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Abstract

A tree is called k-decomposable if it has a spanning forest whose components are all of size k. In
this paper, we study the number of k-decomposable trees in families of increasing trees, i.e. labeled
trees in which the unique path from the root to an arbitrary vertex forms an increasing sequence.
Functional equations for the corresponding counting series are provided, yielding asymptotic or
even exact formulas for the proportion of k-decomposable trees. In particular, the case k = 2
(trees with a perfect matching) and the case of recursive trees are treated. For two cases, bijections
to alternating permutations and permutations with only even-length cycles can be given, thus
providing alternative proofs for the respective counting formulas. Furthermore, it turns out that
k-decomposable recursive trees become more numerous as k grows to infinity, a behavior that has
also been observed for simply generated families of trees.

Keywords: Increasing trees, decomposability of trees, perfect matchings, permutations.
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1 Introduction

An increasing tree is a labeled tree with the property that the sequence of labels along any path starting
from the root is increasing. The enumeration of families of increasing trees has been the topic of many
papers in the past – there is a variety of bijections between certain families of increasing trees and other
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combinatorial objects (in particular, permutations) – see [12] and the references therein. Bergeron,
Flajolet and Salvy [3] developed a general theory for the asymptotic enumeration of increasing trees,
based on the general differential equation

T ′(x) = Φ(T (x)). (1)

Here, Φ(t) is the so-called degree function associated with a family of increasing trees. Two major
types of increasing trees are distinguished: plane (meaning that the subtrees stemming from a node are
ordered) and non-plane increasing trees (meaning that the subtrees are not ordered). Now, the variety
of (plane or non-plane) increasing trees associated with a sequence {sj} of non-negative integers (with
s0 6= 0 and sj > 0 for some j > 0) is the family of all (plane or non-plane) increasing trees with sj

different sorts of nodes of degree j. The degree function is then defined by

Φ(t) =
∞
∑

j=0

sjt
j and Φ(t) =

∞
∑

j=0

sj

j!
tj

in the plane and non-plane case respectively. Differential equation (1) for the counting series T (x)
of the respective variety of increasing trees follows immediately from the definition. Based on this
equation, asymptotic formulas for the number of increasing trees in a given variety can be found by
means of the Flajolet-Odlyzko singularity analysis [7].

Varieties of increasing trees which can be generated by a natural evolution process are of special
interest. The best-known example of a variety of increasing trees is probably the variety of recursive
trees, corresponding to the sequence {1, 1, . . .} in the non-plane case. A random recursive tree is
obtained in the following manner: starting with the root (label 1), the node with label i + 1 is
attached to any previous node v at step i + 1, where the probability is pi(v) = 1

i for each of the
nodes. Due to this property recursive trees are sometimes called uniform recursive trees, in contrast
to non-uniform models such as plane-oriented recursive trees (see [3, 19]).

The varieties of d-ary increasing trees and generalized plane-oriented recursive trees (abbreviated
gports) are defined in a similar way, though the probability pi(v) depends on the outdegree deg+(v)

of the node v as well—in the case of d-ary trees, it is given by pi(v) = d−deg+(v)
(d−1)i+1 ; for gports, pi(v) =

deg+(v)+α
(α+1)i−1 . The corresponding degree-weight generating functions are Φ(t) = (1 + t)d and Φ(t) =

(1− t)−α respectively (a little more generally, one can use the functions Φ(t) = s0 exp(c1t/s0), Φ(t) =
s0(1 + c2t/s0)

d and Φ(t) = s0(1 − c2t/s0)
1−c1/c2 with certain constants s0, c1, c2 to define recursive

trees, d-ary increasing trees and gports). In a recent paper of Panholzer and Prodinger it was proven
that only recursive trees, d-ary increasing trees and gports may be obtained by a simple tree evolution
process as given above, see [16] for details.

Due to their simple growth rule random recursive trees have been introduced as a probability
model in several areas. For instance, they are used to model the spread of epidemics [13], to aid
in the construction of the family trees of preserved copies of ancient manuscripts [15], or to model
chain letter and pyramid schemes [10]. Furthermore they are used to model the stochastic growth
of networks [6]. For further information on recursive trees, see also the survey paper [19] and the
references therein.

