(v) = cos( π

2

√
9−8v)

2π(v−1) 2− 2
n ∼ 2

Heap ordered trees 1
1−t 2n− 1 p(v) =

Γ( 1
2 )

Γ( 3−
√

9−8v
4 )Γ( 3+

√
9−8v
4 )

2(H2n−2 −Hn−1)
∼ 2 log 2 ≈ 1.3863

4. Simply generated tree families

4.1. The transition probabilities. The required transition probabilities qn,k as defined in Subsec-
tion 2.3 were already computed in [16] by a generating functions approach, which is also here sketched.
We can define the value qn,k equivalently as the probability that the number of descendants of a node
(where the node itself is counted) that was chosen at random from one of the n − 1 non-root nodes in
a random tree of size n is k. We require also the auxiliary value q̃n,k, which denote the probability that
the number of descendants of a randomly chosen node in a random tree of size n is k.
Introducing the generating functions

G(z, u) =
∑
n≥1

∑
k≥0

nTn q̃n,k znuk, H(z, u) =
∑
n≥1

∑
k≥0

(n− 1)Tn qn,k znuk,

we can translate the formal equation (4) into the equations

G(z, u) = T (zu) + zϕ′
(
T (z)

)
G(z, u), H(z, u) = zϕ′

(
T (z)

)
G(z, u),

which imply

H(z, u) = T (zu)F (z), with F (z) :=
1

1− zϕ′
(
T (z)

) − 1. (14)

Extracting coefficients from (14) gives

Fn := [zn]F (z) =

{
[Tn]

(
ϕ(T )

)n
, for n ≥ 1,

0, for n = 0.
(15)
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Thus the required transition probabilities qn,k for 1 ≤ k ≤ n− 1 are given as follows:

qn,k =
[znuk]H(z, u)

(n− 1)Tn
=

TkFn−k

(n− 1)Tn
, (16)

with Fn defined by equation (15).

4.2. Solving the recurrence. Using (8) we have to study the recurrence

P{Zn = m} =
n−1∑
k=1

TkFn−k

(n− 1)Tn
P{Zk = m− 1}, (17)

with P{Z1 = 0} = 1 and P{Zn = 0} = 0, for n ≥ 2.
We will perform a generating functions approach using the bivariate generating function

M(z, v) :=
∑
n≥1

∑
m≥0

TnP{Zn = m}znvm. (18)

Multiplying (17) with (n − 1)Tnznvm and summing up for n ≥ 2 and m ≥ 1 leads to the following first
order linear differential equation

z
∂

∂z
M(z, v)−M(z, v) = vF (z)M(z, v),

with initial conditions M(0, v) = 0 and
(

∂
∂z M(z, v)

)
|z=0 = T1 = ϕ0, and the function F (z) given by (14).

Solving this differential equation leads to the solution

M(z, v) = ϕ0z exp
(
v

∫ z

0

F (t)
t

dt
)
. (19)

Then by using T ′(z) = ϕ(T (z))
1−zϕ′(T (z)) , which follows from the functional equation (1), and a change of

variables, we obtain:∫ z

0

F (t)
t

dt =
∫ T (z)

0

1
1−tϕ′(T (t)) − 1

t

dT

T ′(t)
=

∫ T (z)

0

ϕ′
(
T (t)

)
T ′(t)

(
1− tϕ′

(
T (t)

))dT =
∫ T (z)

0

ϕ′(T )
ϕ(T )

dT

= log ϕ
(
T (z)

)
− log ϕ(0) = log

ϕ
(
T (z)

)
ϕ0

.

