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Abstract

We introduce random recursive trees, where deterministically weights are attached to the

edges according to the labeling of the trees. We will give a bijection between recursive trees

and permutations, which relates the arising edge-weights in recursive trees with inversions of

the corresponding permutations. Using this bijection we obtain exact and limiting distribution

results for the number of permutation of size n, where exactly m elements have j inversions.

Furthermore we analyze the distribution of the sum of labels of the elements, which have

exactly j inversions, where we can identify Dickman’s infinitely distribution as the limit law.

Moreover we give a distributional analysis of weighted depths and weighted distances in edge-

weighted recursive trees.
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1 Introduction

There are several well-known bijections between recursive trees and permutations. For example,
a rotation correspondence is given in [2], which immediately characterizes the distribution of the
root degree, the number of leaves, etc., in a random recursive tree. Here we state a natural,
but new bijection (best to our knowledge), which maps inversions in random permutations of
{1, 2, . . . , n − 1} to suitably defined weights on the edges of recursive trees with n nodes. Using
this bijection we are able to relate parameters in permutations, as, e.g., the number of inversions,
with parameters in recursive trees.

A rooted non-plane size-n tree labeled with distinct integers 1, 2, . . . , n is a recursive tree if
the node labeled 1 is distinguished as the root, and, for each 2 ≤ k ≤ n, the labels of the nodes
on the unique path from the root to the node labeled k form an increasing sequence. Every size-
n recursive tree can be obtained uniquely by attaching node n to one of the n − 1 nodes in a
recursive tree of size n− 1. This immediately shows that the number Tn of recursive trees of size
n is given by (n − 1)!, for n ≥ 1. Throughout this paper we assume as the model of randomness
the random tree model, which means that all (n − 1)! recursive trees of size n are considered to
appear equally likely. We speak then about random recursive trees. Equivalently one may describe
random recursive trees via the following tree evolution process, which generates random recursive

∗This work was supported by the Austrian Science Foundation FWF, grant S9608.
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trees of arbitrary size n. At step 1 the process starts with the root labeled by 1. At step i+1 the
node with label i+1 is attached to any previous node v of the already grown tree T of size i with
probability pi(v) = 1/i.

Due to this simple growth rule random recursive trees have been introduced as a probability
model in several areas. E.g., they are used to model the spread of epidemics [16], to aid in the
construction of the family trees of preserved copies of ancient manuscripts [17], or to model chain
letter and pyramid schemes [6]. Furthermore they are used to model the stochastic growth of
networks [3]. See also the survey paper [15].

Let T denote a recursive tree of size |T |. Throughout this paper we always consider edge-
weighted recursive trees, where every edge e ∈ E = E(T ) of the tree will be weighted determinis-
tically as follows. If the edge e = (j, k) is adjacent to the nodes j and k, then we define the weight
we of the edge e as we := |k− j|. The aim of this paper is to study several parameters of random
recursive trees appearing in connection with this edge-weights.

We will analyze the random variable Sn :=
∑

e∈En
we counting the sum of all edge-weights

and the random variable Sn,j =
∑

e∈En
11{we=j} counting the number of edge-weights we with

we = j in a random recursive tree of size n. By using the bijection between recursive trees and
permutations already mentioned it turns out that the r. v. Sn essentially counts the number
inversions and the r. v. Sn,j is given by the number of elements with exactly j − 1 inversions in a
random permutation of size n− 1.

We also study the r. v. Wn,j :=
∑

e=(e1,e2)∈En
e211{we=j}, which counts the sum of the labels

of nodes attached via edges of weight j, for the full range of j = j(n) growing with the size n of a
random recursive tree. We show that the limiting distribution of Wn,j depends on the growth of
j = j(n), where Dickman’s infinitely divisible distribution appears in the limit law.

Furthermore we analyze the random variable Gn counting the number of absent edge-weights
of the set {1, 2, . . . , n− 1} in a random recursive tree of size n. We can show a Gaussian limit law
for the suitably normalized and centered r. v. Gn. Moreover we consider the random variableMn,
which gives the maximum edge-weight appearing in a random recursive tree of size n. Due to the
correspondence with inversion statistics in random permutations we obtain a Rayleigh distribution
as limit law of the suitably normalized and scaled r. v. Mn.

