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Abstract. We present a detailed study of left-right-imbalance measures for random binary search

trees under the random permutation model, i.e., where binary search trees are generated by random

permutations of {1, 2, . . . , n}. For random binary search trees of size n we study (i) the difference

between the left and the right depth of a randomly chosen node, (ii) the difference between the left

and the right depth of a specified node j = j(n), and (iii) the difference between the left and the

right pathlength, and show for all three imbalance measures limiting distribution results.

1. Introduction

A binary tree consists of a distinguished node, the root of the tree, together with a possibly empty
left subtree and a possibly empty right subtree, which are both again binary trees. Binary trees are
of particular importance in many applications in computer science. The most important probability
models for binary trees, i.e., when we assume that the occurrence of trees of a given shape follow a
certain distribution, are the so called “random tree model” (also known as Catalan model) and the
“random permutation model”. Whereas in the random tree model any binary tree of size n appears
with equal probability, where size is measured by the number of nodes in the tree, in the random
permutation model the trees are generated by random permutations of the numbers {1, 2, . . . , n}
leading to what is called a “random binary search tree”. The binary tree model turns out to be
appropriate in formal language theory, computer algebra, etc., whereas the binary search tree model
is of importance in sorting and searching algorithms and a lot of combinatorial algorithms. See, e.g.,
[15, 17, 20, 25] for a detailed description and applications of both tree models.

There are several recent papers devoted to a study of properties of the left and right length of
paths in binary trees (see, e.g., [2, 14, 16, 21]), where all these analyzes are using as the underlying
probability model the random tree model. In particular “local imbalance measures” as the difference
between the right and the left depth of nodes in binary trees, and “global imbalance measures” as the
difference between the right and the left pathlength of binary trees are studied. The depth of node
v in a tree T (also called altitude or heigth of node v) is measured by the number of edges lying on
the unique path from the root of T to v, where for the left (right) depth only left (right) edges are
counted, and the pathlength of the tree T is the sum of the depths of all nodes v ∈ T , where again
for the left (right) pathlength the left (right) depth of nodes is counted.

An analysis of the left and right length of paths in binary trees was also suggested by Donald
Knuth in 2004 during the workshop on Analysis of Algorithms at MSRI, Berkeley, USA. Following
this suggestion we present here a study of left-right-imbalance measures for the random permutation
model and thus for random binary search trees. In particular we analyze in this paper the difference

Dn,j := A
[R]
n,j −A

[L]
n,j between the right depth A

[R]
n,j and the left depth A

[L]
n,j of the node labeled by j in

a random size-n binary search tree. We also consider the (easier) question of analyzing the difference
Dn := Dn,Un of a randomly chosen node in a random binary search tree of size n, where Un denotes a
uniformly and independent of Dn,j on {1, 2, . . . , n} distributed random variable (r. v.). As a result for
these local imbalance parameters we obtain that, suitably normalized, Dn is asymptotically Gaussian,
but more important, we get a very detailed description of the imbalance of node j = j(n), possibly
growing with the tree size n, namely that, after shifting with log j − log(n + 1 − j) and scaling with
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Figure 1. A size-11 binary search tree generated, e.g., from the permutation
(6 7 9 4 2 8 11 3 10 1 5), where node 1 has a left-right-imbalance 0 − 3 = −3, node 5
has imbalance 1 − 1 = 0, and node 10 has imbalance 3 − 1 = 2. Furthermore the
left-right-imbalance of a randomly chosen node is 2

11 and the left-right-imbalance of
the tree is 13− 11 = 2.

√

log j + log(n+ 1− j), the normalized r. v. Dn,j converges in distribution to a normal distributed

r. v., for all sequences
(

j(n)
)

n∈N
, with 1 ≤ j = j(n) ≤ n and n → ∞. Moreover, we study the

difference ∆n := Rn − Ln between the right and the left pathlength of a random binary search tree
of size n. For this global imbalance parameter we can also characterize the limiting distribution, here
by computing (asymptotically) all integer moments E(∆r

n), for r ≥ 0. An example illustrating the
parameters studied is given as Figure 1.

Although there is a huge literature devoted to the analysis of parameters in random binary search
trees (see again the references given above and in particular the following references, which show
corresponding results for the “ordinary” counterparts, i.e., the depth of a randomly chosen node
[7, 19], the depth of specified nodes [6, 10] and the pathlength of the trees [13, 23]), it seems that
these natural imbalance questions are up to now not considered and this paper might fill this gap.

In our analysis we use the natural decomposition of a binary search tree generated by a random
permutation of {1, 2, . . . , n} according to the first element k in the permutation. Of course, in a
random permutation, every element 1 ≤ k ≤ n can occur as first element with the same probability
1
n
, which gives the root of the binary search tree. Moreover, the left subtree of the root k can be

considered as a binary search tree generated by a random permutation of {1, 2, . . . , k − 1}, whereas
the right subtree can be considered as a binary search tree generated by a random permutation of
{k + 1, k + 2, . . . , n}.

Throughout this paper we denote by Xn
(d)−−→ X the weak convergence, i.e., the convergence in

distribution, of the sequence of random variables Xn to a random variable X and by X
(d)
= Y the

equality in distribution of the random variables X and Y . The distribution function of the standard
normal distribution N (0, 1) is here always denoted by Φ(x). Furthermore we use the notation Hn :=
∑n

k=1
1
k

for the harmonic numbers and H
(r)
n :=

∑n
k=1

1
kr

for the higher order harmonic numbers.

Moreover xk := x(x− 1) · · · (x− k+1) and xk := x(x+1) · · · (x+ k− 1) denote the falling and rising
factorials, respectively. We also use general hypergeometric series (see, e.g., [11]), which are for m
upper and n lower parametes defined by

mFn

(

a1, . . . , am

b1, . . . , bn

∣

∣

∣

∣

z

)

:=
∑

k≥0

ak1 · · · akm
bk1 · · · bkn

zk

k!
.