Thus we get from (19) the following explicit formula for M(z, v):

M(z, v) = ϕ0z exp
(
v log

ϕ
(
T (z)

)
ϕ0

)
= ϕ0z

(ϕ
(
T (z)

)
ϕ0

)v

. (20)

4.3. Characterizing the limiting distribution. Extracting coefficients from (20) immediately leads
to

[vm]M(z, v) = ϕ0z

(
log ϕ(T (z))

ϕ0

)m

m!
. (21)

In our asymptotic study of the coefficients [znvm]M(z, v) (and thus of the probabilities P{Zn = m})
via singularity analysis, which is given below, we will only carry out the instance that the degree-weight
generating function ϕ(t) is aperiodic, i. e. p = 1. But for functions ϕ(t) with period p > 1 the proof is
fully analogous: then we have to consider the contributions of all p dominant singularities, which must
be added. This shows Theorem 1 also for p > 1.
Using the singular expansion (2) of T (z) we obtain the following local expansion around the dominant
singularity z = ρ, with certain constants κ̃1, κ̃2:

ϕ
(
T (z)

)
ϕ0

=
T (z)
ϕ0z

=
τ

ρϕ0
− 1

ϕ0ρ

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
+ κ̃1

(
1− z

ρ

)
+O

((
1− z

ρ

) 3
2
)
,

and further

log
ϕ
(
T (z)

)
ϕ0

= log
ϕ(τ)
ϕ0

− 1
τ

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
+ κ̃2

(
1− z

ρ

)
+O

((
1− z

ρ

) 3
2
)
. (22)
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Via (22) we obtain thus from (21) for m ≥ 1 the following expansion around z = ρ (again with a certain
constant κ̃):

[vm]M(z, v) =
∑
n≥1

TnP{Zn = m}zn

=
ϕ0ρ

m!

(
log

ϕ(τ)
ϕ0

)m

− ϕ0

ϕ(τ)(m− 1)!

(
log

ϕ(τ)
ϕ0

)m−1

√
2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
+ κ̃

(
1− z

ρ

)
+O

((
1− z

ρ

) 3
2
)
.

(23)

Applying singularity analysis to (23) gives then

[znvm]M(z, v) = TnP{Zn = m} =
ϕ0

ϕ(τ)(m− 1)!

(
log

ϕ(τ)
ϕ0

)m−1

√
ϕ(τ)

2πϕ′′(τ)
ρ−nn−

3
2

(
1 +O(n−1)

)
,

and, together with (3), for m ≥ 1 the asymptotic expansion

P{Zn = m} =
ϕ0

ϕ(τ)

(
log ϕ(τ)

ϕ0

)m−1

(m− 1)!
(
1 +O(n−1)

)
. (24)

Thus the probabilities P{Zn = m} converge for all m ≥ 1 to the probabilities P{Z = m} of a shifted
Poisson distributed random variable Z. This shows the first part of Theorem 1.

4.4. Computing the moments. From the generating function M(z, v) as given by (20) we can also
compute easily the r-th factorial moments E

(
Zr

)
.

Evaluating the r-th derivative with respect to v of M(z, v) at v = 1 gives

EvDr
vM(z, v) = Ev

[
ϕ0z

(
log

ϕ
(
T (z)

)
ϕ0

)r

ev log
ϕ(T (z))

ϕ0

]
= zϕ

(
T (z)

)(
log

ϕ
(
T (z)

)
ϕ0

)r

(25)

= T (z)
(

log
ϕ
(
T (z)

)
ϕ0

)r

. (26)

We further get by using (2) and (22) the asymptotic expansion (with a certain constant κ̂)

T (z)
(

log
ϕ(T (z))

ϕ0

)r

= τ
(

log
ϕ(τ)
ϕ0

)r

−
(

log
ϕ(τ)
ϕ0

)r−1(
r + log

ϕ(τ)
ϕ0

)√2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ

+ κ̂
(
1− z

ρ

)
+O

((
1− z

ρ

) 3
2
)
.

(27)

Singularity analysis leads then from (26) and (27) to the asymptotic expansion

[zn]EvDr
vM(z, v) =

(
log

ϕ(τ)
ϕ0

)r−1(
r + log

ϕ(τ)
ϕ0

)√ ϕ(τ)
2πϕ′′(τ)

ρ−nn−
3
2

(
1 +O(n−1)

)
,

and by using (3) thus to

E
(
Zr

n

)
=

[zn]EvDr
vM(z, v)

Tn
=

(
log

ϕ(τ)
ϕ0

)r−1(
r + log

ϕ(τ)
ϕ0

)(
1 +O(n−1)

)
.