In a rooted tree the depth of node v, also called the level of node v, is measured by the number
of edges lying on the unique path from the root to node v. Here we consider a generalization of the
depth for edge-weighted trees. Let Xn,j :=

∑

e∈E we11(Ae) denote the random variable counting
the edge-weighted depth of node j in a random recursive tree of size n, where Ae denotes the event
that edge e is on the unique path from the root to node j. Further we denote by Xn,j the random
variable counting the edge-weighted distance between nodes j and n in a random recursive tree of
size n, measured by the sum of the edge-weights on the unique path from j to n. The r. v. Xn,j

can be trivially characterized, whereas the characterization of Xn,j leads to a discrete limit law.
Using the distribution law of Xn,j we are also able to obtain the distribution of the label of the
root of the spanning tree of two randomly selected nodes in a random recursive tree of size n.

When speaking about inversions in permutations we will here always think about “right in-
versions”, i.e., inversions caused by elements to the right. For a permutation σ = (σ1 . . . σn) of
{1, 2 . . . , n} and 1 ≤ k ≤ n we call the number of elements in σ to the right of k, which are smaller
than k, the element inversions ik = ik(σ) of k. Hence the inversion table of σ = (σ1 . . . σn) is given
by (i1, i2, . . . , in), with the restrictions 0 ≤ ik ≤ k − 1, for 1 ≤ k ≤ n.

Throughout this paper we denote by X
(d)
= Y the equality in distribution of the random

variablesX and Y , and withXn
(d)−−→ X the weak convergence, i. e., the convergence in distribution,

of the sequence of random variablesXn to a random variableX. For independent random variables
X and Y we denote the sum of X and Y byX⊕Y , whereas for not necessarily independent random
variables X and Y we write X + Y . We will denote by

[

n
k

]

the signless Stirling numbers of the

first kind and by
〈

n
k

〉

the Eulerian numbers. Furthermore we use the Iverson bracket-notation:
for a statement A we have [[A]] = 1 if A is true and [[A]] = 0 otherwise. Moreover we denote by
{j <c k} the event that node j is attached to node k (i.e., j is a child of k) for a given tree T .
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In Section 2 we give the bijection between recursive trees and inversions in permutations and
study the random variables Sn, Gn and Mn. Section 3 is devoted to the analysis of specific edge
weights Sn,j and Wn,j , whereas Section 4 is devoted to the analysis of edge-weighted depths and
distances, Xn,j and Xn,j .

2 Edge-weights and inversions in random permutations

2.1 A bijection between recursive trees and permutations

We present the following bijection between recursive trees of size n and permutations of {1, . . . , n−
1}, which turns out to be appropriate when studying parameters in edge-weighted recursive trees.

Bijection 1. Consider a recursive tree T of size n and its edge set E. We enumerate the n − 1
edges of E by e2, e3, . . . , en, where ek, with k ≥ 2, is defined as the edge ek = (j, k) connecting j and
k, with 1 ≤ j ≤ k−1. The edge ek is uniquely defined, since every node k ≥ 2 in a recursive tree is
attached to exactly one node j with 1 ≤ j ≤ k − 1. We define now the numbers qk := wek = k − j
as the edge-weight of edge ek and consider the edge-weight table (q2, q3, . . . , qn) of T . Of course,
it holds 1 ≤ qk ≤ k − 1, for 2 ≤ k ≤ n. If we define numbers ik := qk+1 − 1, for 1 ≤ k ≤ n − 1,
then it holds 0 ≤ ik ≤ k − 1 and the array (i1, i2, . . . , in−1) corresponds to the inversion table of
a permutation σ of {1, 2, . . . , n − 1}, which uniquely determines σ. To construct a recursive tree
T of size n from a given permutation σ of {1, . . . , n} with inversion table (i1, . . . , in−1) one starts
with 1 as the root of T and attaches successively node k, with 2 ≤ k ≤ n, to node j = k− 1− ik−1,
which leads to an edge-weight table (q2, . . . , qn) with qk = k − j = ik−1 + 1, for 2 ≤ k ≤ n.