2. Results

The first result describes the local left-right-imbalance of a randomly chosen node in a random
binary search tree.

Theorem 1. The random variable Dn, which counts the difference between the right and the left depth

of a randomly chosen node in a random binary search tree of size n, is asymptotically, for n → ∞,
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Gaussian distributed, where the rate of convergence is of order O
(

1√
logn

)

:

sup
x∈R

∣

∣

∣

∣

P

{ Dn√
2 log n

≤ x
}

− Φ(x)

∣

∣

∣

∣

= O
( 1√

log n

)

,

and the expectation E(Dn) and the variance V(Dn) are given by

E(Dn) = 0, V(Dn) = 2
(

1 +
1

n

)

Hn − 4.

As a referee remarks Theorem 1 could be shown alternatively by applying probabilistic techniques,
as using the theory of records in sequences of independent identically distributed random variables
in combination with Lindeberg-Feller central limit theorems, which has been used to obtain limiting
distribution results of the ordinary depth of a randomly chosen node in a random size-n binary search
tree in [5].

The second result gives the local left-right-imbalance of specified nodes in a random binary search
tree.

Theorem 2. The centered and scaled random variable D̃n,j , where Dn,j counts the difference between

the right and the left depth of node j in a random binary search tree of the elements {1, 2, . . . , n},
is, for arbitrary sequences

(

j(n)
)

n∈N
, with 1 ≤ j = j(n) ≤ n, asymptotically, for n → ∞, Gaussian

distributed,

D̃n,j :=
Dn,j − E(Dn,j)
√

V(Dn,j)

(d)−−→ N (0, 1),

where the expectation E(Dn,j) and the variance V(Dn,j) are given exact and asymptotically as follows,

with O-bounds that hold uniformly for all 1 ≤ j ≤ n:

E(Dn,j) = Hj −Hn+1−j = log j − log(n+ 1− j) +O(1),

V(Dn,j) = Hj +Hn+1−j −H
(2)
j −H

(2)
n+1−j +

2

j

(

Hj +Hn+1−j −Hn

)

+
2

n+ 1− j

(

Hj +Hn+1−j −Hn

)

− 2

j(n+ 1− j)
− 2 = log j + log(n+ 1− j) +O(1).

The third result gives an answer to the global left-right-imbalance of a random binary search tree.

Theorem 3. The suitably scaled random variable ∆n, which counts the difference between the right

and the left pathlength in a random binary search tree of size n, converges, for n→∞, in distribution

to a random variable ∆, whose distribution is fully characterized by its r-th moments:

∆n

n

(d)−−→ ∆, with E(∆r) = c̃r,

where the constants c̃r, with r ≥ 0, are defined recursively by using the auxiliary quantities d̃l, with

l ≥ 0:

c̃r =
1

r − 1

(

2

r−1
∑

k=0

(

r

k

)

c̃k +

r−1
∑

l=1

(−1)ld̃ld̃r−l
)

, for r ≥ 2 even, c̃0 = 1, c̃r = 0, for r odd,

d̃l =

l
∑

k=0

(

l

k

)

c̃k, for l ≥ 0.

Furthermore the expectation E(∆n) and the variance V(∆n) are given by

E(∆n) = 0, V(∆n) = n2 − 2(n+ 1)Hn + 3n.

We remark that Theorem 3 can also be obtained by applying the contraction method, see [22, 24]
for relevant theorems. This leads to an alternative characterization of the limiting distribution ∆ as
the unique fixed-point with mean 0 of the fixed-point equation given below in the metric space of
probability measures with finite second moment and Mallows d2-metric:

X
(d)
= UX + (1− U)X∗ + 2U − 1,
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where U , X and X∗ are independent, X and X∗ are identically distributed and U is uniformly
distributed on [0, 1].

3. Local imbalance of a random node

We study first the left-right-imbalance Dn := A
[R]
n,Un

−A[L]n,Un
of a randomly chosen node in a random

binary search tree of size n, where the random variables A
[R]
n,j and A

[L]
n,j count the right and the left

depth of node j in a random binary search tree of size n and Un denotes a uniformly and independent

of A
[R]
n,j and A

[L]
n,j on {1, 2, . . . , n} distributed random variable. Introducing the probability generating

functions

pn(v) :=

∞
∑

m=−∞
P{Dn = m}vm, for n ≥ 1,

we obtain from the decomposition of random binary search trees by conditioning on the root node k
as described in Section 1 the following recurrence

pn(v) =
1

n

n
∑

k=1

(k − 1

n
pk−1(v)

1

v
+
n− k

n
pn−k(v)v +

1

n

)

, for n ≥ 2, p1(v) = 1. (1)

An explanation of the derivation of (1) is given next. We consider binary search trees generated by a
random permutation of {1, . . . , n} and condition on the root node k, i.e., we compute the probability
generating function for all binary search trees whose root node has label k, and thus the root has a
left subtree of size k − 1 generated by a random permutation of {1, . . . , k − 1} and a right subtree of
size n − k generated by a random permutation of {k + 1, . . . , n}, seperately and then we sum up all
these contributions. Since the probability that the root node has label k is 1

n
, for 1 ≤ k ≤ n, this

explains the factor 1
n

and the sum appearing in (1). It remains to explain the three summands in
(1). We compute the probability generating function of a randomly chosen node in a random binary
search tree whose root node is k. We select the root node k with probability 1

n
and examine its

left-right-imbalance. Since the left-right-imbalance of the root node is 0 this leads to the contribution
v0

n
= 1

n
. The probability that we choose a node hanging on the left subtree of k and examine its

left-right-imbalance is given by k−1
n

. The probability generating function of the left-right-imbalance
of the k− 1 nodes within the left subtree is given by pk−1(v). Since the left-right-imbalance decreases
by one for all nodes on the left subtree of k due to the left edge connecting k with the root node of
the left subtree of k we obtain also a factor v−1 leading to the contribution k−1

n
pk−1(v)

1
v
. Analogous

considerations lead to the contribution n−k
n
pn−k(v)v for the nodes on the right subtree of k and

complete the derivation of (1).

