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Abstract. We introduce two different kind of increasing bilabellings of trees, for which
we provide enumeration formulæ. One of the bilabelled tree families considered is enumer-
ated by the reduced tangent numbers and is in bijection with a tree family introduced by
Poupard [11]. Both increasing bilabellings naturally lead to hook-length formulas for trees
and forests; in particular, one construction gives a combinatorial interpretation of a formula
for labelled unordered forests obtained recently by Chen et al. [1].

1. Introduction

This paper has two main concerns: first we want to give combinatorial interpretations and
proofs of certain hook-length formulæ for trees and forests, respectively; we do this by intro-
ducing two kind of increasing bilabellings of trees, which seem to be of interest on its own,
and thus yielding a second aspect.

Given a rooted tree T (since throughout this paper we will always consider rooted trees, from
now on we will not express this explicitly), we will call a node u ∈ T a descendant of node
v ∈ T if v is lying on the unique path from the root of T to u. The hook-length hv := h(v)
of a node v ∈ T is defined as the number of descendants of v including the node v itself (i.e.,
it is the size of the subtree rooted at v).

Let us denote by U the family of labelled unordered trees, i.e., the set of trees T , whose vertices
are labelled by distinct integers of {1, 2, . . . , |T |}, with |T | the size of T (measured by the
number of vertices). When using the term unordered tree we assume that there is no left-
to-right ordering on the children of any node, i.e., we consider such a tree as a root-vertex,
where a set of subtrees is attached. Conversely, for an ordered tree we assume that there is
a linear ordering on the children of each node. Furthermore, with U(n) we denote the set
of trees T ∈ U of size |T | = n; more generally, for a family C of combinatorial objects, with
C(n) we always denote the set of objects of C of size n.

Having introduced this notation we can state the following hook-length formulas for labelled
unordered trees, which will be shown afterwards.

Theorem 1. The following hook-length formulas for the family U of labelled unordered trees
hold (with n ≥ 1): ∑

T∈U(n)

∏
v∈T

(
1

2hv(2hv − 1)

)
=

n!

(2n)!
Ẽn, (1)

∑
T∈U(n)

∏
v∈T

1

h2v
=

(n− 1)!

2n−1
. (2)
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Here Ẽn denotes the so-called reduced tangent numbers, which might be defined via their

generating function:
∑

n≥1 Ẽn
z2n−1

(2n−1)! =
√

2 tan
(

z√
2

)
; it is well-known that these numbers

appear in the enumeration of various combinatorial objects, see, e.g., [6, 11].

Recently various hook-length formulas for different tree families and forests of trees could
be obtained, see, e.g., [1, 7, 8, 10]. In particular, a so-called “expansion technique” de-
veloped by Han [8] and generalized further by Chen et al. [1] and by the authors [9],
which allows to determine the “hook-weight function” ρ(n) from the generating function
(or, when considering labelled tree families, the corresponding exponential generating func-

tion) G(z) =
∑

n≥1

(∑
T∈T (n)

∏
v∈T ρ(hv)

)
zn, with T (n) the set of trees of size n of a family

T , turns out to be very fruitful. E.g., by using this expansion technique, the hook-length

formula
∑

T∈B(n)
∏

v∈T

(
1 + 1

hv

)
= 2n(n+1)n−1

n! for the family of binary trees B obtained by

Postnikov [10], which can be considered as the starting point of this research direction, could
be shown rather easily.

However, besides the search and derivation of such hook-length formulas for trees a second
important research aspect is to give combinatorial interpretations (or probabilistic interpre-
tations, see [12]) of them and thus to obtain a “concrete meaning”. E.g., the papers [2, 13]
present combinatorial proofs of the before-mentioned formula of Postnikov for binary trees.
Another hook-length formula for the family of labelled unordered forests closely related to
formula (2) appears in [1], where it has been obtained via the expansion technique, but the
authors ask for a combinatorial interpretation of it; to provide such an interpretation can be
considered as the origin of this paper.

