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ABSTRACT. We study a generalized Friedman’s urn model with multiple drawings of white and blue
balls. After a drawing, the replacement follows a policy of opposite reinforcement. We give the exact
expected value and variance of the number of white balls after a number of draws, and determine the
structure of the moments. Moreover, we obtain a strong law of large numbers, and a central limit the-
orem for the number of white balls. Interestingly, the central limit theorem is obtained combinatorially
via the method of moments and probabilistically via martingales. We briefly discuss the merits of each
approach. The connection to a few other related urn models is briefly sketched.

1. INTRODUCTION

In the classic theory of urn models, balls are drawn one at a time. In these classical models, square
ball replacement matrices underly the random structures, and their eigenvalues play a significant role
in the formulation of asymptotic results. For background see [9], and [11]–[13]. In recent years,
several new theoretical studies and applications required the consideration of models with multiple
drawing (drawing multiple balls each time). The theoretical studies included [2] and [7]. The appli-
cations include modeling logic circuits; see [1] and [15]. For these applications, the underlying ball
replacement matrices are rectangular, and eigenvalue techniques are harder to formulate.
In this article, we consider a generalization to Friedman’s urn, a classic urn first introduced in [4],
which covered a range of combinatorial aspects (see [3] for an asymptotic theory). The classic Fried-
man’s urn model is an urn containing up to two colors (say white, W , and blue, B), and at each time
epoch one ball is drawn, then placed back in the urn together with a ball of the opposite color. We
call the actions taken opposite reinforcement. We look at a generalized Friedman’s urn, from which
samples of a given size (say s ≥ 1 balls) are taken out of the urn, and the colors of the balls in the
sample are noted. A drawn sample is returned to the urn, and opposite reinforcement takes place: For
every white ball in the sample, the urn is reinforced with C ∈ N blue balls, and vice versa, for every
blue ball in the sample, the urn is reinforced with C white ball. This is to be contrasted with Chen
and Wei’s semblance reinforcement [2], in which balls of the same color are added. The classic Fried-
man’s urn is the case C = s = 1. Let Wn be the number of white balls in the urn after n (multiple)
draws. As each draw adds Cs balls, Tn, the total number of balls after n draws is given by

Tn = Csn+ T0, for n ≥ 0. (1)

How is the sample taken? The basic sampling techniques are to take samples without replacement or
with replacement. We shall take up in detail the model of sampling without replacement, and we shall
return in a later section of the paper to the case of sampling with replacement; we shall see that the
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growth of a generalized Friedman’s urn under either sampling technique is essentially equivalent in
some exact and all asymptotic results. We emphasize here the meaning of sampling a set of s balls
without replacement. This means that the s balls are obtained randomly, one at a time, and a ball
taken out is kept outside until all the other members of a sample draw are taken from the urn. In other
words, in the nth drawing, the sample is obtained by picking a ball at random from among the Tn−1
balls in the urn and set aside, then a second ball is obtained at random from among the remaining
Tn−1 − 1 balls in the urn and set aside, and so forth until a sample of size s is completed, and that is
when we put the sample back in the urn with opposite reinforcement.

Alternatively, under sampling with replacement, in the nth drawing, the sample is obtained by picking
a ball at random from among the Tn−1 balls, and the ball is put back in the urn, then a second ball
is obtained at random from among the Tn−1 balls in the urn and the ball is put back in the urn, and
so forth until s balls are drawn (and put back in the urn), and that is when we enact the opposite
reinforcement.

Under either sampling technique (or whatever else that can be applied to sampling), the reinforcement
step is the same: If, say, s− b white balls and b blue balls appear in the sample, 0 ≤ b ≤ s, the drawn
balls are returned to the urn together with additional Cb white balls and C(s− b) blue balls.

A concise description of the actions taken is captured by a ball replacement matrix A := [ai,j ] of s+1
rows and two columns. The rows are indexed by the number of blue balls that appear in the sample,
and the two columns are indexed with W and B: The bth row corresponds to a pair (s− b, b) of white
and blue balls in the sample, and the entry ab,W is the number of white balls added to the urn, if a
sample with b blue balls is withdrawn (which is Cb), whereas ab,B is the number of blue balls added
to the urn, if a sample with b blue balls is withdrawn (which is C(s− b)). We thus have

A =


0 Cs
C (s− 1)C
...

...
(s− 1)C C
Cs 0

 . (2)

For the reader’s convenience, we introduce some notation used throughout this paper. The Stirling
numbers of second kind (i.e., the number of ways to partition a set of n elements into k nonempty
subsets) are denoted by

{
m
k

}
, whereas the signless Stirling number of the first kind (i.e., the number

of permutations of {1, 2, . . . ,m} with exactly k cycles) are denoted by
[
m
k

]
. The mth order harmonic

numbers are defined by H(m)
n :=

∑n
j=1

1
jm ; as common we also set Hn := H

(1)
n . Furthermore, we

use xm := x(x− 1) · · · (x−m+ 1) to denote the falling factorials.

The rest of the paper appears in sections organized as follows. In Section 2 a basic stochastic re-
currence for the number of white balls is set up. In Section 3 the stochastic recurrence is used to
derive recurrences for the moments. Three Subsections (3.1–3.3) are then devoted to solving these
recurrences, respectively for the cases of the first (mean), second, and generally higher moments. The
structure of the moments follows those of asympstotic normal distributions (a main result of this paper
presented in Subsection 3.3). In the remaining subsection of Section 3 we use the first few moments
to argue a strong law. In Section 4 a martingale underlying the number of white balls is formulated
and used to reprove the central limit theorem. It is part of our purpose in this paper to compare the
merits of the method of moments to martingales in the context of urns. Therefore, we say a few words
about each method after its use. Section 5 concludes the paper with connections to other urns that
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have similar moments structure, and thus a similar analysis can be conducted. Specifically, general-
ized Friedman’s urns growing under sampling with replacement are discussed in Subsection 5.1, and
urns underlying logic circuits are discussed in Subsection 5.2.