Binary increasing trees (d = 2) are of special importance in computer science, since they are
isomorphic to binary search trees and the Quicksort algorithm. Plane-oriented recursive trees are a
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special instance of the so-called Albert-Barabási model for scale-free networks (see, for example, [4]).
They are used as a simplified growth model of the world wide web.

Furthermore, it should be noted that the number of recursive trees on n vertices is (n − 1)!, and
the number of binary increasing trees is n!. Hence, there are close connections to permutations.

In this paper, we are going to study k-decomposable trees in families of increasing trees. Here, a
tree is said to be k-decomposable if it has a spanning forest whose components are all of size k. Tree
composition of a very general nature are of interest in the theory of networks (cf. [1, 2])—for a given
partition λ = {λ1, . . . , λr} of n, a graph with n vertices is called λ-decomposable if there exists a
partition {V1, . . . , Vr} of the vertex set V such that |Vi| = λi and Vi induces a connected subgraph.
Thinking of the graph as a network, the underlying problem is whether one can split up the network
into subunits of prescribed size. The problem we are going to consider corresponds to the special
case where all the parts are of equal size. Since increasing trees (and in particular recursive trees)
are used as models for networks, it is natural to consider decomposability for this kind of trees, even
though the analysis is more difficult than for simply generated families of trees (see the recent paper
[20]). In view of our probabilistic model, enumerating k-decomposable increasing trees is equivalent
to determining the (asymptotic) probability that a tree (network) evolving from that model can be
divided into connected parts of equal size k.

It should also be noted that the special case k = 2 corresponds to the question whether a tree
has a perfect matching or not—the enumeration of trees with perfect matchings has been extensively
studied by Moon [14] and Simion [17, 18]. Here, this special case will also be of major interest, since
the differential equations arising in the enumeration of k-decomposable trees can be solved in this
case, yielding to implicit solutions for the generating functions. Furthermore, one obtains remarkable
explicit solutions for the number of 2-decomposable trees in two cases, for which we are going to give
bijective proofs as well. In the general case k > 2, we are only able to give a complete solution of the
enumeration problem for recursive trees.

2 Differential equations

For now, let k be a fixed natural number and let A(x) denote the exponential generating function
for the number of k-decomposable increasing trees from a variety determined by the degree function
Φ(t). Furthermore, let Al(x) be the generating function for the number of trees which have a spanning
forest such that all components are of size k, except for the component containing the root, which is
of size l. Let the class of trees with this property be denoted by Tl. It is not difficult to see—and has
also been used in [20]—that the subtrees T1, T2, . . . of a tree T ∈ Tl have to belong to some Tri such
that r1 + r2 + . . . = l − 1. Note that the number of subtrees belonging to T0 (which is just the class
of k-decomposable trees) is arbitrary. Formally, we can describe the class Tl as follows.

Tl = ©1 ×
⋃

Pm
i=1

iri=l−1

T ∗r1

1 ∗ T ∗r2

2 ∗ · · · ∗ T ∗rm
m ∗ Φ(r1+r2+... )(T0).

Here ©1 denotes the node labeled by 1, × the Cartesian product, ∗ the partition product for labeled
objects, and Φ(T0) the substituted structure. Translating the formal equation into a differential
equation gives us

d

dx
Al(x) =

∑

r1+2r2+···=l−1

A1(x)r1A2(x)r2 . . .

r1!r2! . . .
Φ(r1+r2+... )(A(x)). (2)
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Note at this point that A(x) = Ak(x) by definition. Introducing the bivariate generating function
B(x, y) =

∑

l≥1 Al(x)yl gives

∂

∂x
B(x, y) = y

∑

n≥0

Φ(n)(A(x))

n!
B(x, y)n = yΦ(A(x) + B(x, y)) (3)

with initial condition B(0, y) = 0. Despite its simple appearance, it is not easy to give a general
approach to this differential equation. So far, we have only been able to treat two special cases
successfully – namely, the case k = 2 (which corresponds to perfect matchings) and the case of
recursive trees (Φ(t) = et). First, we will consider increasing trees with perfect matchings.