Let us denote by UF the family of labelled unordered forests, i.e., the set of forests F =
{T1, . . . , Ts}, with s ≥ 0, where T1, . . . , Ts are labelled unordered trees, whose vertices are
labelled by distinct integers of {1, 2, . . . , |F |}, with |F | := |T1| + · · · + |Ts| the size of F . As
we shall figure out later in Section 4 each hook-length formula for the family U of labelled
unordered trees corresponds naturally to a hook-length formula for the family UF of labelled
unordered forests and vice versa. In particular, in Section 4 we state (as equations (14) and
(15), respectively) the hook-length formulæ for the family of forests UF corresponding to (1)-
(2). As mentioned before equation (15) (which is equivalent to formula (2)) appears in [1],
whereas (1) (and the equivalent formula (14)) seem to be new to the best of our knowledge.
Since formulas for forests UF immediately follow from the corresponding ones for trees U our
main focus in this work will be given on trees, whereas results for forests and relations to trees
will only be collected in Section 4. We want to remark that meanwhile there has been given
in [4] another combinatorial interpretation of equation (15) by introducing hook-lengths on
permutations.

Increasingly labelled trees, i.e., labelled trees, where the label of a child node is always
larger than the label of its parent node, appear frequently in combinatorial contexts (e.g., in
connection with hook-length formulas they occur in [7, 12]), but they are also of interest in
problems stemming from probability theory or computer science; see, e.g., [5] and references
therein. In the present paper we introduce two different kind of “bilabelled increasing trees”;
in such trees each node always gets two labels and the labelling will be of such a kind that
the labelling of a child node is always larger (in a sense specified later) than the labelling of
its parent node.

In order to prove formula (1) we consider in Section 2 trees, where each node gets a set of
two different labels, the label sets of different nodes are disjoint, and where each label of a
child node is always larger than any label of its parent node. We call such trees “increasingly
bilabelled trees”. To show formula (2) we consider in Section 3 trees, where each node gets
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Figure 1. Increasingly bilabelled unordered trees of size up to three and
increasingly labelled strict binary trees of size up to five satisfying the “right-
smallest property”. The trees of the second row are obtained by applying the
bijection ϕ as described in the bijective proof of Theorem 2 to the correspond-
ing trees of the first row.

an ordered pair of labels (we might think about a left and a right label), such that all left
labels are different, all right labels are different, and where the left label of a child node is
always larger than the left label of its parent node as well as the right label of a child node is
always larger than the right label of its parent node. We call such trees “double increasingly
labelled trees”.

In the present paper we will be interested exclusively in specifically bilabelled unordered
trees, but we remark that variants of such tree families could be used to give combinatorial
interpretations of certain statistics defined on two random objects. E.g., the problem of
computing (asymptotically) the probability that two binary search trees (generated by two
random permutations of the same length) give the same binary tree (a problem which was
open for some time and has been solved only recently in [3]) could be formulated also in
terms of enumeration of double increasingly labelled binary trees.

2. Increasingly bilabelled trees

2.1. Enumeration results. We call a tree T a bilabelled tree, if each node v ∈ T has
got a set `B(v) = {`[1](v), `[2](v)} of two different integers (we may always assume that

`[1](v) < `[2](v)), and where furthermore the label sets of different nodes are disjoint, i.e.,
`B(v) ∩ `B(w) = ∅, for v 6= w. We say then that T is a bilabelled tree with label set
M = M(T ) =

⋃
v∈T `B(v); of course, |M| = 2n, for a tree T of size |T | = n. A bilabelled

tree T is called increasing, if it holds that each label of a child node is always larger than
all labels of its parent node: `B(v) ≺ `B(w), whenever w is a child of v, where we use the

relation {a[1], a[2]} ≺ {b[1], b[2]} ⇐⇒ maxi a
[i] < minj b

[j].

We denote by TB the family of increasingly bilabelled unordered trees, which contains all
(non-empty) increasingly bilabelled unordered trees T of size |T | ≥ 1 with label set M =
{0, 1, . . . , 2|T | − 1} (we find it more convenient to use this label set instead of {1, 2, . . . , 2|T |}
in order to state the bijections given later). In the first row of Figure 1 all trees of TB of size
≤ 3 are given.