2. A STOCHASTIC RECURRENCE

Until otherwise is stated, the reader should assume the treatment is for a generalized Friedman’s
urn under sampling without replacement. The dynamics of replacement are such that the number of
white balls after n draws is what it was after n − 1 draws plus the number of blue balls in the nth
sample (which is s minus the conditionally hypergeometrically distributed number of white balls in
the sample), and we can write

Wn = Wn−1 + C(s− ξn), (3)

where, given Fn−1, the σ-field generated by the first n − 1 draws, the random variable ξn has a
hypergeometric distribution:

P
(
ξn = k | Fn−1

)
=

(
Wn−1
k

)(
Tn−1 −Wn−1

s− k

)
(
Tn−1
s

) ;

the binomial coefficients are as usual interpreted to be 0, when the lower index is negative or higher
than the upper index.

3. MOMENT STRUCTURE

Our starting point is the stochastic recurrence for W r
n , which we obtain by raising both sides of (3) to

the rth power. We then take the conditional expectation, with respect to Fn−1, and obtain

E(W r
n | Fn−1) = W r

n−1 +
r∑
`=1

(
r

`

)
W r−`
n−1

×C`
s∑

k=0

(s− k)`

(
Wn−1
k

)(
Tn−1 −Wn−1

s− k

)
(
Tn−1
s

) . (4)

In the following we will simplify the inner sums in the last expression; the cases r = 1 and r = 2 lead
then to the mean and variance of Wn.

3.1. The mean. For the first power (r = 1), equation (4) takes the form

E(Wn | Fn−1) = Wn−1 + C
s∑

k=0

(s− k)

(
Wn−1
k

)(
Tn−1 −Wn−1

s− k

)
(
Tn−1
s

) .

Let hypergeo(T, s, w) be a hypergeometric random variable counting the number of white balls that
appear in a sample of size s taken from an urn containing w white and T − w blue balls. Then, the
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sum

s∑
k=0

(
Wn−1
k

)(
Tn−1 −Wn−1

s− k

)
(
Tn−1
s

)
is 1 (being the sum of all probabilities of hypergeo(Tn−1, s,Wn−1)), and

s∑
k=0

k

(
Wn−1
k

)(
Tn−1 −Wn−1

s− k

)
(
Tn−1
s

)
is sWn−1/Tn−1 (being the expectation of hypergeo(Tn−1, s,Wn−1)); let us remark that from a com-
binatorial point of view these simplifications follow from an application of the Vandermonde convo-
lution formula, see Subsection 3.2. We thus have

E(Wn | Fn−1) = Wn−1 + Cs− Cs

Tn−1
Wn−1, (5)

with expectation

E(Wn) =
(

1− Cs

Tn−1

)
E(Wn−1) + Cs

=
T0 + Cs(n− 2)

T0 + Cs(n− 1)
E(Wn−1) + Cs.

Iterating this recurrence, written conveniently in the form

(T0 + Cs(n− 1))E(Wn) = (T0 + Cs(n− 2))E(Wn−1) + Cs(T0 + Cs(n− 1)), for n ≥ 1,

with initial value E(W0) = W0, leads to the mean in exact form (and asymptotics, as n→∞, follow
easily):

E(Wn) =
C2s2n(n− 1) + 2CsT0n+ 2(T0 − Cs)W0

2(Cs(n− 1) + T0)
(6)

=
1

2
Csn+

1

2
T0 +O(1). (7)

3.2. The variance. Substituting r = 2 in (4) gives

E(W 2
n | Fn−1) = W 2

n−1 + 2CWn−1

s∑
k=0

(s− k)

(Wn−1

k

)(Tn−1−Wn−1

s−k
)(

Tn−1

s

)
+ C2

s∑
k=0

(
(s− k)2 + (s− k)

)(Wn−1

k

)(Tn−1−Wn−1

s−k
)(

Tn−1

s

)
= W 2

n−1 + 2CWn−1(Tn−1 −Wn−1)
s−1∑
k=0

(Wn−1

k

)(Tn−1−Wn−1−1
s−1−k

)(
Tn−1

s

)
+ C2(Tn−1 −Wn−1)

2
s−2∑
k=0

(Wn−1

k

)(Tn−1−Wn−1−2
s−2−k

)(
Tn−1

s

)
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+ C2(Tn−1 −Wn−1)

s−1∑
k=0

(Wn−1

k

)(Tn−1−Wn−1−1
s−1−k

)(
Tn−1

s

) .

The sums appearing in the latter equation can be simplified by applying the Vandermonde convolution
formula (see, e.g., [5]):

m∑
k=0

(
x

k

)(
y

m− k

)
=

(
x+ y

m

)
,

yielding after simple manipulations

E(W 2
n | Fn−1) = W 2

n−1 + 2CWn−1(Tn−1 −Wn−1)

(
Tn−1−1
s−1

)(
Tn−1

s

) + C2(Tn−1 −Wn−1)
2

(
Tn−1−2
s−2

)(
Tn−1

s

)
+ C2(Tn−1 −Wn−1)

(
Tn−1−1
s−1

)(
Tn−1

s

)
=
(

1− 2Cs

Tn−1
+
C2s2

T
2
n−1

)
W 2
n−1 +

(
2Cs− C2s(2s− 1)

Tn−1
− C2s2

T
2
n−1

)
Wn−1 + C2s2.

Taking expectations leads to the following recurrence for the second moment of Wn:

E(W 2
n) =

(
1− 2Cs

Tn−1
+
C2s2

T
2
n−1

)
︸ ︷︷ ︸

=: gn

E(W 2
n−1)

+
(

2Cs− C2s(2s− 1)

Tn−1
− C2s2

T
2
n−1

)
E(Wn−1) + C2s2︸ ︷︷ ︸

=: hn

, (8)

for n ≥ 1, with E(W 2
0 ) = W 2

0 . The first-order linear recurrence (8) can be solved by standard means
leading to the explicit solution

E(W 2
n) =

( n∏
i=1

gi

)(
W 2

0 +
n∑
j=1

hj∏j
i=1 gi

)
. (9)

We will get a somewhat simpler expression for the second moment by considering the factorization
of gn:

gn = 1− 2Cs

Tn−1
+
C2s2

T
2
n−1

=
(n+ λ1)(n+ λ2)

(n− 1 + T0
Cs)(n− 1 + T0−1

Cs )
,

with

λ1,2 = −2 +
2T0 − 1±

√
1 + 4Cs(C − 1)

2Cs
. (10)