2.2 The sum of edge-weights

Theorem 1. The distribution of the random variable Sn, counting the sum of the edge-weights in
a random recursive tree of size n, is given by

Sn
(d)
= ξn−1 ⊕ (n− 1)

(d)
= U1⊕U2⊕ · · · ⊕Un−1, (1)

where the random variable ξn counts the number of inversions of a random permutation of size n,
and Uk denotes a uniform distribution on the set {1, 2, . . . , k}.

Proof. The theorem is an immediate consequence of Bijection 1, since for a given recursive tree of
size n with edge-weight table (q2, . . . , qn) and inversion table (i1, . . . , in−1) of the corresponding
permutation of size n− 1 we always have ∑2≤k≤n qk = n− 1 +∑1≤k≤n−1 ik−1. Furthermore for
a random recursive tree of size n the edge-weights qk are uniformly distributed on {1, . . . , k − 1}
independent of the edge-weights ql, l 6= k, since k is attached to one of the nodes 1 ≤ j ≤ k− 1 at
random.

Using Theorem 1 and the central limit theorem for the number of inversions ξn of a random
permutation of size n, see [19], we obtain the following corollary.

Corollary 1. The properly scaled and shifted random variable Sn converges, for n → ∞, in
distribution to a standard normal distributed r. v.:

S∗n :=
Sn − E(Sn)
V(Sn)

(d)−−→ N (0, 1), (2)

where N (0, 1) denotes the standard normal distribution.
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2.3 The maximal edge-weight

Let Mn denote the random variable, which gives the maximal edge-weight in a random recursive
tree of size n. As an immediate consequence of Bijection 1 we obtain the following result.

Theorem 2. The distribution of the r. v. Mn+1 is for n ≥ 1 given as follows.

Mn+1
(d)
= ηn ⊕ 1

(d)
= max{U1,U2, . . .Un}, (3)

where the random variable ηn gives the maximal entry in the inversion table of a random permu-
tation of size n, and Uk denotes a uniform distribution on the set {1, 2, . . . , k} and all r. v. Uk
are mutually independent.

We want to remark that, due to Theorem 2, Mn+1 also counts the number of passes that
are required to sort a random permutation of size n by the sorting algorithm bubble sort. Using
results from [9] and [14] we obtain distributional results for Mn+1.

Corollary 2. The exact distribution of Mn is given as follows.

P{Mn+1 ≤ m} = m!mn−m

n!
, for 1 ≤ m ≤ n, and n ≥ 1.

The limiting distribution of the suitably scaled and shifted r. v. Mn can be characterized as
follows:

M∗
n :=

Mn − n√
n

(d)−−→ −X,

where X is a Rayleigh distributed random variable with density function f(x) = xe−
x2

2 , for x ≥ 0,
and f(x) = 0, otherwise.

2.4 The number of absent edge-weights

Let Gn denote the random variable counting the number of elements of the set {1, 2, . . . , n − 1},
which do not appear as an edge-weight in a random recursive tree of size n. Using Bijection 1 we
immediately get the following result.

Theorem 3. Gn is distributed as the number of elements of the set {0, 1, . . . , n−2}, which are not
appearing in the inversion table of a random permutation of size n− 1. Furthermore the following
distributional equation holds:

Gn
(d)
= |{1, 2, . . . , n− 1} \ {U1,U2, . . . ,Un−1}|, (4)

where Uk denotes a uniform distribution on {1, 2, . . . , k} and all random variables are mutually
independent.

We will study now the distribution of Gn, where it will turn out that it is slightly more
convenient when considering Gn+1. Obviously we have P{Gn+1 = 0} = P{Gn+1 = n− 1} = 1/n!,
for n ≥ 1, which corresponds to a star-like tree: {k <c 1} for 1 ≤ k ≤ n, or a chain: {k + 1 <c k}
for 1 ≤ k ≤ n. Furthermore it holds that P{Gn+1 = n} = 0, for n ≥ 1. When distinguishing
whether the weight of the edge adjacent to node n+1 is occurring also amongst the edge-weights
of the remaining edges or not, we can set up easily the following recurrence for Gn+1:

P{Gn+1 = m} = n−m
n

P{Gn = m− 1}+ m+ 1

n
P{Gn = m}, for 1 ≤ m ≤ n− 1 and n ≥ 2.