Let us denote by T
[B]
n the number of different increasingly bilabelled unordered trees, i.e.,

T
[B]
n := |TB(n)|. In the following we will prove that increasingly bilabelled unordered trees of
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size n are enumerated by the reduced tangent numbers Ẽn. We present a generating function
proof, but more important, we also give a bijective proof by establishing a correspondence
to a certain class of labelled strict binary trees introduced by Poupard [11]. We provide here
(and also later in Section 3) also a generating function proof, since such an approach could
be generalized easily to various other tree families (as, e.g., ordered trees or binary trees)
and the differential equations obtained might be useful when determining the asymptotic

behaviour of the corresponding numbers T
[B]
n (and T

[D]
n as defined in Section 3). However, it

seems that apart from the here considered tree family no such explicit formulas for T
[B]
n (and

T
[D]
n ) exist for other important tree families.

Strict binary trees (also called full or complete binary trees) are ordered trees, where each
node has either two children (we may then speak about the left child and the right child)
or no child (i.e., it is a leaf). An increasingly labelled strict binary tree T is a strict binary
tree whose nodes are labelled by distinct integers (of a label set M =M(T )) in such a way
that the label of a child node is always larger than the label of its parent node. We say that
such a tree satisfies the “right-smallest property”, if for each non-leaf node v holds that the
descendant of v (other than v) with the smallest label is contained in the right subtree of v.

We denote by S the tree family, which contains all increasingly labelled strict binary trees
T of size |T | ≥ 1 with label set M = {1, 2, . . . , |T |} satisfying the “right-smallest property”.
It has been shown in [11] that the number |S(2n − 1)| of such trees of size 2n − 1 (it is
immediate from the definition that the size of each such tree has to be odd) is given exactly

by the reduced tangent number Ẽn. In the second row of Figure 1 all trees of S of size ≤ 5
are given.

Theorem 2. The number T
[B]
n of increasingly bilabelled unordered trees of size n is given by

the reduced tangent number: T
[B]
n = Ẽn.

Generating function proof. Using standard combinatorial constructions the family TB can be
described by the following symbolic equation:

TB = Z� ∗
(
Z� ∗ Set

(
TB
))
, (3)

where Z denotes the atomic class (i.e., a single (uni)labelled node), A∗B denotes the labelled
product and A� ∗ B the boxed product (i.e., the smallest label is constrained to lie in the A
component) of the combinatorial classes A and B, and Set(A) denotes the class containing
all finite sets of objects of A; see [5].

We introduce the generating function

TB(z) :=
∑
n≥1

T [B]
n

z2n

(2n)!
.

By an application of the symbolic method (see, e.g., [5]) equation (3) can be translated into
the following differential equation for TB(z):

T ′′B(z) = eTB(z), TB(0) = 0, T ′B(0) = 0. (4)

It can be checked easily that the solution of (4) and its derivative are given as follows:

TB(z) = ln
(

1 + tan2
( z√

2

))
, T ′B(z) =

√
2 tan

( z√
2

)
. (5)

Thus Theorem 2 follows by extracting coefficients from (5):

T [B]
n = (2n)![z2n]TB(z) = (2n− 1)![z2n−1]T ′B(z) = Ẽn, n ≥ 1.

�
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Bijective proof. We give a bijection between the objects of TB(n) and the objects of S(2n−1).
We do this by introducing a mapping ϕ,

ϕ : T 7→ (S, l0),

which maps any increasingly bilabelled unordered tree T of size n with label set M =
{l0, l1, . . . , l2n−1} to the ordered pair (S, l0), where S is an increasingly labelled strict bi-
nary tree with label setM\{l0} = {l1, l2, . . . , l2n−1} satisfying the “right-smallest property”,
and where l0 is the smallest label of the label set M.