We obtain then
n∏
i=1

gi =

(
n+λ1
n

)(
n+λ2
n

)(
n−1+ T0

Cs
n

)(
n−1+T0−1

Cs
n

) . (11)

Furthermore, plugging the explicit expression (6) for the mean into (8), we eventually get

hn = C2s2n+
1

2
Cs
(
2T0 − C(2s− 1)

)
+

α1

Tn−1
+

α2

T
2
n−1

+
α3

T
2
n−1Tn−2

, (12)
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with

α1 =
1

2
Cs
(
4W0(T0 − Cs)− C(s− 1) + 2T0(Cs− T0)

)
,

α2 =
1

2
C2s

(
2W0(T0 − Cs)− s+ 1 + T0(Cs− T0)

)
,

α3 =
1

2
C2s2(T0 − 2W0)(C − 1)(Cs− T0).

Combining the results (9) and (11) gives an explicit expression for E(W 2
n) (and thus one also follows

for the variance V(Wn) = E(W 2
n)− (E(Wn))2):

E(W 2
n) =

(
n+λ1
n

)(
n+λ2
n

)(
n−1+ T0

Cs
n

)(
n−1+T0−1

Cs
n

)
W 2

0 +
n∑
j=1

(j−1+ T0
Cs

j

)(j−1+T0−1
Cs

j

)(
j+λ1
j

)(
j+λ2
j

) hj

 ,

with λ1,2 and hn given by (10) and (12), respectively. The asymptotic behaviour of E(W 2
n) and also

of the variance V(Wn) could be obtained easily from the last explicit result; however, we omit these
computations here, since we will discuss the asymptotics of the higher moments in more detail in the
next subsection.

3.3. Asymptotics of the centered moments. For the central limit theorem we require the asymptotic
behaviour of the variance of Wn, for n → ∞, and for the strong law of large numbers as given in
Subsection 3.4, we even need an estimate of the asymptotics of the fourth centered moment of Wn, as
n → ∞. However, we will even show how the fundamental stochastic recurrence (3) for Wn can be
used to give a detailed specification of the asymptotic behaviour of the centered moments of arbitrary
order.

From (6) we know that E(Wn) = 1
2Csn+ 1

2T0+O
(
1
n

)
= 1

2Tn+O
(
1
n

)
. The following computations

will simplify considerably if we “shift by the asymptotic mean,” i.e., if we introduce

W ∗n := Wn −
1

2
Tn.

Note that the centered moments of Wn, i.e., the moments of Wn − E(Wn), and the corresponding
moments of W ∗n have, owing to Wn − E(Wn) = W ∗n +O

(
1
n

)
, the same asymptotic behaviour.

We start with the stochastic recurrence (3) and subtract 1
2Tn on both sides, which gives

Wn −
1

2
Tn = Wn−1 −

1

2
Tn−1 + C(s− ξn) +

1

2
(Tn−1 − Tn) = Wn−1 −

1

2
Tn−1 + C

(s
2
− ξn

)
,

and thus

W ∗n = W ∗n−1 + C
(s

2
− ξn

)
.

Taking the rth power then gives

E
(
(W ∗n)r | Fn−1

)
= (W ∗n−1)

r+
r∑
`=1

(
r

`

)
(W ∗n−1)

r−`C`
s∑

k=0

(
s−k− s

2

)` (Wn−1

k

)(Tn−1−Wn−1

s−k
)(

Tn−1

s

) . (13)

To simplify the sums appearing in (13) we will apply the Vandermonde convolution formula; however,
in order to do that we will first express the powers of ( s2 − k) as linear combinations of the falling
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factorials of (s − k). In particular, we use here and later on the well-known relations (see, e.g., [5])
involving the Stirling numbers:

xm =
m∑
k=0

{
m

k

}
xk, and xm =

m∑
k=0

[
m

k

]
(−1)m−kxk.

We first the following obtain from (13)

E
(
(W ∗n)r | Fn−1

)
= (W ∗n−1)

r +
r∑
`=1

(
r

`

)
(W ∗n−1)

r−`C`
∑̀
q=0

(
`

q

)
(−1)`−q

(s
2

)`−q
×

s∑
k=0

(s− k)q
(Wn−1

k

)(Tn−1−Wn−1

s−k
)(

Tn−1

s

)
= (W ∗n−1)

r +
r∑
`=1

(
r

`

)
(W ∗n−1)

r−`C`
∑̀
q=0

(
`

q

)
(−1)`−q

(s
2

)`−q
×

s∑
k=0

q∑
t=0

(s− k)t
{
q

t

}(Wn−1

k

)(Tn−1−Wn−1

s−k
)(

Tn−1

s

)
= (W ∗n−1)

r +
r∑
`=1

(
r

`

)
(W ∗n−1)

r−`C`
∑̀
q=0

(
`

q

)
(−1)`−q

(s
2

)`−q
×

q∑
t=0

{
q

t

}
(Tn−1 −Wn−1)

t
s−t∑
k=0

(Wn−1

k

)(Tn−1−Wn−1−t
s−t−k

)(
Tn−1

s

)
= (W ∗n−1)

r +

r∑
`=1

(
r

`

)
(W ∗n−1)

r−`C`
∑̀
q=0

(
`

q

)
(−1)`−q

(s
2

)`−q
×

q∑
t=0

{
q

t

}
(Tn−1 −Wn−1)

t

(
Tn−1−t
s−t

)(
Tn−1

s

) .
We continue by expressing the remaining appearance ofWn−1 byW ∗n−1+ 1

2Tn−1 and expanding with
respect to powers of W ∗n−1:

E
(
(W ∗n)r | Fn−1

)
= (W ∗n−1)

r +

r∑
`=1

(
r

`

)
(W ∗n−1)

r−`C`
∑̀
q=0

(
`

q

)
(−1)`−q

(s
2

)`−q
×

q∑
t=0

{
q

t

}(1

2
Tn−1 −W ∗n−1

)t st

T
t
n−1

= (W ∗n−1)
r +

r∑
`=1

(
r

`

)
(W ∗n−1)

r−`C`
∑̀
q=0

(
`

q

)
(−1)`−q

(s
2

)`−q
×

q∑
t=0

{
q

t

}
st

T
t
n−1

t∑
m=0

[
t

m

]
(−1)t−m

m∑
k=0

(
m

k

)
(−1)k

(Tn−1
2

)m−k
(W ∗n−1)

k
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= (W ∗n−1)
r +

r∑
`=1

(
r

`

)
(W ∗n−1)

r−`C`
∑̀
k=0

(W ∗n−1)
k(−1)k

∑̀
m=k

(
m

k

)(Tn−1
2

)m−k
×
∑̀
t=m

[
t

m

]
(−1)t−m

st

T
t
n−1

∑̀
q=t

(
`

q

){
q

t

}
(−1)`−q

(s
2

)`−q
.