2.1 Matchings: the case k = 2

Taking k = 2 in equation (2), we get the system of differential equations

A′(x) = A′
2(x) = Φ′(A(x))A1(x),

A′
1(x) = Φ(A(x)).

(4)

Multiplying the two equations, we obtain

A1(x)A′
1(x) =

Φ(A(x))

Φ′(A(x))
A′(x)

and thus

1
2A1(x)2 =

∫ A(x)

0

Φ(t)

Φ′(t)
dt.

Using this formula for A1(x) in the first equation yields the implicit solution for A = A(x), which is
given by

x =

∫ A

0

du

Φ′(u)
√

2
∫ u

0
Φ(t)
Φ′(t) dt

. (5)

Of course, the integral doesn’t necessarily exist. To be precise, it exists if and only if s1, the coefficient
of t in Φ(t), is positive. Equivalently, there exists at least one sort of vertices of outdegree 1. Not
surprisingly, this is equivalent to the fact that there exist 2-decomposable trees within the correspond-
ing variety of increasing trees. It is easy to give a proof for this: if the root is not allowed to have
outdegree 1, there is always at least one branch in a tree with a perfect matching that has itself a
perfect matching. But this contradicts the existence of a smallest 2-decomposable tree. Thus, if one
considers even trees (Φ(t) = cosh t, i.e. all nodes have even outdegree) for instance, there are no trees
with a perfect matching (in this case, it is quite obvious, since all even trees have an odd number of
vertices).

Turning back to equation (5), we are especially interested in those families of increasing trees
which can be generated by a (natural) tree evolution process: recursive trees (Φ(t) = exp(t)), gports
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(Φ(t) = 1/(1 − t)α, α > 0), and d-ary increasing trees (Φ(t) = (1 + t)d, d > 1). We have

x =

∫ A

0

1√
2t

e−t dt, recursive trees,

x =

∫ A

0

(1 − u)α+1du
√

α
√

2u − u2
, gports,

x =

∫ A

0

du

(1 + u)d−1
√

d
√

2u + u2
, d-ary increasing trees.

For gports (with α ∈ N) and d-ary increasing trees, the integrals can be computed explicitly. The

substitutions v =
√

u
2−u resp. v =

√

u
2+u help to write them in a simpler form, which also shows an

intimate connection between the two:

√
αx

2
=

∫

q

A
2−A

0

(1 − v2)α+1

(1 + v2)α+2
dv

resp. √
dx

2
=

∫

q

A
2+A

0

(1 − v2)d−2

(1 + v2)d−1
dv.

Now we have, for an arbitrary integer d > 1,

∫

q

A
2+A

0

d−2
∑

l=0

(

d−2
l

)

(−1)d−2−l2l

(1 + v2)l+1
dv =

d−2
∑

l=0

(

d − 2

l

)

(−1)d−2−l2lIl+1

(

√

A

2 + A

)

, (6)

where Il(z) :=
∫ z

0
1/(1 + v2)ldv. By partial integration, one obtains a recurrence for Il(z):

2lIl+1(z) =
z

(1 + z2)l
+ (2l − 1)Il(z).

Together with I1(z) = arctan z, iteration gives

Il(z) =
l
(

2l
l

)

4l(2l − 1)

l−1
∑

i=1

4iv

i
(

2i
i

)

(1 + v2)i
+

2l
(

2l
l

)

4l(2l − 1)
arctan(z).

Substituting the result for Il(z) into (6) leads to the following result:

∫

q

A
2+A

0

(1 − v2)d−2

(1 + v2)d−1
dv = c0 arctan(

√

A

2 + A
) +

d−2
∑

l=1

cl

√

A
2+A

(1 + A
2+A)l

,

where the coefficients are given by

c0 =

{

0 d odd,

2−d+2
(

d−2
d/2−1

)

d even,

cl =
4l

2l
(

2l
l

)

d−2
∑

i=l

(−1)d−2−i

(

d − 2

i

)

(

2i
i

)

2i
.
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As a direct consequence A is always an algebraic function if d is odd (and similarly if α is even). The
formula or the coefficients cl is easily obtained for l ≥ 0. For l = 0 we have to simplify the sum

c0 =

d−2
∑

i=0

(−1)d−2−i

(

d − 2

i

)

(

2i
i

)

2i
,

which can be written in terms of hypergeometric functions. Applying several hypergeometric identities
leads to the stated result (we refer the interested reader to the book of Graham, Knuth and Patashnik
[11], p. 259, exercise 70, and p. 535).