We treat recurrence (1) by introducing the bivariate generating functionN(z, v) :=
∑

n≥1 npn(v)z
n,

which leads to the following first order linear differential equation:

∂

∂z
N(z, v) =

(

v +
1

v

) 1

1− z
N(z, v) +

1

(1− z)2
, N(0, v) = 0.

The solution of this differential equation as is given next can be obtained easily by standard methods,
but can be computed also by using computer algebra systems:

N(z, v) =
1

v + 1
v
− 1

(

1

(1− z)v+
1
v

− 1

1− z

)

. (2)

Extracting coefficients from N(z, v) as given by (2) leads then to the following explicit formula for
the probability generating function pn(v) =

1
n
[zn]N(z, v):

pn(v) =
1

n(v + 1
v
− 1)

((

n+ v + 1
v
− 1

n

)

− 1

)

. (3)

Stirling’s formula for the factorials leads then from (3) to the following asymptotic expansion of pn(v),
which holds uniformly in a complex neighborhood of v = 1, where ε > 0 denotes an arbitrary constant:

pn(v) =
nv+

1
v
−2

(v + 1
v
− 1)Γ(v + 1

v
)

(

1 +O
(

n−1+ε
)

)

.
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Thus the moment generating function E(eDns) = pn(e
s) of Dn has the following asymptotic expansion

uniformly in a complex neighborhood of s = 0:

E(eDns) = exp
(

(es + e−s − 2) log n− log
(

(es + e−s − 1)Γ(es + e−s)
)

)

·
(

1 +O(n−1+ε)
)

. (4)

To show a central limit theorem for Dn we can apply the so called quasi-power theorem due to
Hwang [12]. It gives a powerful method not only to prove the Gaussian limit law but also to determine
the rate of convergence. It is stated below.

Theorem 4. [H. K. Hwang] Let {Xn}n≥1 be a sequence of integral random variables. Suppose that

the moment generating function satisfies the asymptotic expression

Mn(s) := E
(

eXns
)

=
∑

m≥0
P{Xn = m}ems = eHn(s)

(

1 +O(κ−1n )
)

,

the O–term being uniform for |s| ≤ σ, s ∈ C, σ > 0, where

(i) Hn(s) = U(s)φ(n) + V (s), with U(s) and V (s) analytic for |s| ≤ σ and independent of n;

U ′′(0) 6= 0,
(ii) φ(n)→∞,

(iii) κn →∞.

Under these assumptions, the distribution of Xn is asymptotically Gaussian with the given convergence

rate in the Kolmogorov metric:

sup
x∈R

∣

∣

∣

∣

∣

P

{

Xn − E(Xn)
√

V(Xn)
≤ x

}

− Φ(x)

∣

∣

∣

∣

∣

= O
(

1

κn
+

1
√

φ(n)

)

.

Moreover, the mean and the variance of Xn satisfy

E(Xn) = U ′(0)φ(n) + V ′(0) +O(κ−1n ), V(Xn) = U ′′(0)φ(n) + V ′′(0) +O(κ−1n ).

An application of Theorem 4 to equation (4) immediately shows the limiting distribution result
given in Theorem 1, using U(s) := es + e−s − 2 leading to U ′(0) = 0 and U ′′(0) = 2. Furthermore
from the explicit solution (2) we easily obtain by differentiating with respect to v once and twice and
evaluating at v = 1 explicit formulæ for the first two moments of Dn as stated in Theorem 1. Of
course one obtains E(Dn) = 0, which is known in advance due to symmetry arguments.

4. Local imbalance of a specified node

4.1. The probability generating function. Next we study the left-right-imbalance Dn,j := A
[R]
n,j−

A
[L]
n,j of node j, measured by the difference between the right depth and the left depth of node j in

a random binary search tree of {1, 2, . . . , n}. Introducing for 1 ≤ j ≤ n the probability generating
functions pn,j(v) :=

∑∞
m=−∞ P{Dn,j = m}vm, we obtain again from the recursive description of

random binary search trees by conditioning on the root node k the following recurrence:

pn,j(v) =
1

n

j−1
∑

k=1

pn−k,j−k(v)v +
1

n

n
∑

k=j+1

pk−1,j(v)
1

v
+

1

n
, for n ≥ 1, 1 ≤ j ≤ n. (5)

To treat recurrence (5) we introduce the trivariate generating function
N(z, u, v) :=

∑

n≥1
∑

1≤j≤n pn,j(v)z
nuj , which satisfies the following linear differential equation:

∂

∂z
N(z, u, v) =

1

v

1

1− z
N(z, u, v) + v

u

1− zu
N(z, u, v) +

u

(1− z)(1− zu)
, N(0, u, v) = 0.

Standard techniques lead to the following solution of this differential equation:

N(z, u, v) =
u

(1− z)
1
v (1− zu)v

∫ z

0

(1− t)
1
v
−1(1− tu)v−1dt. (6)
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Extracting coefficients from (6) gives then the following explicit formula for the probability gener-
ating function pn,j(v) = [znuj ]N(z, u, v):

pn,j(v) = [zn−j+1(uz)j−1]
1

(1− z)
1
v (1− zu)v

∫ z

0

(1− t)
1
v
−1(1− tu)v−1dt

=

n−j+1
∑

k=0

j−1
∑

l=0

(

n− j + 1− k + 1
v
− 1

n− j + 1− k

)(

j − 1− l + v − 1

j − 1− l

)

[zk(uz)l]

∫ z

0

(1− t)
1
v
−1(1− tu)v−1dt

=

n−j+1
∑

k=1

j−1
∑

l=0

1

k + l

(

n− j + 1− k + 1
v
− 1

n− j + 1− k

)(

j − 1− l + v − 1

j − 1− l

)(

k − 1− 1
v

k − 1

)(

l − v

l

)

. (7)

The double sum appearing in (7) can be reduced to a single sum by using the identity

n−j+1
∑

k=1

1

k + l

(

n− j + 1− k + 1
v
− 1

n− j + 1− k

)(

k − 1− 1
v

k − 1

)

=
v
(

n−j+1+l+ 1
v
−1

n−j+1+l
)

(

l+ 1
v

l

)

,

which can be shown by an application of the Pfaff-Saalschütz identity for hypergeometric functions
(see, e.g., [11]):

3F2

(

a, b,−n
c, a+ b− c− n+ 1

∣

∣

∣

∣

1

)

=
(a− c)n(b− c)n

(−c)n(a+ b− c)n
, for an integer n ≥ 0.