To get a form suitable for our purpose we substitute k := ` − k in the latter equation and proceed as
follows:

E
(
(W ∗n)r | Fn−1

)
= (W ∗n−1)

r +
r∑
`=1

(
r

`

)
(W ∗n−1)

r−`C`
∑̀
k=0

(W ∗n−1)
`−k(−1)`−k

×
∑̀

m=`−k

(
m

`− k

)(Tn−1
2

)m−`+k ∑̀
t=m

[
t

m

]
(−1)t−m

st

T
t
n−1

×
∑̀
q=t

(
`

q

){
q

t

}
(−1)`−q

(s
2

)`−q
=

r∑
k=0

(W ∗n−1)
r−k

r∑
`=k

(
r

`

)
C`(−1)`−k

∑̀
m=`−k

(
m

`− k

)(1

2

)m−`+k
Tm−`+kn−1

×
∑̀
t=m

[
t

m

]
(−1)t−m

st

T
t
n−1

∑̀
q=t

(
`

q

){
q

t

}
(−1)`−q

(s
2

)`−q
= (W ∗n−1)

r

(
r∑
`=0

(
r

`

)
C`(−1)`

s`

T
`
n−1

)
+

r∑
k=1

(W ∗n−1)
r−k

r∑
`=k

(
r

`

)
C`(−1)`−k

×
∑̀

m=`−k

(
m

`− k

)(1

2

)m−`+k
Tm−`+kn−1

∑̀
t=m

[
t

m

]
(−1)t−m

st

T
t
n−1

×
∑̀
q=t

(
`

q

){
q

t

}
(−1)`−q

(s
2

)`−q
.

Taking expectations of the latter leads thus to the following first-order linear recurrence for the rth
moment of W ∗n :

E
(
(W ∗n)r

)
= g[r]n E

(
(W ∗n−1)

r
)

+ h[r]n , for n ≥ 1, (14)
with

g[r]n =

r∑
`=0

(
r

`

)
C`(−1)`

s`

T
`
n−1

, and h[r]n =

r∑
k=1

f
[r]
k (n)E

(
(W ∗n−1)

r−k), (15)

and

f
[r]
k (n) =

r∑
`=k

(
r

`

)
C`(−1)`−k

∑̀
m=`−k

(
m

`− k

)(1

2

)m−`+k
Tm−`+kn−1

∑̀
t=m

[
t

m

]
(−1)t−m

st

T
t
n−1

(16)

×
∑̀
q=t

(
`

q

){
q

t

}
(−1)`−q

(s
2

)`−q
.
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At a first glance the recurrence (14) might seem to be too involved to be useful. However, it turns out
that the asymptotic behaviour of E((W ∗n)r) can be obtained quite easily from it. The first step is to
obtain the explicit solution of this recurrence for the rth moment of W ∗n in terms of the lower order
moments, which follows immediately from (14) and the initial condition E((W ∗0 )r) = (W0 − 1

2T0)
r

by standard techniques. The solution is stated in the following proposition.

Proposition 1. The rth moment of W ∗n = Wn − 1
2Tn is given as follows:

E
(
(W ∗n)r

)
=
( n∏
i=1

g
[r]
i

)((
W0 −

1

2
T0
)r

+

n∑
j=1

h
[r]
j∏j

i=1 g
[r]
i

)

=
( n∏
i=1

g
[r]
i

)(
W0 −

1

2
T0
)r

+

n∑
j=1

( n∏
i=j+1

g
[r]
i

)
h
[r]
j , (17)

with g[r]n and h[r]n defined in (15).

We state now the theorem concerning the asymptotic behaviour of the rth moments of W ∗n .

Theorem 1. The asymptotic behaviour of the rth integer moment E((W ∗n)r) of W ∗n = Wn − 1
2Tn

(and thus also the asymptotic behaviour of the rth centered moment E((Wn − E(Wn))r) of Wn) is,
for n→∞, given as follows:

E
(
(W ∗n)r

)
= κr′n

r′ +O(nr
′−1), for r = 2r′ ≥ 0 even, with κr′ =

(C2s

12

)r′ (2r′)!
2r′r′!

,

E
(
(W ∗n)r

)
= O(nr

′
), for r = 2r′ + 1 odd and r′ ≥ 1, and E(W ∗n) = O

( 1

n

)
.

Proof. We will show the theorem by induction with respect to r. For r = 0 and r = 1 the claim is
obviously true. Let us now consider r ≥ 2 and let us further assume that the theorem holds for all
E((W ∗n)p), with 0 ≤ p < r. We now examine the asymptotic behaviour of the functions g[r]n and h[r]n
defined in (15) and appearing in the exact solution stated in Proposition 1. Owing to to the relation
Tn = T0 + Csn, for g[r]n we get

g[r]n =
r∑
`=0

(
r

`

)
C`(−1)`

s`

T
`
n−1

= 1− rCs

Tn−1
+O

( 1

n2

)
= 1− r

n
+O

( 1

n2

)
.

Using the well-known asymptotic expansion of the first and second order harmonic numbers:

Hn = lnn+ γ +O
( 1

n

)
, H(2)

n =
π2

6
+O

( 1

n

)
,

with γ = 0.5772 . . . being the Euler-Masceroni constant, we further obtain
n∏

i=j+1

g
[r]
i = exp

( n∑
i=j+1

ln g
[r]
i

)
= exp

( n∑
i=j+1

ln
(

1− r

i
+O(i−2)

))
= exp

( n∑
i=j+1

(
−r
i

+O(i−2)
))
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= exp
(
− r(Hn −Hj) +O(H(2)

n −H
(2)
j )
)

= exp
(
−r(lnn− ln j) +O(j−1)

)
=
jr

nr
exp

(
O(j−1)

)
=
jr

nr
(
1 +O(j−1)

)
, (18)

where the O-bound holds uniformly for all 1 ≤ j ≤ n. As a first consequence of (18) we get the
bound ( n∏

i=1

g
[r]
i

)(
W0 −

1

2
T0

)r
= O

( 1

nr

)
, (19)

which will turn out to be asymptotically negligible compared to the remaining part of (17).