The mapping ϕ will be defined recursively. In the following we always assume that l0 < l1 <
· · · < l2n−1. Moreover, for each tree T ∈ TB, we may always assume that the subtrees of any
node v are arranged from left-to-right such that the sequence containing the smaller labels
of each child node of v is increasing.

• |T | = 1: We simply define ϕ via:

ϕ : l  ,l 10 7→
(

l 1 , l0
)
.

• |T | ≥ 2: Per definition the tree T has root node l  ,l 10 . Let us define by T1 the subtree

attached to the root of T containing (apart from the labels of the root of T ) the
smallest label l2 (i.e., T1 is the leftmost subtree of the root of T ); furthermore let
T2 := T \ T1. It holds that l2 is the smaller label of the root of T1.

T =

l  ,l 10

l  ,x 2

T1 T2

Now let us define by T̂1 and T̂2 the trees obtained from T1 and T2 by exchanging the
labels l1 and l2.

l  ,l 20

l  ,x 1

T1 T2
^ ^

It holds that T̂1 and T̂2 are both increasingly bilabelled unordered trees of sizes smaller
than T . Furthermore the root of T̂1 is labelled by {l1, x}, with x ∈ {l3, . . . , l2n−1},
whereas the root of T̂2 is labelled by {l0, l2}. We can apply recursively the mapping

ϕ to T̂1 and T̂2:

T̂1
ϕ7−→ (S1, l1), T̂2

ϕ7−→ (S2, l0),

where S1 and S2 are increasingly labelled strict binary trees satisfying the “right-
smallest property” with label sets M(T̂1) \ {l1} and M(T̂2) \ {l0}, respectively.

We can construct now a labelled strict binary tree S by attaching the strict binary
trees S1 and S2 as left and right subtree to a root node labelled l1.
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S =

l 1

S1 S2

Since S1 and S2 are increasingly labelled and l1 is the smallest label of S it follows
that S is an increasingly labelled strict binary tree with label set M\ {l0}. Since S1
and S2 satisfy the “right-smallest property” and the label l2 is contained in S2 (i.e.,
it is the root of S2) the resulting tree S also satisfies the “right-smallest property”.
Thus we can define the mapping ϕ via:

ϕ : T 7→ (S, l0).

It is straightforward to give (again recursively) the inverse mapping ϕ−1 and thus to verify
that ϕ is indeed a bijection; thus we omit here this step. Of course, Theorem 2 follows from
this proof, where one has the label set M = {0, 1, . . . , 2n− 1} for any tree T ∈ TB(n). This
bijection is exemplified in Figure 1 and Figure 2. We remark that in Figure 2 we illustrate
the bijection ϕ by using a more direct non-recursive construction; however, we find it easier
to verify the properties of ϕ (in particular that it is a bijection) when using the recursive
description. �

2.2. Hook-length formulas. Given a tree T of size n with distinguishable nodes (e.g., an
ordered tree or an unordered labelled tree) and the label set M = {0, 1, . . . , 2n− 1}. When
distributing the labels ofM over the nodes of T such that each node gets exactly two labels,
and if it further holds that each label of a child node is always larger than all labels of its
parent node, we call this an increasing bilabelling of T . Let us denote by L[B](T ) the set of
all increasing bilabellings of T . When enumerating the number of increasing bilabellings of
T the hook-lengths of the nodes of T appear naturally.

Lemma 3. The number |L[B](T )| of different increasing bilabellings of a tree T of size n with
distinguishable nodes is given as follows:

|L[B](T )| = (2n)!∏
v∈T (2hv(2hv − 1))

.

Proof. The formula can be shown easily by using induction on the size |T | = n of T .