(5)
We introduce now, for 0 ≤ m ≤ n and n ≥ 1, the numbers an,m := P{Gn+1 = m}Tn+1 =

P{Gn+1 = m}n!. We obtain then the margin values an,0 = 1 and an,n = 0, for n ≥ 1, and for
1 ≤ m ≤ n− 1 and n ≥ 2 the recurrence

an,m = (n−m)an−1,m−1 + (m+ 1)an−1,m. (6)
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But this is exactly the recurrence for the Eulerian numbers
〈

n
m

〉

counting the number of permuta-
tions of size n with exactly m ascents:

〈

n

m

〉

= (n−m)
〈

n− 1
m− 1

〉

+ (m+ 1)

〈

n− 1
m

〉

. (7)

Note that an ascent in the permutation σ = (σ1, σ2, . . . , σn) is defined as a position j, with
1 ≤ j ≤ n− 1, such that σj < σj+1. This immediately leads to the following result.

Theorem 4. The distribution of the random variable Gn+1 is for n ≥ 1 given as follows:

P{Gn+1 = m} =
〈

n
m

〉

n!
, for 0 ≤ m ≤ n, (8)

where
〈

n
m

〉

denote the Eulerian numbers.

Using Theorem 4 and the central limit theorem for the Eulerian numbers [1] we obtain the
limit distribution of Gn.

Corollary 3. The properly scaled and shifted random variable Gn converges, for n → ∞, in
distribution to a standard normal distributed r. v.:

G∗n :=
Gn − E(Gn)

V(Gn)

(d)−−→ N (0, 1), (9)

where N (0, 1) denotes the standard normal distribution.

Of course the previous considerations lead to the following corollary, which seems to be new
best to our knowledge.

Corollary 4. The number of permutations of {1, 2, . . . , n} with exactly m ascents and the number
of permutations of {1, 2, . . . , n} with exactly m absent values in its inversion table (i.e., exactly m
elements of the set {0, 1, . . . , n − 1}, which are not appearing in its inversion table) coincide and
are given by the Eulerian numbers

〈

n
m

〉

.

Remark 1. We want to point out that only the number of permutations coincide in Corollary 4.
It is not true in general that a permutation with exactly m ascents also has m absent values
in its inversion table. Consider, e.g., the permutation σ = (2, 4, 1, 3) with 2 ascents, but when
considering its inversion table (0, 1, 0, 2) we see that only one value, namely 3, is absent.

3 The distribution of specific edge-weights

3.1 The number of edge-weights of a given size

Let us denote by En the set of edges of an edge-weighted random recursive tree of size n. We will
study the random variable Sn,j :=

∑

e∈En
11{we=j}, which counts the number of edges with weight

j in a size-n random recursive tree. This can be done by showing relations to the node degree of
specified nodes in random recursive trees.

At first we give the following immediate consequence of Bijection 1.

Proposition 1.

Sn,j
(d)
= In−1,j−1, for n > j ≥ 1, (10)

where In,j denotes the r. v., which counts the number of elements in a random permutation of size
n with exactly j inversions.

The next theorem gives a relation between the distribution of edges with a given weight and
the out-degree of specified nodes in recursive trees and characterizes the distribution appearing.
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Theorem 5. The random variable Sn,j satisfies the following distribution law.

Sn,j
(d)
= Zn,j

(d)
= Bj ⊕ · · · ⊕Bn−1, (11)

where the random variable Zn,j gives the out-degree (i.e., the number of children, or the the number
of attached nodes) of node j in a random recursive tree of size n, and Bk denotes a Bernoulli-
distributed r. v. Be( 1

k
), i.e., P{Bk = 1} = 1/k and P{Bk = 0} = 1− 1/k.

Proof. We obtain the following distributional equation of Sn,j :

Sn,j
(d)
=

n
⊕

k=j+1

11{k<ck−j}, (12)

where {k <c i} denotes the event that node k is attached to node i (i.e., k is a child of i). These
indicators are mutually independent for recursive trees and by definition given via P{k <c i} =
1/(k − 1), for 1 ≤ i ≤ k − 1. Thus Sn,j

(d)
=
⊕n−1

k=j Be(
1
k
).