Thus (7) leads to the following formula of the probability generating function pn,j(v), for 1 ≤ j ≤ n

and n ≥ 1, which is the starting point of our considerations leading to the limiting distribution result:

pn,j(v) = v

j−1
∑

l=0

(

j−1−l+v−1
j−1−l

)(

n−j+1+l+ 1
v
−1

n−j+1+l
)(

l−v
l

)

(

l+ 1
v

l

)

. (8)

4.2. Expectation and variance. From the explicit formula of N(z, u, v) as given by (6) it is an
easy, but a bit computational, task to obtain explicit expressions for the first moments. Nevertheless
we give here the results, since it turns out that they are essential in our proof of the central limit
theorem, because these explicit formulæ immediately lead to uniform estimates of E(Dn,j) and V(Dn,j)
as required. We obtain by differentiating N(z, u, v) with respect to v and evaluating at v = 1 the
expressions

∂

∂v
N(z, u, v)

∣

∣

∣

∣

v=1

=
1

(1− z)(1− uz)
log

1

1− uz
− u

(1− z)(1− uz)
log

1

1− z
,

∂2

∂v2
N(z, u, v)

∣

∣

∣

∣

v=1

=
2zu

(1− z)(1− uz)
+

2zu

(1− z)(1− uz)
log

1

1− z
− 2

1− z
log

1

1− uz

+
u

(1− z)(1− uz)
log2

1

1− z
+

1

(1− z)(1− uz)
log2

1

1− uz

− 2u

(1− z)(1− uz)
log

1

1− z
log

1

1− uz
− 2

1− z
log

1

1− z
log

1

1− uz

− 2u

(1− z)(1− uz)

∫ z

0

log
1

1− t
log

1

1− ut
dt.

Extracting coefficients requires, in particular to obtain the variance, again a bit “computational ef-
fort”, but eventually leads, for 1 ≤ j ≤ n, due to E(Dn,j) = [znuj ] ∂

∂v
N(z, u, v)

∣

∣

v=1
and V(Dn,j) =

[znuj ] ∂2

∂v2N(z, u, v)
∣

∣

∣

v=1
+ E(Dn,j) −

(

E(Dn,j)
)2

to the explicit formulæ stated in Theorem 2. By

using elementary estimates for the harmonic numbers, Hn and H
(2)
n , one also obtains the following

estimates, which hold uniformly for all 1 ≤ j ≤ n and n ≥ 1:
∣

∣E(Dn,j)−
(

log j − log(n+ 1− j)
)∣

∣ ≤ 1,
∣

∣V(Dn,j)−
(

log j + log(n+ 1− j)
)∣

∣ ≤ 10. (9)
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4.3. Asymptotic expansion of the moment generating function. The aim of this subsection is

to show that the moment generating function Mn,j(s) := E(eD̃n,js), with D̃n,j :=
Dn,j−µn,j

σn,j
, where we

use the abbreviations µn,j := E(Dn,j) and σn,j :=
√

V(Dn,j), converges for all sequences
(

j(n)
)

n∈N
,

with 1 ≤ j ≤ n, pointwise for all real s in a neighborhood of s = 0 to the moment generating function

e
s2

2 of the standard normal distribution N (0, 1). Together with Curtiss’ theorem [4] this will show the
central limit theorem of the r. v. Dn,j as given by Theorem 2. To to this we will examine in detail
the probability generating function pn,j(v) as given by (8), since

Mn,j(s) = e
−µn,j
σn,j

s
pn,j(e

s
σn,j ).

It is appropriate to the problem to consider several regions of j = j(n) separately. We mention first
that it suffices to consider only the region 1 ≤ j ≤ dn2 e, since the region dn2 e < j ≤ n can be treated
easily by using symmetry arguments as shown at the end of this subsection. We distinguish now
between the regions “j small”: 1 ≤ j < log n, and “j large”: log n ≤ j ≤ d n2 e.

• j large: First we consider the probability generating function pn,j(v), for j large, log n ≤ j ≤ dn2 e,
in a real neighborhood of v = 1: |v − 1| ≤ η, with a “sufficiently small” η > 0, e.g., all computations
are valid for η ≤ 1

12 .

To do this we split the sum appearing in (8) into two parts, namely into the regions l ≥ j
2
3 and

1 ≤ l < j
2
3 . For l ≥ j

2
3 we obtain due to standard estimates of the factorials (or the Γ-function),

see, e.g., [1], the following estimate, where K denotes some constant, which can be different at every
appearance:

∣

∣

∣

∣

∣

∣

∣

v

j−1
∑

l=j
2
3

(

j−1−l+v−1
j−1−l

)(

n−j+1+l+ 1
v
−1

n−j+1+l
)(

l−v
l

)

(

l+ 1
v

l

)

∣

∣

∣

∣

∣

∣

∣

≤ K(n− j + 1)
1
v
−1

j−1
∑

l=j
2
3

∣

∣

∣

∣

∣

(

j−1−l+v−1
j−1−l

)(

l−v
l

)

(

l+ 1
v

l

)