• n = 1: There is one increasing bilabelling of T and this matches with the formula
given.
• n > 1: We assume that the root of T has out-degree s (i.e., the root node has s

children). Let us denote the subtrees of the root, which have corresponding sizes
k1, . . . , ks, by T1, . . . , Ts. It holds that (after an order preserving relabelling) each
of the subtrees T1, . . . , Ts is itself an increasingly bilabelled tree. Taking into ac-
count that the root node of T is labelled by {0, 1} and that the remaining nodes are
distributed over the nodes of the subtrees one obtains:

|L[B](T )| =
(

2n− 2

2k1, 2k2, . . . , 2ks

)
· |L[B](T1)| · |L[B](T2)| · · · |L[B](Ts)|.
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The non-recursive construction:

(i) First replace every bilabelled node {a[1], a[2]} by two unilabelled nodes a[1] and a[2]

such that a[2] becomes the child node of a[1].
(ii) Then cut-off root node; the child node of former root becomes the new root.

(iii) For each node v at an even level, which is not a leftmost child of its parent, we cut-off
edge to its parent and add an edge to the left sibling.

(iv) For each node v at an odd level, which is not a leftmost child of its parent, we cut-off
edge to its parent and add an edge to the left uncle (i.e., left sibling of the parent).

(v) For each non-root node v at an odd level, which is a leftmost child of its parent, we
cut-off edge to its parent and add an edge to the grandparent, such that v becomes
a left sibling of the former parent.

Figure 2. An increasingly bilabelled unordered tree T of size 7 and the
corresponding increasingly labelled strict binary tree of size 13 satisfying the
“right-smallest property” obtained via the bijection ϕ as described in the
bijective proof of Theorem 2.

Using the induction hypothesis we further get:

|L[B](T )| = (2n− 2)!∏s
j=1(2kj)!

s∏
j=1

(2kj)!∏
v∈Tj

(2hv(2hv − 1))
=

(2n)!∏
v∈T (2hv(2hv − 1))

,

which completes the proof.

�

We introduce now the class Û containing all pairs (T, L[B](T )), with T ∈ U a labelled un-

ordered tree and L[B](T ) an increasing bilabelling of T . We might consider the elements of Û
as specifically trilabelled trees. Furthermore, we introduce the class T̂B containing all pairs
(T, L(T )), with T ∈ TB an increasingly bilabelled unordered tree and L(T ) a labelling of the
nodes of T with distinct integers of {1, 2, . . . , |T |}. Again we might consider the elements of

T̂B as specifically trilabelled trees. However, it is immediate to see that the classes Û and
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Figure 3. Double increasingly labelled unordered trees of size up to three
(in the figures the left and the right label of a node are always separated by a
bar).

T̂B are even isomorphic: they contain trilabelled unordered trees T , consisting of an ordinary
labelling with {1, . . . , |T |} and of an increasing bilabelling with {0, 1, . . . , 2|T | − 1}. In par-

ticular this implies that |Û(n)| = |T̂B(n)|, for arbitrary n. We have now all ingredients to
finish the combinatorial proof of formula (1).

Proof of formula (1). It follows from the definition of Û and Lemma 3 that the size of Û(n)
is given as follows:

|Û(n)| =
∑

T∈U(n)

|L[B](T )| =
∑

T∈U(n)

(2n)!∏
v∈T (2hv(2hv − 1))

.

On the other hand it follows from the definition of T̂B and Theorem 2 that the size of T̂B(n)
is given as follows:

|T̂B(n)| = n! |TB(n)| = n!T [B]
n = n! Ẽn.

Since |Û(n)| = |T̂B(n)| this shows the hook-length formula (1). �

3. Double increasingly labelled trees

3.1. Enumeration results. We call a tree T a double labelled tree, if each node v ∈ T
has got an ordered pair `D(v) = (`[L](v), `[R](v)) of integers (we may speak about the left
label and the right label of v) such that the left labels as well as the right labels of two
different nodes v 6= w are different. We say that T is a double labelled tree with left and right
label set ML = ML(T ) =

⋃
v∈T `

[L](v) and MR = MR(T ) =
⋃

v∈T `
[R](v), respectively; of

course, |ML| = |MR| = n, for a tree T of size |T | = n. A double labelled tree T is called
increasing, if it holds that the left label of a child node is always larger than the left label of
its parent node as well as the right label of a child node is always larger than the right label
of its parent node: `D(v) ≺ `D(w), whenever w is a child of v, where we use the relation

(a[L], a[R]) ≺ (b[L], b[R])⇐⇒
(
a[L] < b[L] and a[R] < b[R]

)
.