This completes the proof of Theorem 1.

5. Very simple increasing tree families

5.1. The transition probabilities for general increasing trees. First we show for general increasing
tree families an expression for the transition probabilities qn,k as defined in Subsection 2.3. We can do
this analogous to Subsection 4.1 for simply generated tree families: we use the interpretation of the value
qn,k as the probability that the number of descendants of a node that was chosen at random from one
of the n − 1 non-root nodes in a random tree of size n is k, and define the auxiliary value q̃n,k as the
probability that the number of descendants of a randomly chosen node in a random tree of size n is k.
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Introducing the generating functions

G(z, u) =
∑
n≥1

∑
k≥0

nTnq̃n,k
zn

n!
uk, H(z, u) =

∑
n≥1

∑
k≥0

(n− 1)Tnqn,k
zn

n!
uk,

we obtain from the formal equation (6) (or by setting up recurrences for q̃n,m and qn,k) the following
differential equations:

∂

∂z
G(z, u) = uϕ

(
T (zu)

)
+ ϕ′

(
T (z)

)
G(z, u), G(0, u) = 0,

∂

∂z
H(z, u) = ϕ′

(
T (z)

)
G(z, u), H(0, u) = 0.

These differential equations have the solutions

G(z, u) = uϕ
(
T (z)

) ∫ z

0

ϕ
(
T (tu)

)
ϕ
(
T (t)

) dt, H(z, u) = ϕ
(
T (z)

) ∫ z

0

T (tu)ϕ′
(
T (t)

)
ϕ
(
T (t)

) dt. (28)

Equation (28) gives immediately

[znuk]H(z, u) =
(n− 1)Tnqn,k

n!
= [zn]

Tk

k!
ϕ
(
T (z)

) ∫ z

0

tkϕ′
(
T (t)

)
ϕ
(
T (t)

) dt,

and thus

qn,k =
n!Tk

(n− 1)Tnk!
[zn]ϕ

(
T (z)

) ∫ z

0

tkϕ′
(
T (t)

)
ϕ
(
T (t)

) dt. (29)

For arbitrary degree-weight generating functions ϕ(t) one cannot hope to obtain explicit formulæ for the
probabilities qn,k, but for the subclass of very simple increasing tree families as given by Lemma 1 we
will get an easy expression as is shown in Subsection 5.3.

5.2. Characterization of very simple increasing tree families.

Proof of Lemma 1. We will show here Lemma 1, which characterizes increasing tree families that satisfy
the equation Tn+1

Tn
= c1n + c2, with arbitrary but fixed constants c1, c2, for all n ≥ 1.

We remark that due to the demand Tn > 0 for all n ≥ 1 we get the a priori restrictions: c1 ≥ 0 and
c2 > −c1 (otherwise there would exist n ≥ 1 such that Tn+1

Tn
= c1n + c2 < 0).

• Now we consider the case c1 6= 0 and c2 6= 0 and get for Tn (where we use T1 = ϕ0):

Tn = T1

n−1∏
k=1

(c1k + c2) = ϕ0c
n−1
1

n−1∏
k=1

(c2

c1
+ k

)
=

ϕ0c
n
1

c2

(c2

c1
+ n− 1

)n =
ϕ0c

n
1n!

c2

( c2
c1

+ n− 1
n

)
=

ϕ0(−c1)nn!
c2

(
− c2

c1

n

)
,

and further

T (z) =
∑
n≥1

Tn
zn

n!
=

ϕ0

c2

∑
n≥1

(
− c2

c1

n

)
(−c1z)n =

ϕ0

c2

( 1

(1− c1z)
c2
c1

− 1
)
. (30)

In order to decide which values of c1, c2 are indeed possible choices we have to compute the corresponding
degree-weight generating functions and check, whether they are admissible (ϕk ≥ 0 for all k ≥ 0).
Differentiating (30) gives