In order to describe the asymptotic behaviour of h[r]n we have to consider the asymptotic behaviour of
the functions f [r]k (n) given in (16), for n → ∞ and k, r fixed. We observe that the only appearance

of n in this expression is coming from the terms
Tm−`+k
n−1

T
t
n−1

. Since ` ≥ k and t ≥ m it immediately

follows that
Tm−`+k
n−1

T
t
n−1

= O(1), which implies the simple but useful bound

f
[r]
k (n) = O(1), for all 1 ≤ k ≤ r. (20)

It even follows the that asymptotic expansion f [r]k (n) = c
[r]
k + O(n−1), where the constant term c

[r]
k

can be computed easily. Namely, the only terms of f [r]k (n) contributing to the constant term c
[r]
k occur

for ` = k and t = m. It turns out to be important to consider the particular instances k = 1 and k = 2
in more detail. For k = 1, the constant term vanishes

c
[r]
1 = rC

1∑
m=0

sm

2m

1∑
q=m

(
1

q

){
q

m

}
(−1)1−q

(s
2

)1−q
= rC

(
− s

2
+
s

2

)
= 0.

Thus, we have

f
[r]
1 (n) = O

( 1

n

)
. (21)

For k = 2, we obtain

c
[r]
2 =

(
r

2

)
C2

2∑
m=0

sm

2m

2∑
q=m

(
2

q

){
q

m

}
(−1)2−q

(s
2

)2−q
=

(
r

2

)
C2 s

4
,

and thus

f
[r]
2 (n) =

(
r

2

)
C2s

4
+O

( 1

n

)
. (22)

In order to proceed we have to distinguish whether r is even or odd. First let us consider the case
r = 2r′ even, with r′ ≥ 1. Using the induction hypothesis and the bounds (20)–(22) on f [r]k (n)
computed above we get

E
(
(W ∗n−1)

r−1)f [r]1 (n) = O(nr
′−1)O(n−1) = O(nr

′−2),
r∑

k=3

E
(
(W ∗n−1)

r−k)f [r]k (n) = O
(
E
(
(W ∗n−1)

r−3)f [r]3 (n)
)

= O(nr
′−2)O(1) = O(nr

′−2),
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E
(
(W ∗n−1)

r−2)f [r]2 (n) =
(
κr′−1n

r′−1 +O(nr
′−2)

)((2r′

2

)
C2s

4
+O(n−1)

)
= κr′−1

(
2r′

2

)
C2s

4
nr
′−1 +O(nr

′−2),

and thus the following asymptotic expansion of h[r]n holds:

h[r]n =
r∑

k=1

E
(
(W ∗n−1)

r−k)f [r]k (n) = κr′−1

(
2r′

2

)
C2s

4
nr
′−1 +O(nr

′−2).

Together with the already computed expansion (18) this yields the following asymptotic expansion,
which holds uniformly for 1 ≤ j ≤ n:( n∏

i=j+1

g
[r]
i

)
h
[r]
j = κr′−1

(
2r′

2

)
C2s

4
× j3r

′−1

n2r′
(
1 +O(j−1)

)
.

Using the crude asymptotic expansion
n∑
j=1

jp =
np+1

p+ 1
+O(np), for a fixed integer p ≥ 1 and n→∞, (23)

we further get
n∑
j=1

( n∏
i=j+1

g
[r]
i

)
h
[r]
j = κr′−1

(
2r′

2

)
C2s

4
× nr

′

3r′
+O(nr

′−1) = κr′−1
C2s

12
(2r′ − 1)nr

′
+O(nr

′−1).

Together with (17) and (19) this already shows, for r = 2r′ even, the asymptotic expansion

E
(
(W ∗n)r

)
= κr′n

r′ +O(nr
′−1), with κr′ = κr′−1

C2s

12
(2r′ − 1).

Using the induction hypothesis on the constant κr′−1, we obtain

κr′ =
C2s

12
(2r′ − 1)

(C2s

12

)r′−1 (2r′ − 2)!

2r′−1(r′ − 1)!
=
(C2s

12

)r′ (2r′)!
2r′r′!

,

as stated in Theorem 1, which finishes the proof of the theorem for r even.
For r = 2r′ + 1 odd, with r′ ≥ 1, we get from the induction hypothesis and (20)–(21):

E
(
(W ∗n−1)

r−1)f [r]1 (n) = O(nr
′
)O(n−1) = O(nr

′−1),
r∑

k=2

E
(
(W ∗n−1)

r−k)f [r]k (n) = O
(
E
(
(W ∗n−1)

r−2)f [r]2 (n)
)

= O(nr
′−1)O(1) = O(nr

′−1),

and thus the following asymptotic bound for h[r]n holds:

h[r]n =
r∑

k=1

E
(
(W ∗n−1)

r−k)f [r]k (n) = O(nr
′−1).

Together with (18) this implies the following bound, which holds uniformly for 1 ≤ j ≤ n:( n∏
i=j+1

g
[r]
i

)
h
[r]
j = O

( j3r
′

n2r′+1

)
.
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Using (23) and summing up gives then
n∑
j=1

( n∏
i=j+1

g
[r]
i

)
h
[r]
j = O(nr

′
),

and thus the required bound for r = 2r′ + 1 odd:

E
(
(W ∗n)r

)
= O(nr

′
),

which finishes the proof of the theorem. �

As a direct consequence of Theorem 1 we can describe the asymptotic behaviour of the variance and
of the fourth centered moment of Wn as required in the following sections. We see that

V(Wn) ∼ E
(
(W ∗n)2

)
=
C2s

12
n+O(1),

E
(
(Wn − E(Wn))4

)
∼ E

(
(W ∗n)4

)
= 3
(C2s

12

)2
n2 +O(n) ∼ 3

(
V(Wn)

)2
.