We denote by TD the family of double increasingly labelled unordered trees, which contains
all (non-empty) double increasingly labelled unordered trees T of size |T | ≥ 1 with left and
right label setsML =MR = {1, 2, . . . , |T |}. In Figure 3 all trees of TD of size ≤ 3 are given.

Let us denote by T
[D]
n the number of different double increasingly labelled unordered trees,

i.e., T
[D]
n := |TD(n)|. In the following we will give a generating function proof as well as a

bijective proof of the simple enumeration formula.
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Theorem 4. The number T
[D]
n of double increasingly labelled unordered trees of size n ≥ 1

is given as follows:

T [D]
n =

(n− 1)!n!

2n−1
.

Generating function proof. We use the decomposition of a tree T ∈ TD of size n ≥ 2 into the
root node and its subtrees. Let us assume that the out-degree of the root of T is s ≥ 1. After
an order preserving relabelling the subtrees T1, . . . , Ts are itself double increasingly labelled
unordered trees of certain sizes k1, . . . , ks. Since the root of T is always labelled by (1, 1)
and the remaining left labels and right labels are distributed over the nodes of T1, . . . , Ts we

obtain the following recurrence for the numbers T
[D]
n :

T [D]
n =

∑
s≥1

1

s!

∑
k1+···+ks=n−1

(
n− 1

k1, k2, . . . , ks

)
·
(

n− 1

k1, k2, . . . , ks

)
· T [D]

k1
· T [D]

k2
· · ·T [D]

ks
, n ≥ 2,

(6)

T
[D]
1 = 1.

Note that the factor 1
s! is appearing in (6), since we are considering unordered trees.

Introducing the generating function

TD(z) :=
∑
n≥1

T [D]
n

zn

(n!)2
,

the recurrence (6) leads to the following differential equation for TD(z):

zT ′′D(z) + T ′D(z) = eTD(z), TD(0) = 0, T ′D(0) = 1. (7)

It can be checked easily that the solution of this differential equation is given as follows:

TD(z) = 2 ln

(
1

1− z
2

)
. (8)

Extracting coefficients from (8) shows thus the formula stated in Theorem 4:

T [D]
n = (n!)2[zn]TD(z) = (n!)2

2

n2n
=

(n− 1)!n!

2n−1
.

�

Bijective proof. We will prove by combinatorial means that the numbers T
[D]
n satisfy the

following recurrence:

T
[D]
n+1 =

(
n+ 1

2

)
T [D]
n , n ≥ 1. (9)

Of course, this will imply that T
[D]
n =

∏n
k=2

(
k
2

)
= n! (n−1)!

2n−1 as stated.

We do this by introducing a mapping ψ,

ψ : (T, {v, w}) 7→ T ′,

which maps any pair consisting of a double increasingly labelled unordered tree T of size n
together with a multiset {v, w} of nodes of T to a double increasingly labelled unordered tree
T ′ of size n+ 1. In the following we describe the mapping ψ, where we distinguish, whether
the multiset {v, w} contains two different nodes or not.

• v = w: The tree T ′ is obtained from the tree T by attaching a new node labelled
(n+ 1, n+ 1) as a new child of v.
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ψ

Figure 4. A double increasingly labelled unordered tree T of size 3 and the
resulting trees T ′ of size 4 obtained by applying the mapping ψ as described
in the bijective proof of Theorem 4 to all 6 choices of multisets {v, w} of nodes
of T .

• v 6= w: We may assume that the right label of v is smaller than the right label of
w: `[R](v) < `[R](w). Let q := `[R](w). We construct the tree T ′ by applying the
following procedure to T .
(i) For each node y ∈ T with a labelling (`[L](y), `[R](y)) such that `[R](y) ≥ q we

replace this labelling by (`[L](y), `[R](y) + 1) (i.e., we increase the right label by
one).