∣

∣

∣

∣

∣

≤ Kjη(n− j + 1)
1
v
−1

j−1
∑

l=j
2
3

1

l2−2η
≤ Kjη(n− j + 1)

1
v
−1 1

j
2
3 (1−2η)

≤ Kjv−1(n− j + 1)
1
v
−1 1

j
2
3−4η

= jv−1(n− j + 1)
1
v
−1 · O

(

j−
1
3

)

. (10)

Now we examine the region 0 ≤ l < j
2
3 , which gives the main contribution:

v

j
2
3
∑

l=0

(

j−1−l+v−1
j−1−l

)(

n−j+1+l+ 1
v
−1

n−j+1+l
)(

l−v
l

)

(

l+ 1
v

l

)

=
v

(v − 1)!( 1
v
− 1)!

j
2
3
∑

l=0

jv−1
(

1− 1 + l

j

)v−1
(n− j + 1)

1
v
−1
(

1 +
l

n− j + 1

)
1
v
−1
(

l−v
l

)

(

l+ 1
v

l

)

=
v

(v − 1)!( 1
v
− 1)!

jv−1(n− j + 1)
1
v
−1(1 +O(j−

1
3 )
)

j
2
3
∑

l=0

(

l−v
l

)

(

l+ 1
v

l

)

=
v

(v − 1)!( 1
v
− 1)!(1− v + v2)

jv−1(n− j + 1)
1
v
−1(1 +O(j−

1
3 )
)

. (11)

We used there the following estimate, where the sum appearing can be evaluated by applying Gauss-

hypergeometric identity 2F1

(

a,b
c

∣

∣

∣
1
)

= Γ(c−a−b)Γ(c)
Γ(c−a)Γ(c−b) , for <c > <a+ <b:

j
2
3
∑

l=0

(

l−v
l

)

(

l+ 1
v

l

)

=

∞
∑

l=0

(

l−v
l

)

(

l+ 1
v

l

)

−
∞
∑

l=j
2
3+1

(

l−v
l

)

(

l+ 1
v

l

)

=
1

1− v + v2
+O

( 1

j
2
3−3η

)

.
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Combining equations (10) and (11) we obtain, for log n ≤ j ≤ dn2 e, uniformly for real v, with

|v − 1| ≤ η and η ≤ 1
12 , the expansion:

pn,j(v) =
v

(v − 1)!( 1
v
− 1)!(1− v + v2)

jv−1(n− j + 1)
1
v
−1(1 +O(j−

1
3 )
)

. (12)

Expansion (12) together with the estimates (9) for the first moments of Dn,j leads for log n ≤ j ≤ dn2 e
to the following expansion of the moment generating function Mn,j(s), which holds for real s fixed:

Mn,j(s) = e
−µn,j
σn,j

s
(

1 +O
( s

σn,j

))

e

(

s
σn,j

+ s2

2σ2
n,j

+O
(

s3

σ3
n,j

))

log j
e

(

− s
σn,j

+ s2

2σ2
n,j

+O
(

s3

σ3
n,j

))

log(n−j+1)
×

×
(

1 +O
(

(log n)−
1
3

))

= e
(log j−log(n−j+1)−µn,j) s

σn,j e

log j+log(n+1−j)

σ2
n,j

s2

2 (

1 +O
(

(log n)−
1
3

))

= e
s2

2

(

1 +O
(

(log n)−
1
3

))

. (13)

• j small: Next we consider the probability generating function pn,j(v), for j small, 1 ≤ j < log n,

where we will obtain suitable asymptotic expansions of pn,j(e
s

σn,j ), for real s fixed, by using Taylor
series expansions of the factorials. The following expansions required are not hard to show and thus
the computations are omitted:

(j − 1− l + e
s

σn,j − 1)! = (j − 1− l)!
(

1 +O
( log log n√

log n

))

,

(

j − 1− l + e
s

σn,j − 1

j − 1− l

)

=
1

(e
s

σn,j − 1)!

(

1 +O
( log log n√

log n

))

,

(

n− j + 1 + l + e
− s
σn,j − 1

n− j + 1 + l

)

=
1

(e
− s
σn,j − 1)!

(n− j + 1 + l)

(

e
−

s
σn,j −1

)

(

1 +O
(

n−1
))

=
1

(e
− s
σn,j − 1)!

(n− j + 1)

(

e
−

s
σn,j −1

)

(

1 +O
( log n

n

))

,

(

l + e
− s
σn,j

l

)

=
1

(e
− s
σn,j )!

(l + 1)
(

1 +O
( log log n√

log n

))

,

(

l − e
s

σn,j

l

)

=
1

(−e
s

σn,j )!

1

l

(

1 +O
( log log n√

log n

))

, for l ≥ 1.

Using these expansions the summands of pn,j(e
s

σn,j ), with 1 ≤ l ≤ j−1, where pn,j(v) is given by (8),
can be estimated as follows, where we additionally use the estimate 1

(

−e
s

σn,j

)

!
= O( 1√

logn
):

e
s

σn,j

j−1
∑

l=1

(

j−1−l+e
s

σn,j −1
j−1−l

)(

n−j+1+l+e
−

s
σn,j −1

n−j+1+l
)(

l−e
s

σn,j

l

)

(

l+e
−

s
σn,j

l

)

=
(e
− s
σn,j )!(n− j + 1)(e

−

s
σn,j −1)(1 +O

(

log logn√
log n

))

(e
s

σn,j − 1)!(e
− s
σn,j − 1)!(−e

s
σn,j )!

j−1
∑

l=1

1

l(l + 1)

= (n− j + 1)(e
−

s
σn,j −1) · O

( 1√
log n

)

. (14)

Thus we will see that the first summand l = 0 of (8) gives the main contribution in the expansion of

pn,j(e
s

σn,j ):

e
s

σn,j

(

j − 1 + e
s

σn,j − 1

j − 1

)(

n− j + 1 + e
− s
σn,j − 1

n− j + 1

)