To establish the connection to the out-degree Zn,j of node j in a size-n random recursive tree
we use the following distributional equation:

Zn,j
(d)
=

n
⊕

k=j+1

11{k<cj}. (13)

Since P{k <c j} = 1/(k − 1), for 1 ≤ j ≤ k − 1, we also get Sn,j
(d)
= Zn,j .

Since the distribution of the out-degree of specified nodes in recursive trees Zn,j has been
studied in [11] for the whole range 1 ≤ j < n one immediately obtains corresponding results for
Sn,j and In,j also, which are given next.

Corollary 5. The distribution of Zn,j, Sn,j and In,j are given as follows:

P{Sn,j = m} = P{Zn,j = m} = P{In−1,j−1 = m} = 1
(

n−1
j−1

)

n−j
∑

k=m

(

n− k − 2
j − 2

)

[

k
m

]

k!
, for 1 ≤ j < n.

(14)
The limiting distribution behavior of the random variable Xn,j , which stands for Zn,j, Sn,j or

In,j, is, for n→∞ and depending on the growth of j, given as follows.

• The region for j small: j = o(n). The suitably scaled and shifted r. v. Xn,j is asymptotically
Gaussian distributed,

X∗n,j :=
Xn,j − (log n− log j)√

log n− log j
(d)−−→ N (0, 1). (15)

• The central region for j: j → ∞ such that j = µn, with 0 < µ < 1. The random variable
Xn,j is asymptotically Poisson distributed Poisson(λ) with parameter λ = − log µ.

Xn,j
(d)−−→ Xµ, with P{Xµ = m} = µ(− log µ)m

m!
. (16)

• The region for j large: l := n− j = o(n). P{Xn,j = 0} → 1.

We also give the following corollary.
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Corollary 6. The number In,j,m of permutations of {1, 2, . . . , n}, where exactly m elements have
j inversions is given by

In,j,m = j!(n− j)!
n−j
∑

k=m

(

n− k − 1
j − 1

)

[

k
m

]

k!
. (17)

In,j,m is for j and m fixed and n→∞ asymptotically given by

In,j,m ∼
j
√
2π

m!

nn−
3
2 logm(n)

en
, (18)

whereas for l := n− j and m fixed and n→∞ by

In,j,m ∼
√
2π

m!(l −m)!
nn−m

en
. (19)

Remark 2. Note that, by using the correspondence between recursive trees and permutations as
given by Bijection 1 and results stated in [12] about the node degrees in recursive trees, one
can get even a refinement of the results presented. It is possible to obtain a closed formula for
In,J,M , which gives the number of permutations of {1, 2, . . . , n}, where exactly mi elements have
ji inversions, with 1 ≤ i ≤ r, for vectors J = (j1, . . . , jr) and M = (m1, . . . ,mr).

3.2 The sum of the labels of nodes attached via edges of a given weight

We study now the random variable Wn,j :=
∑

e=(e1,e2)∈En
e211{we=j}, which counts the sum of

the labels of nodes attached via edges of weight j, where again En denotes the set of edges of a
random recursive tree of size n. In order to get a direct correspondence with inversions we study
a variant, i.e., the r. v. Wn,j :=

∑

e=(e1,e2)∈En
(e2 − 1)11{we=j}, and obtain as a consequence of

Bijection 1 the following proposition.

Proposition 2. The random variable Wn,j counts the sum of the values of the elements in a
random permutation of {1, 2, . . . , n− 1}, which have exactly j − 1 inversions.

We immediately obtain due to considerations analogous to the proof of Theorem 5 the following
distribution law of Wn,j .

Theorem 6. The distribution of the r. v. Wn,j is given as follows.

Wn,j
(d)
= Bj ⊕ · · · ⊕ Bn−1, (20)

where Bk denotes a scaled Bernoulli distributed r. v. kBe( 1
k
), i.e., P{Bk = k} = 1/k and P{Bk =

0} = 1− 1/k.

The next theorem characterizes the limiting distribution ofWn,j for the three phases appearing
depending on the growth of j = j(n).

Theorem 7. The limiting distribution behaviour of the r. v. Wn,j is, for n→∞ and depending
on the growth of j, given as follows.