(ii) Finally we attach a new node labelled (n+ 1, q) as a new child of node v.

By construction, when starting with a tree T ∈ TD(n) the mapping ψ yields a double in-
creasingly labelled unordered tree T ′ of size n+ 1 and different choices of (T, {v, w}) lead to
different trees T ′.

It is straightforward to give the inverse mapping ψ−1 and thus to validate that the mapping
ψ indeed yields a bijection between pairs (T, {v, w}) (with T ∈ TD(n) and {v, w} a multiset of
nodes of T ) and T ′ ∈ TD(n+ 1); thus we omit to state ψ−1 explicitly. Since there are always(
n+1
2

)
choices for a multiset {v, w} of nodes of a tree T ∈ TD(n) this shows the recurrence (9).

The mapping ψ is exemplified in Figure 4. �

We remark that the mapping ψ introduced above can be used to construct simple recursive
algorithms to generate a random double increasingly labelled unordered tree of given size or
to generate all double increasingly labelled unordered trees of given (small) size, respectively.

3.2. Hook-length formulas. In what follows it is advantageous to give an equivalent de-
scription of double labelled trees and variants. Namely, instead of thinking about trees, where
each node gets two labels one might alternatively consider pairs of (uni)labelled trees of the
same shape (we say that two trees are of the same shape if the corresponding underlying
ordered trees are the same)1.

To give an alternative description of the already studied tree family TD and to show the
hook-length formula (2) we introduce some notation. Let us denote by L and I the families
of (arbitrary) labelled ordered trees and increasingly labelled ordered trees (always with label
sets {1, 2, . . . , |T |} for any tree T ), respectively. Moreover, we denote by ˆ the “unordering
mapping”, which maps an ordered tree to the corresponding unordered tree (of course, one

1Actually this point of view yields the relations to problems studied in [3].
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might alternatively think about building equivalence classes of ordered trees). The definition
of the mapping ˆ can be extended to families of trees in an obvious way; e.g., Î gives then
the family of increasingly labelled unordered trees, whereas L̂ = U , i.e., it gives the family of
labelled unordered trees.

In the following we will always consider pairs (and triples) of labelled trees of the same shape.
We use in this context the shortcut notation (A |B) := {(A,B) : A ∈ A, B ∈ B, shape(A) =
shape(B)} for tree families A and B (and the obvious extension to triples). When we apply
the unordering mapping to the family (I1 | I2) := {(I1, I2) : I1, I2 ∈ I, shape(I1) = shape(I2)}
then we get exactly the tree family TD introduced in Subsection 3.1, i.e., TD = (I1 | I2)̂ (note
that the mapping ˆ always has to act “simultaneously” to both components of equal shaped
trees). It is now a simple, but important observation, that one gets isomorphic tree families
when applying the unordering mapping ˆ to any of its components, i.e., that it holds

(I1 | I2)ˆ∼= (Iˆ1 | I2) ∼= (I1 | Iˆ2).

Let us now consider the family (L | I1 | I2)̂, which will play a central rôle in the proof of
formula (2). Again it holds

(L | I1 | I2)ˆ∼= (Lˆ| I1 | I2) ∼= (L | Iˆ1 | I2) ∼= (L | (I1 | I2)ˆ). (10)

Of particular interest are the second and the fourth family appearing in (10). Let us also
recall the alternative description of these tree families as certain trilabelled trees. The fam-
ily (L̂ | I1 | I2) = (U | I1 | I2) can alternatively be considered as specifically trilabelled trees
obtained by starting with labelled unordered trees, which are then equipped with a double
increasing labelling. On the other hand the family (L | (I1 | I2)̂ ) = (L | TD) can be considered
as trilabelled trees obtained by starting with double increasingly labelled unordered trees,
which are then additionally equipped with an arbitrary labelling. The combinatorial proof
of formula (2) will be finished quickly.