Moreover, by an application of the theorem of Fréchet and Shohat (see [12], Page 187). we imme-
diately obtain from Theorem 1 a central limit theorem for Wn (with convergence of all moments),
which is a main result of this paper (stated below); however, later in Section 4 we will reprove the
central limit law in a much less computational way by using the martingale central limit theorem.

The theorem of Fréchet and Shohat is basically an appeal to claiming limit distributions by discover-
ing that all the moments converge to those of some distribution, provided that such a distribution is
uniquely determined by its moments, which is the case for the normal distribution we found. The idea
of shifting by the asymptotic mean is due to Chern and Hwang [8], and recent experience indicates
huge success in the area of random structures and algorithms.

Theorem 2. Let Wn be the number of white balls after n draws from a generalized Friedman’s urn
grown under sampling without replacement. Then,

Wn − 1
2Csn√
n

D−→ N
(

0,
1

12
C2s

)
,

as n→∞.

In this approach to central limit theorem, we also identify the rate of convergence in each moment.

3.4. Strong law of large numbers. The fourth moment is relatively small to give us a strong law of
large numbers, presented next.

Proposition 2.
Wn

n

a.s.−→ Cs

2
, n→∞.
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Proof. As we have shown in Subsection 3.3 the fourth centered moment satisfies the expansion

E
(
(Wn − E(Wn))4

)
∼ 3(V(Wn))2.

Next we use a general form of the Markov inequality (also known as Chebyshev’s inequality for higher
moments) to obtain

P
{∣∣∣Wn

n
− E(Wn)

n

∣∣ > ε
}
≤ 1

ε4n4
E(|Wn − E(Wn)|4)

∼ 3

ε4n4
(V(Wn))2

∼ C4s2

48ε4n2

→ 0,

valid for all ε > 0. Hence, we have
∞∑
n=1

P
{∣∣∣Wn

n
− E(Wn)

n

∣∣ > ε
}
≤
∞∑
n=1

C4s2

48ε4n2
<∞.

By the Borel-Cantelli Lemma we have

P
{∣∣∣Wn

n
− E(Wn)

n

∣∣ > ε infinitely often
}

= 0.

This, being true for any ε > 0, implies that

Wn

n
− E(Wn)

n

a.s.−→ 0.

However, we also have E(Wn)
n → 1

2CS. The result as stated follows according to the laws of addition
of sequences of almost surely convergent random variables. �

Corollary 1.

Wn =
1

2
Csn+ oL1(n).

Proof. The random variables Wn/n are uniformly bounded, as can be seen from

Wn

n
=
Wn

Tn
× Tn

n
≤ Tn

n
=
Csn+ T0

n
≤ Cs+ T0.

This uniform bound, together with Proposition 2 shows that

Wn

n

L1−→ 1

2
Cs.

�

Corollary 2.

W 2
n =

1

4
C2s2n2 + oL1(n2).
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4. DISCRETE MARTINGALES AND A CENTRAL LIMIT THEOREM

The random variables Wn are not directly a martingale. However, transformations of these variables
are. We can find values ϕn and ψn such that Mn = ϕnWn + ψn is a martingale.

Lemma 1. The random variables

Mn =
Tn−1
T0

Wn − Cs
n−1∑
k=0

Tk
T0

are a martingale with respect to the filtration {Fn}∞n=0.

Proof. We use the ansatz Mn = ϕnWn + ψn, and seek suitable values for ϕn and ψn that render Mn

a martingale.1 For Mn to be a martingale, we must have

E(Mn | Fn−1) = E(ϕnWn + ψn | Fn−1)
= ϕnE(Wn | Fn−1) + ψn

= ϕnE(Wn | Fn−1) + ψn

= ϕn

((
1− Cs

Tn−1

)
Wn−1 + Cs

)
+ ψn

= ϕn−1Wn−1 + ψn−1;

the penultimate line was obtained from (5). This is possible if the coefficients of W r
n−1are matched,

for r = 0, 1, that is,

ϕn−1 =
(

1− Cs

Tn−1

)
ϕn, and ψn−1 = Csϕn + ψn.

The recurrence

ϕn =
( Tn−1
Tn−1 − Cs

)
ϕn−1 =

Tn−1
Tn−2

ϕn−1

has the solution ϕn = Tn−1

T0
ϕ0, for arbitrary ϕ0 (which we take to be 1), and the recurrence

ψn = ψn−1 − Csϕn
has the solution ψn = −Cs

∑n−1
k=0

Tk
T0

+ ψ0, for arbitrary ψ0 (which we take to be 0). �

To prove a central limit theorem for the number of white balls, it suffices to check the conditional
Lindeberg condition and the conditional variance condition for suitably normalized differences of the
martingale Mn; see [6], Page 58.
Let 5Mj = Mj − Mj−1 denote the backward differences of the martingale. The success of this
method hinges on having small martingale differences, relative to an appropriate scale. Let us first
look at the raw differences:

5Mj = ϕjWj − ϕj−1Wj−1 + ψj − ψj−1.
We have

ψj − ψj−1 = −CsTj−1
T0

= −Csϕj ,

1Such coefficients are not unique.
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and

ϕj =
Tj−1
T0

= ϕj−1 +
Cs

T0
.

We further obtain, using (3),

5Mj = ϕj(Wj −Wj−1) +
Cs

T0
Wj−1 − Csϕj

=
Cs

T0
Wj−1 − Cϕjξj

=
Cs

T0
Wj−1 − C

Tj−1
T0

ξj .

Hence, by the bounds Wj−1 ≤ Tj−1 and ξj ≤ Cs we get

| 5Mj | ≤
2Cs

T0
Tj−1. (24)

We can now check the conditions for the martingale central limit theorem. We use the notation I(E)
for the indicator function that assumes the value 1, if E occurs, and assumes the value 0 otherwise.

Lemma 2. The martingale Mn satisfies Lindeberg’s conditional condition: For any fixed ε > 0,

Un :=
n∑
j=1

E
((5Mj

n
3
2

)2
I
(∣∣∣5Mj

n
3
2

∣∣∣ > ε
) ∣∣∣Fj−1) P−→ 0,

as n→∞.