• The region for j small: j = o(n). The limiting distribution of the suitably scaled r. v. Wn,j

is Dickman’s infinitely divisible distribution,

Wn,j

n

(d)−−→W, with P{W < x} = e−γ
∫ x

0

ρ(v)dv, for x > 0, (21)

where ρ(v) denotes the Dickman function and γ ≈ 0.57721 is the Euler-Mascheroni constant.
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• The central region for j: j →∞ such that j = µn, with 0 < µ < 1. The suitably scaled r. v.
Wn,j converges in distribution to a r. v. Wµ, whose distribution can be characterized via its
Laplace transform,

Wn,j

n

(d)−−→Wµ, with ψµ(t) := E(e
−tWµ) = exp

(

∫ t

µt

e−v − 1
v

dv
)

. (22)

Furthermore the distribution of Wµ is infinitely divisible.

• The region for j large: l := n− j = o(n).

Wn,j

n

(d)−−→ 0. (23)

For an overview of the Dickman distribution, the Dickman function and an extensive list of
combinatorial objects, which lead to the Dickman distribution, we refer to [7].

Proof. The proof of the case j = 1 already appeared in [7] and an extension of the arguments
appearing there leads to the theorem presented. As a consequence of Theorem 6 the Laplace

transform ψn,j(t) := E(e
−t
Wn,j
n ) of Wn,j/n is given by

ψn,j(t) =

n−1
∏

k=j

(

1 +
e
−tk
n − 1
k

)

. (24)

First we consider the case j = o(n). Using Curtiss’ theorem [5] it suffices to show that the
Laplace transform ψn,j(t) converges pointwise in a neighborhood of t = 0 to the Laplace transform
of the Dickman distribution, i.e.,

lim
n→∞

ψn,j(t) =

∫ t

0

e−v − 1
v

dv. (25)

We write equation (24) as

ψn,j(t) = exp
(

n−1
∑

k=j

log
(

1 +
e−

tk
n − 1
k

)

)

. (26)

By using the expansion log(1 + x) =
∑

k≥1(−x)l/l we get further

ψn,j(t) = exp
(

n−1
∑

k=j

e−
tk
n − 1
k

+Rn,j(t)
)

, (27)

and by standard estimates we obtain for the remainder term

Rn,j(t) =
∑

l≥2

(−1)l
l

n−1
∑

k=j

(e−
tk
n − 1)l
kl

= O(|t2|/n), (28)

uniformly for all j, 1 ≤ j ≤ n− 1.
By an application of the Euler-MacLaurin summation formula and the estimate (28) we get

the following expansion of the sum appearing in (27):

n−1
∑

k=j

e−
tk
n − 1
k

=

∫

t(n−1)
n

jt
n

e−v − 1
v

dv +O(|t2|/n). (29)

This leads to the stated result for j = o(n).
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For the case j = µn, with 0 < µ < 1, we proceed as before and get the following expansion of
the sum appearing in (27):

n−1
∑

k=j

e−
tk
n − 1
k

=

∫

t(n−1)
n

µt

e−v − 1
v

dv +O(|t2|/n), (30)

which again proves the stated result. The infinitely divisibility follows by using the characterization
of Chow and Teicher [4], p. 420.

The remaining case l := n− j = o(n) is proven fully analogous.

Remark 3. It can be seen easily that the limit law of Wn,j is the same as the limit law of Wn,j ,
and thus Theorem 7 also holds for Wn,j .

4 Weighted depths and distances

4.1 The edge-weighted depth of nodes and distance between nodes

A weighted recursive tree readily provides generalizations to depths and distances by adding the
edge-weights on the connecting path between two specified nodes instead of simple counting the
number of edges. We start with a simple observation leading to the (degenerate) distribution of
the edge-weighted depth Xn,j , which is given by the sum of the weights of the edges lying on the
unique path from the root to node j in a random recursive tree of size n.

Proposition 3. The r. v. Xn,j satisfies the following distribution.

Xn,j
(d)
= Xj,j

(d)
= j − 1. (31)

Proof. Consider a recursive tree of size n ≥ j and let us assume that the connecting path from
the root 1 to node j is given by the node sequence 1 = v0, v1, . . . , vr = j. Then the sum of the
edge-weights on this path is given by

∑

1≤i≤r(vi − vi−1) = vr − v0 = j − 1, which proves this
proposition.