In particular we have, for binary increasing trees,

x√
2

= arctan

√

A

2 + A
,

which reduces to A(x) = sec(
√

2x) − 1. For ternary increasing trees, we obtain

√
3x

2
=

√

A(2 + A)

2(1 + A)
,

which reduces to A(x) = 1√
1−3x2

− 1.

This proves two remarkable combinatorial formulas: the number of binary increasing trees on 2n
vertices with a perfect matching is exactly 2nEn, where En is a secant or Euler number. Similarly, the
number of ternary increasing trees on 2n vertices with a perfect matching is 3n(2n− 1)!!2. Note that
En counts alternating permutations (beginning with a rise) and that (2n− 1)!!2 counts permutations
with even-length cycles only. In Section 3, we are going to give bijective proofs of these formulas.

Of course, one can easily obtain asymptotic formulas for the number of trees with a perfect match-
ings in virtually every increasing family following the lines of [3]. As an example, let us consider the
case of “festoon” trees, where the labels of a node’s children form an alternating permutation (cf.
[3]; there, however, all internal vertices were supposed to have odd degree). In this case, we have
Φ(t) = 1+sin t

cos t = sec t + tan t. Then, equation (5) gives us

x =

∫ A

0

(1 − sinu) du√
2 sinu

.

It follows that the dominating singularity of A is given by

ρ =

∫ π/2

0

(1 − sin u) du√
2 sinu

=

∫ 1

0

√

1 − v

2v(1 + v)
dv = 1.006862.

The value of ρ can also be written in terms of elliptic integrals. Now, expanding the integral around
π
2 , we obtain

x = ρ − 1

6
√

2

(π

2
− A(x)

)3

+ O

(

(π

2
− A(x)

)4
)

and hence
A(x) =

π

2
− (72ρ2)1/6 · (1 − x/ρ)1/3 + O

(

(1 − x/ρ)2/3
)

.
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Application of the Flajolet-Odlyzko singularity analysis [7] yields the asymptotics of the coefficients
an of A(x):

an ∼ 2(72ρ2)1/6

−Γ(−1/3)
n−4/3 ρ−n =

(

8ρ2

3

)1/6

· Γ(1/3)

π
· n−4/3 · ρ−n

for even n, the numerical value of the multiplicative factor being 1.006462. The exponential generating
function for the number of festoon trees is easily seen to be arcsin(ex−1), from which the asymptotics
of its coefficients tn follow at once:

tn ∼
√

log 2

π
· n−3/2 · (log 2)−n.

Hence, the proportion of trees with a perfect matching among festoon trees is asymptotically

an

tn
∼
(

8ρ2

3

)1/6

· Γ(1/3)√
π log 2

· n1/6 ·
(

log 2

ρ

)n

= 2.142692 · n1/6 · (0.688423)n.

2.2 The general case for recursive trees

Generally, one obtains a system of k differential equations from (3) that seems to be difficult to study.
There is only one case (essentially) for which a simple solution can be obtained, namely the case of
recursive trees, where Φ(t) = et. For these trees, we can proceed as follows. The differential equation

∂

∂x
B(x, y) = y exp(A(x) + B(x, y))

has the explicit solution

B(x, y) = log
( 1

1 − y
∫ x

0
exp(A(t))dt

)

.

Extracting the coefficient of yl leads to

Al(x) =
1

l

(

∫ x

0

exp(A(t))dt
)l

,

and so we arrive at the equation

Ak(x) = A(x) =
1

k

(

∫ x

0

exp(A(t))dt
)k

.