= (n−j+1)

(

e
−

s
σn,j −1

)

(

1+O
( log log n√

log n

))

. (15)
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Combining equations (14) and (15) we obtain, for 1 ≤ j < log n and real s fixed, the expansion:

pn,j(e
s

σn,j ) = (n− j + 1)(e
−

s
σn,j −1)

(

1 +O
( log log n√

log n

))

. (16)

Therefore expansion (16) together with the estimates (9) for the first moments of Dn,j leads for
1 ≤ j < log n to the following expansion of the moment generating function Mn,j(s), which holds for
real s fixed:

Mn,j(s) = e
−(µn,j+log(n−j+1)) s

σn,j e

log(n−j+1)

σ2
n,j

s2

2
(

1 +O
( log log n√

log n

))

= e
s2

2

(

1 +O
( log log n√

log n

))

. (17)

• j in the whole region: Equations (13) and (17) show for 1 ≤ j ≤ d n2 e that Mn,j(s) converges, for

n→∞, pointwise to e
s2

2 for every s ∈ R:

Mn,j(s)→ e
s2

2 . (18)

To treat the region dn2 e < j ≤ n also we use the relation pn,n+1−j(v) = pn,j(
1
v
), which is obvious

due to symmetry arguments. This gives Mn,n+1−j(s) = Mn,j(−s) and thus for 1 ≤ j ≤ dn2 e and
n→∞:

Mn,n+1−j(s) = Mn,j(−s)→ e
s2

2 . (19)

Combining (18) and (19) we have shown that the moment generating function Mn,j(s) of D̃n,j :=
Dn,j−E(Dn,j)√

V(Dn,j)
converges pointwise for all s ∈ R to the moment generating function of the standard

normal distribution N (0, 1), which shows Theorem 2.

5. Global imbalance of the tree

5.1. Generating functions for the moments. Now we study the left-right-imbalance ∆n := Rn−
Ln of a random binary search tree of size n, which is counted by the difference between the right
and the left pathlength. Again we introduce for n ≥ 1 the probability generating functions pn(v) :=
∑∞

m=−∞ P{∆n = m}vm and use the decomposition of random binary search trees according to the
root node k to obtain the following recurrence

pn(v) =
1

n

n
∑

k=1

pk−1(v)pn−k(v)v
n−2k+1, for n ≥ 2, (20)

with initial value p1(v) = 1. It is advantageous to define additionally p0(v) := 1. To treat recur-
rence (20) we first introduce the bivariate generating function F (z, v) :=

∑

n≥0 pn(v)z
n, which leads

to the following functional-differential equation for F (z, v):

∂

∂z
F (z, v) = F (

z

v
, v)F (zv, v), F (0, v) = 1.

However, it turns out to be advantageous for a moment’s study to introduce the generating function
F̃ (z, s) := F (z, es) and consider the following functional-differential equation:

∂

∂z
F̃ (z, s) = F̃ (zes, s)F̃ (ze−s, s), F̃ (0, s) = 1. (21)

Of course it holds F̃ (z, 0) = 1
1−z .

For a study of the moments E(∆r
n) we introduce generating functionsMr(z), for r ≥ 0, and auxiliary

functions Nl,i(z), N̄l,i(z), for l, i ≥ 0, as follows, where we use the differential operators with respect
to s and z, Ds and Dz, the operator Ns that evaluates at s = 0, and the operators Rz and R̄z, which
substitute z by zes and ze−s respectively, Rzf(z) = f(zes) and R̄zf(z) = f(ze−s):

Mr(z) := NsD
r
sF̃ (z, s), Nl,i(z) := NsD

l
sRzD

i
sF̃ (z, s), N̄l,i(z) := NsD

l
sR̄zD

i
sF̃ (z, s). (22)

Obviously it holds M0(z) = 1
1−z and N0,i(z) = N̄0,i(z) = Mi(z), for i ≥ 0. We further require the

following commutation rules between the operators Rz and R̄z with Ds and Dz:

DsRz = RzDs + zDzRz, DsR̄z = R̄zDs − zDzR̄z. (23)
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Using the commutation rules (23) we obtain for the auxiliary functions Nl,i(z) and N̄l,i(z), for
l, i ≥ 0, the following recursive description:

Nl,i(z) = N0,i+l(z) + z

l
∑

p=1

N ′l−p,i+p−1(z) = Ml+i(z) + z

l
∑

p=1

N ′l−p,i+p−1(z),

N̄l,i(z) = N̄0,i+l(z)− z

l
∑

p=1

N̄ ′l−p,i+p−1(z) = Ml+i(z)− z

l
∑

p=1

N̄ ′l−p,i+p−1(z).

(24)

Applying the operator NsD
r
s , with r ≥ 1, to the left and right side of equation (21) we obtain

M ′
r(z) =

r
∑

l=0

(

r

l

)

(

NsD
l
sF̃ (zes, s)

)(

NsD
r−l
s F̃ (ze−s, s)

)

=
1

1− z
Nr,0(z) +

1

1− z
N̄r,0(z) +

r−1
∑

l=1

(

r

l

)

Nl,0(z)N̄r−l,0(z)

=
1

1− z

(

Mr(z) + z

r
∑

p=1

N ′r−p,p−1(z) +Mr(z)− z

r
∑

p=1

N̄ ′r−p,p−1(z)
)

+
r−1
∑

l=1

(

r

l

)

Nl,0(z)N̄r−l,0(z),

and thus for r ≥ 1 the following linear differential equation with initial value Mr(0) = 0:

M ′
r(z) =

2

1− z
Mr(z) +

z

1− z

r
∑

p=1

(

N ′r−p,p−1(z)− N̄ ′r−p,p−1(z)
)

+

r−1
∑

l=1

(

r

l

)

Nl,0(z)N̄r−l,0(z). (25)

Equation (25) is solved easily and we obtain for r ≥ 1 the following solution of Mr(z), which requires
of course the functions Mk(z), with 0 ≤ k < r, and Nl,i(z), N̄l,i(z), with l + i < r:

Mr(z) =
1

(1− z)2

∫ z

0

(

t(1− t)
r
∑

p=1

(

N ′r−p,p−1(t)− N̄ ′r−p,p−1(t)
)

+ (1− t)2
r−1
∑

l=1

(

r

l

)

Nl,0(t)N̄r−l,0(t)
)

dt.