Next we are going to study the edge-weighted distance between arbitrary nodes j1 ≤ j2 in
random recursive trees of size n, where it is sufficient to consider only the case j2 = n, since nodes
larger than j2 do not have an influence on this parameter (this is a consequence of the description
of random recursive trees via a tree evolution process). To do this we introduce the r. v. Xn,j ,
which gives the sum of the weights of the edges lying on the unique path from node j to node n in
a random recursive tree of size n. The next proposition reduces the analysis of Xn,j to the special
instance n = j + 1.

Proposition 4.

Xn,j
(d)
= (n− j − 1)⊕ Xj+1,j . (32)

Proof. A combinatorial argument is the following. The edge-weighted distance between the nodes
n and j in a size-n recursive tree depends only on the label of the root of the spanning tree of n
and j. Assume that node k, with 1 ≤ k ≤ n, is the root of the spanning tree of the nodes n and
j. Then the edge-weighted distance is given by n + j − 2k, regardless of the nodes lying on the
path from k to n. Now merge all nodes on the path from k to n with labels larger than j into
one node and delete all other nodes larger than j except n itself. Think of the new node as node
j + 1. Thus to obtain the edge-weighted distance between n and j we only have to add n− j − 1
to the edge-weighted distance between nodes j and j + 1, which proves the stated result.

A more probabilistic argument is also given next.

P{Xn,j = m} = P{Xn,j = m|n <c n− 1}P{n <c n− 1}+ P{Xn,j = m|n ≮c n− 1}P{n ≮c n− 1}
= P{Xn−1,j = m− 1}P{n <c n− 1}+ P{Xn−1,j = m− 1}P{n ≮c n− 1}
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= P{Xn−1,j = m− 1}. (33)

Iterating this argument leads to the stated result.

Remark 4. Proposition 3 and Proposition 4 are valid for a larger class of trees, i.e., for the family
of so called “grown simple increasing trees”, see [18, 11] for a definition of this tree family.

The distribution of Xj+1,j is characterized next.

Theorem 8. The r. v. Xj+1,j satisfies the following distribution law.

P{Xj+1,j = 2m− 1} =
{

1
j
, m = 1,

1
(j+2−m)(j+1−m) , 1 < m ≤ j.

(34)

The expectation and the variance of Xj+1,j are given by the following exact formulæ.

E(Xj+1,j) = 2j − 2Hj + 1, V(Xj+1,j) = 8j − 4H2
j − 4Hj . (35)

The limiting distribution of the suitably shifted r. v. Xj+1,j is given as follows.

Xj+1,j − 2j − 1
(d)−−→ −2R, with P{R = m} = 1

m(m+ 1)
, for m ∈ N. (36)

Thus the integer moments of R do not exist.

Proof. We start with the remark that, as a consequence of the proof of Proposition 4, Xj+1,j can
have only values 1, 3, 5, . . . , 2j − 3, 2j − 1.

Conditioning on the node `, where j + 1 is attached, gives then

P{Xj+1,j = 2m− 1} = [[m = 1]]P{j + 1 <c j}+
j−1
∑

`=1

P{Xj+1,j = 2m− 1|j + 1 <c `}P{j + 1 <c `}

=
[[m = 1]]

j
+

j−1
∑

`=1

P{Xj,` = 2m− 1− (j + 1− `)|j + 1 <c `}
1

j

=
[[m = 1]]

j
+

j−1
∑

`=1

P{Xj,` = 2m− 1− (j + 1− `)}
1

j

=
[[m = 1]]

j
+

j−1
∑

`=1

P{X`+1,` = 2m− 1− (2j − 2`)}
1

j
. (37)

Taking differences leads then to

jP{Xj+1,j = 2m− 1} − (j − 1)P{Xj,j−1 = 2m− 3} = [[m = 1]]− [[m = 2]] + P{Xj,j−1 = 2m− 3},
and after normalization we obtain the recurrence

P{Xj+1,j = 2m− 1} = P{Xj,j−1 = 2m− 3}+
[[m = 1]]− [[m = 2]]

j
. (38)

Iterating (38) gives

P{Xj+1,j = 2m− 1} =
j−1
∑

k=1

[[m = k]]− [[m = k + 1]]

j + 1− k + P{X2,1 = 2m− 1− 2(j − 1)}, (39)

and after simplifying the expression we get the stated distribution law. The formulæ for the
expectation and the variance are obtained by easy summation.