T ′(z) =
ϕ0

(1− c1z)
c2
c1

+1
= ϕ0

(
1 +

c2

ϕ0
T (z)

) c1
c2

+1

. (31)

We obtain [Tn]ϕ(T ) = ϕn and by using (28)

[Tn]T ′(z) = [Tn]ϕ0

(
1 +

c2

ϕ0
T

) c1
c2

+1 = ϕ0

( c1
c2

+ 1
n

)( c2

ϕ0

)n

.
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Since T ′(z) = ϕ
(
T (z)

)
this gives

ϕn = ϕ0

( c1
c2

+ 1
n

)( c2

ϕ0

)n
, (32)

resp.

ϕ(t) =
∑
n≥0

ϕntn = ϕ0

(
1 +

c2t

ϕ0

) c1
c2

+1

. (33)

By considering (32) we can now check, whether the conditions ϕn ≥ 0, for all n ≥ 0, with ϕ0 > 0, are
satisfied.
(i) We consider first the case c2 > 0: if 1 + c1

c2
6∈ N, then it follows that there exists n ∈ N such that(

1+
c1
c2

n

)
< 0 and, since c1 > 0, thus that ϕn < 0. Therefore we get that this case is not admissible. But

if 1 + c1
c2

=: d ∈ N, then it follows that
( c1

c2
+1
n

)
= 0, for all n > d and thus that ϕn > 0, for all 0 ≤ n ≤ d

and ϕn = 0, for all n > d. Such degree-weight generating functions are admissible and are covered by
Case B in Lemma 1.
(ii) We have to consider also the case c2 < 0: since c1+c2 > 0 it follows that c1

c2
< −1 resp. n− c1

c2
−2 > n−1

and thus that

ϕn = ϕ0

( c1
c2

+ 1
n

)
(−1)n

(
− c2

ϕ0

)n = ϕ0

(
n− c1

c2
− 2

n

)(
− c2

ϕ0

)n
> 0,

for all n ≥ 0. Therefore such degree-weight generating functions are also admissible and are covered by
Case C in Lemma 1.
• Next we will consider the case c2 = 0 (and c1 > 0), which gives

Tn = T1

n−1∏
k=1

(c1k) = ϕ0c
n−1
1 (n− 1)!,

and

T (z) =
∑
n≥1

Tn
zn

n!
=

ϕ0

c1

∑
n≥1

(c1z)n

n
=

ϕ0

c1
log

( 1
1− c1z

)
. (34)

Since (34) gives

T ′(z) =
ϕ0

1− c1z
= ϕ0e

c1T (z)
ϕ0 , (35)

we obtain

ϕn = [Tn]ϕ(T ) = [Tn]T ′(z) = [Tn]ϕ0e
c1T (z)

ϕ0 =
ϕ0

(
c1
ϕ0

)n

n!
, (36)

and
ϕ(t) =

∑
n≥0

ϕntn = ϕ0e
c1t
ϕ0 . (37)

Since c1 > 0, we obtain from (37) that ϕn > 0, for all n ≥ 0, and thus that all degree-weight generating
functions (37) are admissible. They are covered by Case A in Lemma 1.
• The remaining case is c1 = 0 (and thus c2 > 0), which leads to Tn = ϕ0c

n−1
2 and to

T (z) =
∑
n≥1

Tn
zn

n!
=

ϕ0

c2

∑
n≥1

(c2z)n

n!
=

ϕ0

c2

(
ec2z − 1

)
. (38)

Since (38) gives
T ′(z) = ϕ0e

c2z = ϕ0 + c2T (z), (39)

this leads to
ϕ(t) = ϕ0 + c2t. (40)

This degenerate case (all trees are “chains”) is excluded from our further considerations due to the
demand that there exists a k ≥ 2 with ϕk > 0. �
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5.3. The transition probabilities. Now we are going to calculate the probabilities qn,k for very simple
increasing tree families. Using (5) from (29) we get

qn,k =
n!Tk

(n− 1)Tnk!
[zn]ϕ

(
T (z)

) ∫ z

0

tkϕ′
(
T (t)