Further simplification and differentiation with respect to x gives

k
1
k−1A′(x)A(x)

1
k−1 = exp(A(x)),

which leads to the implicit solution

x =

∫ A

0

(kt)
1
k−1e−t dt. (7)
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Note that A has nonzero coefficients only for those powers xn for which n is a multiple of k. Following
[3], we see that A(x) = B(xk), where B has a dominant singularity at ρk and ρ is given by

ρ =

∫ ∞

0

(kt)
1
k−1e−t dt = k

1
k−1Γ

(

1
k

)

.

Expanding around the singularity shows that A behaves like

A(x) = log
1

1 − (x/ρ)k
−
(

1 − 1

k

)

log log
1

1 − (x/ρ)k
+ O(1),

so that a simple singularity analysis gives us the behavior of the coefficients [xkn]A(x):

akn = [xkn]A(x) ∼ 1

n

(

k1− 1
k

Γ
(

1
k

)

)kn

.

Since the number of recursive trees with n vertices is well-known to be (n− 1)!, we see that the ratio
of k-decomposable recursive trees among all recursive trees is asymptotically

k ·
(

k1− 1
k

Γ
(

1
k

)

)kn

.

Note that k1−1/k

Γ(1/k) tends to 1 as k → ∞, a behavior that was also observed in [20] – we expect this to

be true for arbitrary classes of increasing trees, but a proof has to involve some deeper understanding
of the analytic behavior of equation (3).

3 Bijections for binary and ternary increasing trees with a

perfect matching

In this section, we are going to give bijective proofs of two identities observed in Section 2.1. A lot of
similar bijections are known between various types of increasing trees and alternating permutations
(which are enumerated by the secant and the tangent numbers) – the interested reader is referred to
[8, 9, 12].

First of all, we define equivalence classes on binary and ternary increasing trees with a perfect
matching. Let B0 and C0 denote the sets of binary resp. ternary increasing trees with a perfect
matching. Now, we consider the following operation: let a tree T ∈ B0 on 2n vertices be given
together with its unique perfect matching M . For every vertex v that is joined to its left child in
M , we flip the branches attached to v, obtaining a new tree T ′ ∈ B0. Similarly, if a tree T ∈ C0 on
2n vertices is given together with its unique perfect matching M , we perform a right-rotation on the
branches of every vertex v that is joined to one of its children in M , in such a way that this child
becomes the right child. Again, we obtain a new tree T ′ ∈ C0. Figure 3 shows two examples of this
procedure—the edges of the perfect matching are represented by broken lines.

Obviously, the resulting tree T ′ is characterized by the condition that all edges of the unique
perfect matching link a parent and its right child. Two trees are called equivalent if they yield the
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8
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2 2

3 3

44

55

66

7 7

8 8

9 9

10 10
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1212

Figure 1: Constructing T ′ from T .

same tree T ′. Since M contains n edges, the number of trees in each equivalence class is 2n resp. 3n,
as there are two resp. three possible directions for each of the edges of M .

In an analogous manner, we define equivalence classes on B1 and C1, the classes of binary resp.
ternary increasing trees with a matching that covers all vertices except the root. Again, the number
of trees in an equivalence class is 2n resp. 3n if the number of vertices is 2n + 1.

Now, let R0 be the set of representatives of equivalence classes of B0, and define R1 analogously.
Furthermore, we write Ri,n for the set of n-vertex trees in Ri. Finally, let Altn be the set of alternating
permutations of {1, 2, . . . , n}, beginning with a rise. We are going to construct a bijection between
R0,2n and Alt2n as well as a bijection between R1,2n+1 and Alt2n+1.

The bijection is constructed by means of induction. The empty tree corresponds to the “permu-
tation” of 0 elements, and the bijection between R1,1 and Alt1 is also trivial. Now, note that a tree
T ∈ R0 is characterized by the following properties:

• the left branch lies in R0,

• the right branch lies in R1.