(26)
Thus by combining (24) and (26) and usingM0(z) = N0,0(z) = N̄0,0(z) =

1
1−z the generating functions

Mr(z) are fully described. Furthermore it is an easy task to compute

M1(z) = 0, M2(z) =
2

(1− z)3
−

2 log 1
1−z

(1− z)2
− 2

(1− z)2
,

which leads to the explicit formulæ for the expectation E(∆n) and the variance V(∆n) as given in
Theorem 3.

5.2. Asymptotic expansions of the generating functions. We want to show the following local
expansions around the unique dominant singularity z = 1 of the functions Mr(z), Nl,i(z) and N̄l,i(z),
for r, l, i ≥ 0 (from the recursive description of these functions it follows immediately that z = 1 is
indeed the only dominant singularity, i.e, the only singularity of smallest modulus):

Mr(z) ∼
cr

(1− z)r+1
, Nl,i(z) ∼

dl,i

(1− z)l+i+1
, N̄l,i(z) ∼

d̄l,i

(1− z)l+i+1
, (27)

with certain constants cr, dl,i and d̄l,i that will be specified later. We will show this by induction on
r and l + i, respectively. Strictly speaking we can show slightly more, namely that in all cases the
remainder term can also be quantified: Mr(z) =

cr
(1−z)r+1

(

1+O
(

(1− z)−1+ε
))

, with ε > 0; analogous

for Nl,i(z) and N̄l,i(z). This is remarked here explicitly, since we use so called singular integration
and differentiation theorems as described in [8], which are O-transfers, not o-transfers. For the sake of
brevity we will use the ∼-notation, but we want to point out again that the O-term for the remainder
can be quantified, which is necessary to apply the theorems of [8].

For r = 0 and l + i = 0 the asymptotic expansions (27) trivially holds due to M0(z) = N0,0(z) =
N̄0,0(z) = 1

1−z leading to c0 = d0,0 = d̄0,0 = 1. Furthermore M1(z) = 0 as already mentioned in
Subsection 5.1 leading to c1 = 0.
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Now we assume that for a given r ≥ 2 the expansions (27) hold for Mk(z), with 0 ≤ k < r, and
Nl,i(z), N̄l,i(z), with 0 ≤ l + i < r. To show that (27) also holds for Mr(z) we use theorems for
singular differentiation [8] and obtain the following local expansions in a neighborhood of t = 1:

N ′r−p,p−1(t) ∼
rdr−p,p−1
(1− t)r+1

, N̄ ′r−p,p−1(t) ∼
rd̄r−p,p−1
(1− t)r+1

, Nl,0(t)N̄r−l,0(t) ∼
dl,0d̄r−l,0
(1− t)r+2

,

and thus the following local expansion of the integrand appearing in (26):

t(1− t)
r
∑

p=1

(

N ′r−p,p−1(t)− N̄ ′r−p,p−1(t)
)

+ (1− t)2
r−1
∑

l=1

(

r

l

)

Nl,0(t)N̄r−l,0(t)

∼ 1

(1− t)r

(

r

r
∑

p=1

(dr−p,p−1 − d̄r−p,p−1) +

r−1
∑

l=1

(

r

l

)

dl,0d̄r−l,0

)

.

Now singular integration [8] leads to the following local expansion of Mr(z) in a neighborhood of the
dominant singularity z = 1:

Mr(z) ∼
1

(1− z)r+1
1

r − 1

(

r

r
∑

p=1

(dr−p,p−1 − d̄r−p,p−1) +

r−1
∑

l=1

(

r

l

)

dl,0d̄r−l,0

)

, for r ≥ 2. (28)

Thus (28) shows that expansion (27) also holds for Mr(z) and furthermore we obtain the following
recurrence for the coefficients cr, using the auxiliary quantities dl,i and d̄l,i, with initial values c0 = 1
and c1 = 0:

cr =
1

r − 1

(

r

r
∑

p=1

(dr−p,p−1 − d̄r−p,p−1) +

r−1
∑

l=1

(

r

l

)

dl,0d̄r−l,0

)

, r ≥ 2. (29)

Now we assume that the asymptotic expansion (27) holds for all Mk(z), with 0 ≤ k ≤ r, and
Nl,i(z), N̄l,i(z), with 0 ≤ l + i < r and r ≥ 1. It easily follows that (27) also holds for Nl,i(z) and
N̄l,i(z) with l + i = r:

Nl,i(z) = Ml+i(z) + z

l
∑

p=1

N ′l−p,i+p−1(z) ∼
1

(1− z)i+l+1

(

ci+l + (l + i)
l
∑

p=1

dl−p,i+p−1

)

, (30)

N̄l,i(z) = Ml+i(z)− z

l
∑

p=1

N̄ ′l−p,i+p−1(z) ∼
1

(1− z)i+l+1

(

ci+l − (l + i)

l
∑

p=1

d̄l−p,i+p−1

)

. (31)

Furthermore equations (30) and (31) lead to the following recurrence for the coefficients dl,i and d̄l,i,
valid for all l, i ≥ 0:

dl,i = cl+i + (l + i)

l
∑

p=1

dl−p,i+p−1, d̄l,i = cl+i − (l + i)

l
∑

p=1

d̄l−p,i+p−1. (32)

5.3. Characterization of the limiting distribution. Using singularity analysis of generating func-
tions [9] we immediately obtain from (27) asymptotic equivalents of the coefficients of the functions
Mr(z), and thus in particular asymptotic equivalents of the moments E(∆r

n), and the auxiliary func-
tions Nl,i(z), N̄l,i(z), where it is advantageous to introduce the numbers

c̃r :=
cr

r!
, d̃l,i :=

dl,i

(l + i)!
, d̃′l,i :=

d̄l,i

(l + i)!
.