)
ϕ
(
T (t)

) dt =
n!Tk

(n− 1)Tnk!
[zn]T ′(z)

∫ z

0

tkT ′′(t)
(T ′(t))2

dt. (41)

If c2 6= 0 then we obtain from (41) via integration by parts

T ′(z)
∫ z

0

tkT ′′(t)
(T ′(t))2

dt =
ϕ0

(1− c1z)
c2
c1

+1

∫ z

0

tkϕ0(c1 + c2)(1− c1t)
2c2
c1

+2

ϕ2
0(1− c1t)

c2
c1

+2
dt

=
c1 + c2

(1− c1z)
c2
c1

+1

∫ z

0

tk(1− c1t)
c2
c1 dt =

ϕ0(c1 + c2)

(1− c1z)
c2
c1

+1

[
k!

Tk+2
−

k∑
l=0

klzk−l(1− c1z)
c2
c1

+1+l

Tl+2

]

= (c1 + c2)

[
k!T ′(z)
Tk+2

− ϕ0

k∑
l=0

klzk−l(1− c1z)l

Tl+2

]
. (42)

For n > k, combining (41) and (42) leads to

qn,k =
n!Tk

(n− 1)Tnk!
[zn]T ′(z)

∫ z

0

tkT ′′(t)
(T ′(t))2

dt =
n!Tk

(n− 1)Tnk!
[zn]

(c1 + c2)k!T ′(z)
Tk+2

=
n!Tk

(n− 1)Tnk!
(c1 + c2)k!Tn+1

Tk+2n!
=

(c1 + c2)(c1n + c2)
(n− 1)(c1(k + 1) + c2)(c1k + c2)

. (43)

It turns out that this formula also holds for c2 = 0, thus covering all cases of very simple increasing tree
families.

5.4. Solving the recurrence. Using (8) we obtain therefore for n ≥ 2 and m ≥ 1 the recurrence

P{Zn = m} =
n−1∑
k=1

(c1 + c2)(c1n + c2)
(n− 1)(c1(k + 1) + c2)(c1k + c2)

P{Zk = m− 1}, (44)

with P{Z1 = 0} = 1 and P{Zn = 0} = 0, for n ≥ 2. We simplify this full history recursion by multiplying
with n−1

c1n+c2
and taking differences. (44) leads then for n ≥ 1 and m ≥ 1 to

n

c1(n + 1) + c2
P{Zn+1 = m} − n− 1

c1n + c2
P{Zn = m} =

c1 + c2

(c1(n + 1) + c2)(c1n + c2)
P{Zn = m− 1}. (45)

Introducing the generating function

M(z, v) :=
∑
n≥1

∑
m≥0

P{Zn = m} zn−1

(c1(n + 1) + c2)(c1n + c2)
vm,

recurrence (45) leads to the following homogeneous second order linear differential equation:

z(1− z)
∂2

∂z2
M(z, v) +

3c1 + c2

c1
(1− z)

∂

∂z
M(z, v)− (c1 + c2)v

c1
M(z, v) = 0, (46)

with initial conditions M(0, v) = 1
(2c1+c2)(c1+c2)

and ∂
∂z M(z, v)

∣∣
z=0

= v
(3c1+c2)(2c1+c2)

. Since the hyper-
geometric differential equation with parameters a, b, c is given by

z(1− z)F ′′(z) + (c− (a + b + 1)z)F ′(z)− abF (z) = 0,

M(z, v) satisfies the hypergeometric differential equation with parameters

a = 2c1+c2−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
, b = 2c1+c2+

√
(2c1+c2)2−4c1(c1+c2)v

2c1
, and c = 3c1+c2

c1
.