Proof. The absolute differences in (24) are O(n). Thus, the sets{∣∣∣5Mj

n
3
2

∣∣∣ > ε
}

are empty for large enough n ≥ n0. Hence, the sum Un is truncated at n0, yielding

Un =

n0∑
j=1

E
((5Mj

n
3
2

)2
I
(∣∣∣5Mj

n
3
2

∣∣∣ > ε
) ∣∣∣Fj−1)

≤ 1

n3

n0∑
j=1

E
(
(5Mj)

2
∣∣Fj−1)

=
1

n3

n0∑
j=1

4C2s2T 2
j−1

T 2
0

≤
4C2s2T 2

n0−1n0

T 2
0 n

3

→ 0.

Lindeberg’s conditional condition has been verified. �



16 M. KUBA, H. MAHMOUD, AND A. PANHOLZER

Lemma 3. The martingale Mn satisfies the conditional variance condition:

Vn :=
n∑
j=1

E
((5Mj

n
3
2

)2 ∣∣∣Fj−1) P−→ C4s3

12T 2
0

.

as n→∞.

Proof. In view of the absolute differences in (24), we have

Vn =
1

n3

n∑
j=1

C2

T 2
0

E
(
(sWj−1 − Tj−1ξj)2 | Fj−1

)
=

C2

T 2
0 n

3

n∑
j=1

E
(
s2W 2

j−1 + T 2
j−1ξ

2
j − 2sTj−1Wj−1ξj | Fj−1

)
.

Using the known (conditional) mean and variance for the hypergeometric random variable ξj , we get

Vn =
C2

T 2
0 n

3

n∑
j=1

s2W 2
j−1 + T 2

j−1E(ξ2j | Fj−1)− 2sTj−1Wj−1E(ξj | Fj−1)

=
C2

T 2
0 n

3

n∑
j=1

s(s− Tj−1)
Tj−1 − 1

W 2
j−1 +

sTj−1(Tj−1 − s)
Tj−1 − 1

Wj−1.

Appealing to the concentration property in Corollary 1, we write

Vn =
C2

T 2
0 n

3

n∑
k=1

s(s− Tk−1)
Tk−1 − 1

(Cs(k − 1)

2

)2
+ oL1(k2)

)
+
sTk−1(Tk−1 − s)

Tk−1 − 1

(Cs(k − 1)

2

)
+ oL1(k)

)
.

We now plug in the value of Tk−1 from (1) and simplify the sums; the lemma follows. �

We proceed to reprove the main result.

Proof of Theorem 2 via martingales. The conditions for the martingale central limit theorem have
been checked in Lemmas 2–3. Accordingly

n∑
k=1

5Mk

n
3
2

d−→ N
(

0,
C4s3

12T 2
0

)
.

The sum of the differences telescopes, leaving only the difference of the last term and the initial
condition, that is

Mn −M0

n
3
2

d−→ N
(

0,
C4s3

12T 2
0

)
,

or
Tn−1Wn

T0
− Cs

T0

n∑
k=1

Tk−1

n
3
2

d−→ N
(

0,
C4s3

12T 2
0

)
.
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This can be written as

(Cs(n− 1) + T0)Wn −
(1

2
C2s2n2 +O(n)

)
n

3
2

d−→ N
(

0,
C4s3

12

)
.

The theorem follows as stated after a few adjustments via Slutsky’s theorem (see [12], Page 176). �

Remark: The result in [3] is the special case C = s = 1. Evidently, the approach via the mod-
ern probabilistic method of martingale is much lighter computationally than the method of moments.
However, the method produces only the chief asymptotic of each moment, without the rate of conver-
gence.

5. URN MODELS WITH MULTIPLE DRAWING AND SIMILAR MOMENTS STRUCTURE

Some other urn schemes have moments structure similar to the one presented. Thus, some other urn
schemes can be amenable to analysis by methods like the ones just discussed. We name two schemes
below.

5.1. Generalized Friedman’s urn growing under sampling with replacement. A natural variation
on the scheme just discussed (generalized Friedman’s urn growing under sampling without replace-
ment) is one with a different sampling mechanism. The most popular other sampling method is to
take the s balls out with replacement (details discussed in the introduction). Such a generalized Fried-
man’s urn has the ball replacement matrix (2), as the scheme without replacement. After n draws, the
number of white balls in such an urn, W̃n, satisfies a recurrence similar to (3), with the random vari-
able ξn substituted with ξ̃n, a random variable that conditionally has a binomial distribution. Namely,
the stochastic recurrence is

W̃n = W̃n−1 + C(s− ξ̃n),

where,

P(ξ̃n = k | Fn−1) =

(
s

k

)(W̃n−1
Tn−1

)k(
1− W̃n−1

Tn−1

)s−k
,

and again Tn = T0 + Csn. The derivation follows through, mutatis mutandis. All the steps are the
same as in the case of a generalized Friedman’s urn under sampling without replacement, only with
hypergeometric probabilities replaced by binomial probabilities. The starting point for the computa-
tions here is the equation

E(W̃ r
n | Fn−1) = W̃ r

n−1 +

r∑
`=1

(
r

`

)
W̃ r−`
n−1C

`
s∑

k=0

(s− k)`
(
s
k

)
W̃ k
n−1(Tn−1 − W̃n−1)

s−k

T sn−1
.

For instance, the mean of hypergeo(Tn−1, s,Wn−1) coincides with that of a binomial random vari-
able counting successes in s independent identically distributed trials, with probability of success
Wn−1/Tn−1. Therefore, the two schemes have the same recurrence for the mean number of white
balls, and consequently the same mean number of white balls after n draws, when the starting urns
are the same. That is, E(W̃n) = E(Wn), and E(Wn) is given in (6), and (7) both exactly and asymp-
totically. The variance follows suit—the second moment satisfies the equation

E(W̃ 2
n) = g̃nE(W̃ 2

n−1) + h̃n,
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with

g̃n = 1− 2Cs

Tn−1
+
C2s2

T 2
n−1

,

h̃n =

(
2Cs− C2s(2s− 1)

Tn−1

)
E(W̃n−1) + C2s2 (25)

= C2s2n+
1

2
Cs
(
2T0 − C(2s− 1)

)
+
Cs(Cs− T0)(T0 − 2W̃0)

Tn−1
+
C2s(Cs− T0)(T0 − 2W̃0)

2Tn−1Tn−2
.