Hence, there are two alternating permutations σ1, σ2 associated with the branches of T . Note that
σ1 is a permutation of an even number of labels, whereas σ2 is a permutation of an odd number of
labels. Now, a simple construction yields the alternating permutation associated with T : reverse the
labels in σ2 (for instance, 57692 becomes 75629), so that one obtains an alternating permutation σ′

2

beginning with a fall (and ending with a rise, since the number of labels is odd) on the same set of
labels. Now append σ1, 1 and σ′

2 to obtain the alternating permutation σ associated with T .
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Similarly, a tree T ∈ R1 is characterized by the fact that both its branches belong to R0. Given
the alternating permutations σ1, σ2 corresponding to these branches, we obtain a new alternating
permutation (which we associate with T ) by reversing the labels of σ2 (obtaining a permutation σ′

2)
and appending σ1, 1 and σ′

2.

Clearly, the described construction defines a bijection, which proves the fact that there are En

equivalence classes and thus 2nEn binary increasing trees on 2n vertices with a perfect matching.

485          845

6723 + 1 + 845 = 67231845

6723

2

36

7

2

36

7

4

5

8

4

5

8
1

Figure 2: Application of the recursive procedure for binary increasing trees.

For ternary increasing trees, let S0 and S1 be the sets of representatives for the equivalence classes
of C0 and C1 respectively, let S0,n and S1,n be defined analogously to R0,n and R1,n and denote by On

the set of permutations of {1, 2, . . . , n} with the property that all cycles have odd length (equivalently,
the order is odd). We will provide a bijection between S0,2n and O2n and a bijection between S1,2n+1

and O2n+1 by means of a similar recursive construction as in the case of binary increasing trees.

First, note that there is a simple bijection φ between permutations with odd-length cycles and
permutations with even-length cycles only, as demonstrated in [5] for instance. For the sake of com-
pleteness, we state this bijection as well: given a permutation σ with odd-length cycles and an even
number of cycles, write it in such a way that the largest element in each cycle occurs first and these
elements are in increasing order. Then, move the last element of the 1st, 3rd, 5th, . . . cycle to the
end of the 2nd, 4th, 6th, . . . cycle to obtain a permutation σ′ with even-length cycles. For instance,
(3)(512)(749)(8) is mapped to (5123)(74)(89). It is not difficult to see that the correspondence is
bijective.

Now, we are ready to construct the bijections between S0,2n and O2n and between S1,2n+1 and
O2n+1. Again, the empty tree corresponds to the “permutation” of 0 elements, and the bijection
between S1,1 and O1 is trivial. Now, a tree T ∈ S0 is characterized by the following properties:

• the left and middle branch lie in S0,

• the right branch lies in S1.
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Hence, there are two permutations σ1, σ2 with odd-length cycles associated with the left and middle
branches of T . We apply the bijection φ to σ2 and obtain a permutation σ′

2 with even-length cycles.
The union of the cycles of σ1 and σ′

2 uniquely defines a permutation of the labels of the left and middle
subtrees. We write this permutation as a list of elements rather than in cycle notation and prepend
1 to obtain the cycle containing 1 (for instance, the permutation 27834 yields the cycle (127834)).
Together with the permutation associated with the right branch, this gives us the unique permutation
σ (with odd-length cycles only) associated with T .

(2) (4 14 5) = (2) (14 5 4)            (14 5 4 2)

(6 7 12) (10)

(3) (8 13 11) (9)

(1 14 2 4 7 12 10 6 5) (3) (8 13 11) (9)

(6 7 12) (10) (14 5 4 2) = 14 2 4 7 12 10 6 5

2 3

4

5

6

7

9

810

1112

1314

1

2 3

4

5

7

6

8

9

10

1112

1314

Figure 3: Application of the recursive procedure for ternary increasing trees.

In a similar manner, we construct the permutation associated with a tree T ∈ S1: the three
branches all belong to S0, so we may use the left and middle branch to define the cycle that contains
1, and the right branch to define the permutation of the remaining elements.

So finally, we have established a bijective proof of the fact that there are 3n(2n − 1)!!2 ternary
increasing trees on 2n vertices with a perfect matching. Note also that the number of ternary increasing
trees on n vertices is precisely (2n−1)!!. Hence, there might be a simple bijection between equivalence
classes of ternary increasing trees on 2n vertices and pairs of ternary increasing trees on n vertices.
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