A solution basis of (46) is thus given by the following two functions (see e. g. [2]):

2F1

(
a, b
c

∣∣∣z)
= 2F1

( 2c1+c2−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
,

2c1+c2+
√

(2c1+c2)2−4c1(c1+c2)v

2c1
3c1+c2

c1

∣∣∣z)
,

z1−c
2F1

( a + 1− c, b + 1− c
2− c

∣∣∣z)
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= z−
2c1+c2

c1 2F1

( −(2c1+c2)−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
,
−(2c1+c2)+

√
(2c1+c2)2−4c1(c1+c2)v

2c1

− c1+c2
c1

∣∣∣z)
,

where 2F1

(
a, b
c

∣∣∣z)
:=

∑
n≥0

anbn

cn
zn

n! denotes the Gauss hypergeometric series.

Since M(z, v) has a power series expansion around z = 0 (and v = 0) it must follow that

M(z, v) = C(v) 2F1

( 2c1+c2−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
,

2c1+c2+
√

(2c1+c2)2−4c1(c1+c2)v

2c1
3c1+c2

c1

∣∣∣z)
, (47)

with a certain function C(v), since the other base function is not analytic at z = 0. After adapting (47)
to the initial conditions we obtain the solution

M(z, v) =
1

(2c1 + c2)(c1 + c2)
2F1

( 2c1+c2−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
,

2c1+c2+
√

(2c1+c2)2−4c1(c1+c2)v

2c1
3c1+c2

c1

∣∣∣z)
.

(48)

5.5. Characterizing the limiting distribution. To obtain a limiting distribution result we will apply
the following instance of the z to 1− z transformation (see e. g. [2]) with m ∈ {1, 2, 3, . . . }:

2F1

( a, b
a + b + m

∣∣∣z)
=

Γ(m)Γ(a + b + m)
Γ(a + m)Γ(b + m)

m−1∑
n=0

anbn

n!(1−m)n
(1− z)n

− Γ(a + b + m)
Γ(a)Γ(b)

(z − 1)m
∞∑

n=0

(a + m)n(b + m)n

n!(n + m)!
(1− z)n

×
(

log(1− z)−Ψ(n + 1)−Ψ(n + m + 1) + Ψ(a + n + m) + Ψ(b + n + m)
)
,

and get from equation (48) the following local expansion of M(z, v) around the dominant singularity
z = 1 in a complex neighbourhood of v = 1 (with certain functions C0(v), C1(v), and C2(v)):

M(z, v) =
1

(2c1 + c2)(c1 + c2)
Γ(3 + c2

c1
)

Γ( 2c1+c2−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
)Γ( 2c1+c2+

√
(2c1+c2)2−4c1(c1+c2)v

2c1
)

× (z − 1) log
1

1− z
+ C0(v) + C1(v)(1− z) + C2(v)(1− z)2 +O

(
(1− z)2 log

1
1− z

)
.

Singularity analysis gives then the following expansion of the probability generating function pn(v) :=∑
m≥0 P(Zn = m)vm of Zn.

pn(v) = (c1n + c2)(c1(n + 1) + c2)[zn−1]M(z, v)

=
Γ(1 + c2

c1
)

Γ( 2c1+c2−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
)Γ( 2c1+c2+

√
(2c1+c2)2−4c1(c1+c2)v

2c1
)

(
1 +O(n−1)

)
. (49)

Thus it follows from (49) that the moment generating function (= Laplace transform)
E(eZns) =

∑
m≥0 P{Zn = m}ems = pn(es) of Zn converges in a neighbourhood of s = 0 to the moment

generating function E(eZs) = p(es) of a discrete random variable Z with probability generating function
p(v) :=

∑
m≥0 P{Z = m}vs given by

p(v) =
Γ(1 + c2

c1
)

Γ( 2c1+c2−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
)Γ( 2c1+c2+

√
(2c1+c2)2−4c1(c1+c2)v

2c1
)
. (50)

We want to remark that by using the reflection law of the Gamma function

Γ(x)Γ(1− x) =
π

sin(πx)
,
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one can further simplify the formula of p(v) for binary increasing trees and recursive trees; see Table 2.
Extracting coefficients leads then for these tree families to expressions for the probabilities P{Z = m} as
given in Corollary 1.
Furthermore, we can give a representation of p(v) as an infinite product, where we simply use repeatedly
the functional equation Γ(x) = Γ(x+1)

x for the Gamma function expressions in (50). One obtains after n
iteration steps and some simplifications:

p(v) =
Γ(1)Γ(1 + c2

c1
)