We get then for r, l, i ≥ 0:

E(∆r
n) = [zn]Mr(z) ∼

cr

r!
nr = c̃rn

r, [zn]Nl,i(z) ∼ d̃l,in
l+i, [zn]N̄l,i(z) ∼ d̃′l,in

l+i. (33)
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Due to recurrences (29) and (32) the numbers c̃r, d̃l,i and d̃′l,i are defined by the following system of
recurrences:

c̃r =
1

r − 1

(

r
∑

p=1

(d̃r−p,p−1 − d̃′r−p,p−1) +

r−1
∑

l=1

d̃l,0d̃
′
r−l,0

)

, r ≥ 2, c̃0 = 1, c̃1 = 0, (34a)

d̃l,i = c̃i+l +

l
∑

p=1

d̃l−p,i+p−1, d̃′l,i = c̃i+l −
l
∑

p=1

d̃′l−p,i+p−1. (34b)

Thus it holds that for every r ≥ 0 fixed and n→∞:

E

((∆n

n

)r)

→ c̃r, (35)

where the constants c̃r are described recursively by (34) using the auxiliary quantities d̃l,i and d̃′l,i.

An application of the theorem of Fréchet and Shohat (see, e.g., [18]) shows then convergence in
distribution of ∆n

n
to a random variable ∆, with moments E(∆r) = c̃r, provided that the distribution

of ∆ is fully characterized by the sequence of its moments. To show this and thus to finish the proof
of Theorem 3 we require growth estimates of the constants c̃r in order to apply Carleman’s criterion
[3]:

∞
∑

m=1

1
(

E(∆2m)
)

1
2m

=∞. (36)

To obtain the growth estimates of c̃r required we will first simplify the recurrence (34). It is an
easy task to show the following equations, thus we omit a proof:

c̃r = 0, for r odd, d̃′l,i = (−1)l+id̃l+i, for l, i ≥ 0.

Furthermore it is not hard to show that the following relation between c̃r and d̃l,i holds:

d̃l,i =

l
∑

k=0

(

l

k

)

c̃k+i, for l, i ≥ 0.

This gives in particular

d̃l,0 =

l
∑

k=0

(

l

k

)

c̃k, and

r
∑

p=1

d̃r−p,p−1 =

r−1
∑

k=0

(

r

k

)

c̃k,

and (34) leads to the following simpler recurrence for c̃r using only the auxiliary quantities d̃l := d̃l,0:

c̃r =
1

r − 1

(

2

r−1
∑

k=0

(

r

k

)

c̃k +

r−1
∑

l=1

(−1)ld̃ld̃r−l
)

, for r ≥ 2 even, c̃0 = 1, (37a)

c̃r = 0, for r odd, (37b)

d̃l =

l
∑

k=0

(

l

k

)

c̃k, for l ≥ 0. (37c)

By means of recurrence (37) it is now easy to obtain crude growth estimates of the constants c̃r by

constructing a sequence ĉr and d̂l of numbers that are majorizing the sequences c̃r
r! and

d̃l
l! via:

d̂l =

l
∑

k=0

1

(l − k)!
ĉk, l ≥ 0, (38a)

ĉr = 2

r−1
∑

k=0

1

(r − k)!
ĉk +

r−1
∑

l=1

d̂ld̂r−l, r ≥ 2, ĉ0 = 1, ĉ1 = 0. (38b)
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Introducing the generating functions D̂(z) :=
∑

l≥0 d̂lz
l and Ĉ(z) :=

∑

r≥0 ĉrz
r we obtain from (38)

due to D̂(z) = ezĈ(z) the equation

e2z
(

Ĉ(z)
)2 − 3Ĉ(z) + 2(1− z) = 0,

which has the solution

Ĉ(z) =
3−

√

9− 8(1− z)e2z

2e2z
. (39)

Since the dominant singularity of Ĉ(z) as given by (39) is located at z ≈ 0.126535, and thus 1
z
≈ 7.9029,

we obtain the following estimate for the coefficients (with some R > 0):

[zr]Ĉ(z) = ĉr ≤ 8r, for r ≥ R.

Since c̃r
r! ≤ ĉr due to construction this gives the following growth estimate for the coefficients c̃r, such

that Carleman’s criterion (36) is applicable:

c̃r

r!
≤ 8r, for r ≥ R.

6. Conclusion

In contrast to recently obtained corresponding results for left-right-imbalance measures of binary
trees under the Catalan model (see the references given in the introduction), we have shown for the
random permutation model that the difference between the left and right depth of a node resp. the
difference between the left and right pathlength of a tree are asymptotically not of a smaller order
than the left and right depth resp. pathlength itself.
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[22] R. Neininger and L. Rüschendorf, A general limit theorem for recursive algorithms and combinatorial structures,

Annals of Applied Probability 14, 378–418, 2004.

[23] U. Rösler, A limit theorem for “Quicksort”, RAIRO Theoretical Informatics and Applications 25, 85–100, 1991.

[24] U. Rösler, On the analysis of stochastic divide and conquer algorithms, Algorithmica 29, 238–261, 2001.

[25] R. Sedgewick and P. Flajolet, An introduction to the analysis of algorithms, Addison-Wesley, Reading, 1996.

Markus Kuba, Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner

Hauptstr. 8-10/104, 1040 Wien, Austria

E-mail address: markus.kuba@tuwien.ac.at

Alois Panholzer, Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wied-
ner Hauptstr. 8-10/104, 1040 Wien, Austria

E-mail address: Alois.Panholzer@tuwien.ac.at