This recurrence leads then to the following explicit solution of the second moment of W̃n:

E(W̃ 2
n) =

(n−2+ T0
Cs

+ 1√
s

n

)(n−2+ T0
Cs
− 1√

s
n

)
(
n−1+ T0

Cs
n

)2
[
W̃ 2

0 +

n∑
j=1

(j−1+ T0
Cs

j

)2
(j−2+ T0

Cs
+ 1√

s

j

)(j−2+ T0
Cs
− 1√

s

j

) h̃j],
where h̃n is defined in (25). From this explicit solution the asymptotic behaviour of the variance
of W̃n can be deduced easily and one obtains

V(W̃n) =
1

12
C2sn+O(1),

i.e., the variance of W̃n is asymptotically equivalent to V(Wn). Note that from a computational
point of view this simply follows from the fact that the first and second order term in the asymptotic
expansion of the functions g̃n and h̃n coincides with their counterparts in the asymptotic expansion
of gn and hn that were encountered in the second moment of W 2

n .
Finally, going through all the details of the martingale central limit theorem, we see, by a calculation
(omitted) rather similar to that in the proof of Theorem 2, that

W̃n − 1
2Csn√
n

D−→ N
(

0,
1

12
C2s

)
.

We now see that a generalized Friedman’s urn behaves asymptotically in essentially the same way,
whether it grows under sampling with or without replacement.

5.2. Growth models for logic circuits of gates. Another urn scheme has lately drawn attention. It is
a scheme underlying the growth of logic circuits of gates. The number of input wires (binary inputs)
coming into a gate in a logic circuit is called the fan-in of the circuit, and the gate computes a predicate
of these inputs and produces an output (which may be fed into other layers of gates in the circuit). If
the output is not fed into another gate it is an output of the whole circuit; we call such an output a
free output. A random circuit with fan-in s grows in the following way. Initially we have a starting
circuit. Of the existing gates s are chosen at random. Random can mean a sampling scheme without
replacement, in which case the number of existing gates must be at least s, a model introduced in [15],
or can mean sampling with replacement, and the starting circuit can have one or more gates, a model
introduced in [1] and [10]. The output of the chosen gates is connected as input to a new gate. It is of
interest to find the number of circuit outputs (that is the number of gates with free outputs).
Urn models have been developed to model logic circuits. In [10] such an urn is described, and only a
law of large numbers is given. In the recent paper [14], a central limit theorem is derived.
To model outputs, consider an urn where a white ball corresponds to a gate with a free output, and a
blue ball corresponds to a gate with one or more outputs feeding into other gates. The evolution can
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be described by an (s+ 1)× 2 matrix Â, with an indexing scheme just like that of (2):

Â =



1 0
0 1
−1 2

...
...

−(s− 2) s− 1
−(s− 1) s


.

Let Tn denote the total number of balls after n draws. The number of balls increases by one after each
draw, and we have

Tn = n+ T0, for n ≥ 0.

The stochastic recurrence for the number of white balls Ŵn after n draws is given by

Ŵn = Ŵn−1 + 1− ξ̂n,

with ξ̂n having the same distribution as ξn or ξ̃n as defined in Section 2 and Subsection 5.1, respec-
tively: conditionally hypergeometric under sampling without replacement, and conditionally binomial
under sampling with replacement. This stochastic recurrence (under either sampling technique) has a
structure for the moments similar to what we derived for generalized Friedman’s urn, and the central
limit theorem of [14] can be rederived by the methods we used for generalized Friedman’s urn.
To complement the existing results we add exact formulæ for the second moment (and thus also for
the variance) of Ŵn under each sampling scheme; note that the exact and asymptotic formulæ for the
mean as stated below already appear in [10]. For sampling without replacement one starts with the
equation

E(Ŵ r
n | Fn−1) = Ŵ r

n−1 +
r∑
`=1

(
r

`

)
Ŵ r−`
n−1

s∑
k=0

(1− k)`
(Ŵn−1

k

)(Tn−1−Ŵn−1

s−k
)(

Tn−1

s

) .

Taking expectations and solving the ensuing recurrences for the instances r = 1 and r = 2 leads to
the following exact formulas:

E(Ŵn) =
n+ T0
s+ 1

+

(
T0−1
s

)(
n+T0−1

s

)(Ŵ0 −
T0
s+ 1

)
,

E(Ŵ 2
n) =

(
T0−1
s

)(
T0−2
s

)(
n+T0−1

s

)(
n+T0−2

s

)[Ŵ 2
0 +

n∑
j=1

(
j+T0−1

s

)(
j+T0−2

s

)(
T0−1
s

)(
T0−2
s

) ĥj

]
,

with ĥn = 2n
s+1 + 2T0−1

s+1 −
s(s−1)

(s+1)(n+T0−2) + 2n+2T0+s−4
n+T0−2 (Ŵ0− T0

s+1)
(T0−1

s )
(n+T0−1

s )
. From this explicit results

the asymptotic behaviour of the mean and the variance can be deduced easily and one obtains

E(Ŵn) =
n

s+ 1
+

T0
s+ 1

+O(n−1), V(Ŵn) =
s2

(s+ 1)2(2s+ 1)
n+O(1).

For sampling with replacement one starts with the equation (to distinguish between both sampling
strategies we use now the random variable W̌n):

E
(
(W̌n)r | Fn−1

)
= (W̌n−1)

r +

r∑
`=1

(
r

`

)
(W̌n−1)

r−`
s∑

k=0

(1− k)`
(
s
k

)
(W̌n−1)

k(Tn−1 − W̌n−1)
s−k

T sn−1
.
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As already shown in [10] the exact mean of W̌n and Ŵn coincide. Furthermore, we have

E
(
(W̌n)2

)
=

(
n+T0−s−1+

√
s

n

)(
n+T0−s−1−

√
s

n

)(
n+T0−1

n

)2 [
(W̌0)

2 +

n∑
j=1

(
j+T0−1

j

)2(
j+T0−s−1+

√
s

j

)(
j+T0−s−1−

√
s

j

) ȟj],
with ȟn = 2n

s+1 + 2T0−1
s+1 + 2n+2T0−2−s

n+T0−1 (W̌0 − T0
s+1)

(T0−1
s )

(n+T0−2
s )

. It follows that V(W̌n) and V(Ŵn) have

the same asymptotic behaviour, i.e., V(W̌n) ∼ V(Ŵn) = s2

(s+1)2(2s+1)
n+O(1).
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