Γ( 2c1+c2−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
)Γ( 2c1+c2+

√
(2c1+c2)2−4c1(c1+c2)v

2c1
)

= f(n)
n∏

k=1

(
1 +

(c1 + c2)(v − 1)
k(c1k + c2)

)
, (51)

with

f(n) =
Γ(n + 1)Γ(n + 1 + c1

c2
)

Γ(n + 2c1+c2−
√

(2c1+c2)2−4c1(c1+c2)v

2c1
)Γ(n + 2c1+c2+

√
(2c1+c2)2−4c1(c1+c2)v

2c1
)
.

Since it holds f(n) → 1 for n → ∞, as can be shown e. g. via Stirling’s asymptotic formula for the
Gamma function, we obtain from (51) the representation

p(v) =
∞∏

k=1

(
1 +

(c1 + c2)(v − 1)
k(c1k + c2)

)
. (52)

By an application of the continuity theorem for the Laplace transform (see e. g. [4]) we obtain from
equations (50) and (52) immediately the first part of Theorem 2.

5.6. Computing the moments. From the explicit formula (48) for the generating function M(z, v) we
can also compute exact expressions for the r-th factorial moments E

(
Z

r
n

)
of Zn. To do this we will give

first an exact formula for the probability generating function pn(v). By easy manipulations we obtain

pn(v) = (c1(n + 1) + c2)(c1n + c2)[zn−1]M(z, v)

=
(c1(n + 1) + c2)(c1n + c2)

(
2c1+c2−

√
(2c1+c2)2−4c1(c1+c2)v

2c1

)n−1( 2c1+c2+
√

(2c1+c2)2−4c1(c1+c2)v

2c1

)n−1

(2c1 + c2)(c1 + c2)
(

3c1+c2
c1

)n−1

(n− 1)!

=
(c1(n + 1) + c2)(c1n + c2)

∏n−2
k=0

(
k2 + (2 + c2

c1
)k + (1 + c2

c1
)− (1 + c2

c1
)(1− v)

)
(2c1 + c2)(c1 + c2)

(
3 + c2

c1

)n−1

(n− 1)!

=

∏n−1
k=1

(
k(c1k + c2)− (c1 + c2)(1− v)

)
∏n−1

k=1

(
k(c1k + c2)

) =
n−1∏
k=1

(
1 +

(c1 + c2)(v − 1)
k(c1k + c2)

)
. (53)

Evaluating the r-th derivative of pn(v) at v = 1 as given by (53) leads then to:

E
(
Zr

n

)
= EvDr

vpn(v) =
∑

1≤k1<k2<···<kr≤n−1

r!(c1 + c2)r∏r
i=1

(
ki(c1ki + c2)

)
= r!(c1 + c2)r

n−1∑
k1=1

1
k1(c1k1 + c2)

n−1∑
k2=k1+1

1
k2(c1k2 + c2)

· · ·
n−1∑

kr=kr−1+1

1
kr(c1kr + c2)

, (54)

which shows also the second part of Theorem 2. We remark that this result for the r-th factorial moments
can also be obtained directly from the recurrence (45) by using elementary means.
If c2 = 0 we get by using (11) the following result

E
(
Zr

n

)
= r!ζn−1(2, . . . , 2). (55)
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Using the probability generating function p(v) for c1 = 1, c2 = 0

p(v) = lim
n→∞

pn(v) =
sin(π

√
1− v)

π
√

(1− v)
=

∑
k≥0

π2k(−1)k(1− v)k

(2k + 1)!
, (56)

we obtain the r-th factorial moment of Z by differentiating r times with respect to v and evaluating at
v = 1:

E(Zr) = EvDr
vp(v) =

r!π2r

(2r + 1)!
. (57)

Since (12) yields E(Zr) = r!ζ(2, 2, . . . , 2︸ ︷︷ ︸
r times

), the proof of Corollary 2 is finished.
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