To obtain the limiting distribution result we simply observe that

P{Xj+1,j − 2j − 1 = −2m} =
{

1
m(m+1) , 1 ≤ m < j,
1
j
, m = j.

(40)
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4.2 The root of the spanning tree of consecutive nodes

Let us denote by Rj+1,j the random variable, which counts the label of the root of the spanning
tree of the nodes j and j + 1 in a random recursive tree of size j + 1. Using our results for Xj+1,j

as obtained in Subsection 4.1 we immediately obtain the following theorem.

Theorem 9. The r. v. Rj+1,j satisfies the following distribution law.

P{Rj+1,j = m} =
{

1
m(m+1) , 1 ≤ m < j,
1
j
, m = j.

(41)

The expectation and the variance of Rj+1,j are given as follows.

E(Rj+1,j) = Hj , V(Xj+1,j) = 2j − 2Hj . (42)

Furthermore Rj+1,j converges in distribution to a r. v. R, without convergence of any integer
moment,

Rj+1,j
(d)−−→ R, with P{R = m} = 1

m(m+ 1)
, for m ∈ N, (43)

Proof. As remarked in the proof of Proposition 4 the weighted distance between nodes n and j is
given by the smallest label on the connecting path of n and j and thus by the root of the spanning
tree. We obtain that the weighted distance is n+ j − 2m if and only if node m is the root of the
spanning tree. Thus P{Rj+1,j = m} = P{Xj+1,j = 2(j + 1−m)− 1}, and the exact distribution
of Rj+1,j is characterized, which immediately also leads to the limiting distribution result. Again
the formulæ for the expectation and the variance are obtained easily.

Remark 5. Note that curiously Rj+1,j is distributed as the size of the subtree rooted at a randomly
chosen node in a random recursive tree of size j, [10].

4.3 The root of the spanning tree of two randomly chosen nodes

We study also the random variable Y
[R]
j , which gives the label of the root of the spanning tree of

two randomly chosen nodes in a random recursive tree of size j.

Corollary 7.

P{Y [R]
j+1 = m} = 1

m(m+ 1)
+

2

jm(m+ 1)
− 1

j(j + 1)
, for 1 ≤ m ≤ j. (44)

The random variable Y
[R]
j converges in distribution to a r. v. Y , without convergence of any integer

moment.

Y
[R]
j

(d)−−→ Y, with P{Y = m} = 1

m(m+ 1)
, for m ∈ N. (45)

Proof. Since two nodes in a recursive tree of size j + 1 are chosen at random, any pair (i, l), with
1 ≤ i < l ≤ j + 1, is selected with probability 2

j(j+1) . Thus we obtain

P{Y [R]
j+1 = m} =

∑

m≤i<l≤j+1

2

j(j + 1)
P{Xl,i = i+ l − 2m}

=
∑

m≤i<l≤j+1

2

j(j + 1)
P{Xi+1,i = 2i− 2m+ 1} = 2

j(j + 1)

j
∑

i=m

(j + 1− i)P{Xi+1,i = 2i− 2m+ 1}

=
2

j(j + 1)

(j + 1−m
m

+

j
∑

i=m+1

(j + 1− i)P{Xi+1,i = 2i− 2m+ 1}
)

. (46)

Since P{Xi+1,i = 2i− 2m+ 1} = 1
m(m+1) , for 1 ≤ m < i, due to Theorem 8, we obtain the stated

exact distribution result by summation and the limiting distribution result easily follows from
that.
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5 Conclusion

We have analyzed several parameters in edge-weighted random recursive trees by establishing
relations to inversions in random permutations. It would be interesting to study the behavior of
the parameters considered for other families of labeled trees like plane-oriented recursive trees or
binary increasing trees, but it seems that an analysis becomes more involved than for recursive
trees.
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