Proof of formula (2). Due to (10) it follows that the number of trees of size n are the same
for each of these families; in particular it holds

|(U | I1 | I2)(n)| = |(L | TD)(n)|. (11)

First consider (U | I1 | I2). We get

|(U | I1 | I2)(n)| =
∑

T∈U(n)

|{(I1, I2) : I1, I2 ∈ I, shape(I1) = shape(I2) = shape(T )}|

=
∑

T∈U(n)

(
n!∏

v∈T hv

)2

=
∑

T∈U(n)

(n!)2∏
v∈T h

2
v

,

where we used the well-known fact that the number of different increasing labellings of a tree
T of size n with distinguishable nodes (and thus the number of increasingly labelled ordered
trees of shape T ) is given by n!∏

v∈T hv
(see, e.g., [7, 12]).

On the other hand by using Theorem 4 we obtain

|(L | TD)(n)| = n! |TD(n)| = n!T [D]
n =

(n!)2 (n− 1)!

2n−1
.

Due to (11) the hook-length formula (1) follows from this. �
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4. From trees to forests

We consider now the families U and UF of labelled unordered trees and forests, respectively,
and show that each hook-length formula for trees naturally yields a corresponding hook-length
formula for forests and vice versa. Let us assume that the following hook-length formula for
trees in the general form as introduced by Han [8] and Chen et al. [1] holds (for n ≥ 1):∑

T∈U(n)

∏
v∈T

ρ(hv) = G(n), (12)

with a certain function G(n) and an arbitrary so-called hook-weight function ρ : N+ → R.

Consider a tree T ∈ U(n + 1). When removing the root r(T ) of T then the resulting forest
F := T \r(T ) is, after an order preserving relabelling with {1, 2, . . . , n}, an element of UF (n).
Since the root of T can have any label of {1, 2, . . . , n+1} it follows that each forest F ∈ UF (n)
is obtained exactly n+ 1 times when removing the root nodes of all trees T ∈ U(n+ 1) and
applying a proper relabelling. Thus we get

G(n+ 1) =
∑

T∈U(n+1)

∏
v∈T

ρ(hv) = ρ(n+ 1)
∑

T∈U(n+1)

∏
v∈T\r(T )

ρ(hv)

= (n+ 1)ρ(n+ 1)
∑

F∈UF (n)

∏
v∈F

ρ(hv),

which implies the following hook-length formula for forests:∑
F∈UF (n)

∏
v∈F

ρ(hv) =
G(n+ 1)

(n+ 1)ρ(n+ 1)
. (13)

In particular, the general relation between the hook-length formula (12) for trees and the
corresponding formula (13) for forests yields, when using the hook-weight functions ρ(n) =

1
2n(2n−1) and ρ(n) = 1

n2 , respectively, to the following hook-length formulas for forests UF
equivalent to (1) and (2) (valid for n ≥ 0):∑

F∈UF (n)

∏
v∈F

(
1

2hv(2hv − 1)

)
=

n!

(2n)!
Ẽn+1, (14)

∑
F∈UF (n)

∏
v∈F

1

h2v
=

(n+ 1)!

2n
. (15)
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Combinatoire, 61A, Article B61Ab, 2009.

[13] S. Seo, A combinatorial proof of Postnikov’s identity and a generalized enumeration of labeled trees.
Electronic Journal of Combinatorics, 11(2), #N3, 2006.

Markus Kuba, Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien,
Wiedner Hauptstr. 8-10/104, 1040 Wien – HTL Wien 5 Spengergasse, Spengergasse 20, 1050
Wien, Austria

E-mail address: kuba@dmg.tuwien.ac.at

Alois Panholzer, Institut für Diskrete Mathematik und Geometrie, Technische Universität
Wien, Wiedner Hauptstr. 8-10/104, 1040 Wien, Austria

E-mail address: Alois.Panholzer@tuwien.ac.at


	1. Introduction
	2. Increasingly bilabelled trees
	2.1. Enumeration results
	2.2. Hook-length formulas

	3. Double increasingly labelled trees
	3.1. Enumeration results
	3.2. Hook-length formulas

	4. From trees to forests
	References

