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ABSTRACT. In this work we introduce and study various generalizations of the
notion of increasingly labelled trees, where the label of a child node is always
larger than the label of its parent node, to multilabelled tree families, where the
nodes in the tree can get multiple labels.

For all tree classes we show characterizations of suitable generating func-
tions for the tree enumeration sequence via differential equations. Furthermore,
for several combinatorial classes of multilabelled increasing tree families we
present explicit enumeration results. We also present multilabelled increasing
tree families of an elliptic nature, where the exponential generating function can
be expressed in terms of the Weierstrass-℘ function or the lemniscate sine func-
tion.

Furthermore, we show how to translate enumeration formulas for multil-
abelled increasing trees into hook-length formulæ for trees and present a gen-
eral “reverse engineering” method to discover hook-length formulæ associated
to such tree families.

Dedicated to Helmut Prodinger on the occasion of his 60th birthday

1. INTRODUCTION

1.1. Multilabelled increasing tree families. Increasing trees or increasingly la-
belled trees are rooted labelled trees, where the nodes of a tree T of size |T | = n
(where the size |T | of a tree denotes the number of vertices of T ) are labelled with
distinct integers from a label setM of size |M| = n (usually, one chooses as label
set the first n positive integers, i.e.,M = [n] := {1, 2, . . . , n}) in such a way that
the label of any node in the tree is smaller than the labels of its children. As a
consequence, the labels of each path from the root to an arbitrary node in the tree
are forming an increasing sequence, which explains the name of such a labelling.

Various increasing tree models turned out to be appropriate in order to describe
the growth behaviour of quantities in various applications and occurred in the prob-
abilistic literature, see [28] for a survey collecting results prior 1995. E.g., they are
used to describe the spread of epidemics, to model pyramid schemes, and as a
simplified growth model of the world wide web.

First occurrences of increasing trees in the combinatorial literature were due
to bijections to other fundamental combinatorial structures, e.g., binary increasing
trees and more generally (d + 1)-ary increasing trees of size n are in bijection
to permutations and so-called d-Stirling permutations of order n, respectively, see
[18, 22, 30, 35] and references therein. A further example are increasingly labelled
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non-plane unary-binary trees, where it turned out that the number of such trees of
size n is twice the number of alternating permutations of order n, see [8, 27].

A first systematic treatment of increasing labellings (and related, so-called mono-
tone labellings, where labels are not necessarily distinct) of trees is given by Pro-
dinger and Urbanek in [33], where in particular plane increasing trees (i.e., increas-
ingly labelled ordered trees) of a given size could be enumerated. A fundamental
study of increasing tree families yielding exact and asymptotic enumeration results
as well as a distributional analysis of various tree parameters is given in [2], see
also [16] and references therein.

In above definition of increasing trees each node in the tree gets exactly one
label. In this work we introduce and study several extensions of this concept to
multilabelled tree families, i.e., where the nodes in the tree are equipped with a
set or a sequence of labels. Whereas (unilabelled) increasing trees are studied
extensively in the combinatorial and probabilistic literature, best to our knowledge
the enumeration of increasingly multilabelled trees has not been addressed so far
(apart from the author’s work [25], where a particular instance appears).

In bilabelled increasing trees or increasingly bilabelled trees each node in the
tree gets a set of two labels and the labels of a child node are always larger than
both of the labels of its parent node. Such a labelling has been introduced in [25]
in order to provide a combinatorial explanation of a certain hook-length formula (a
summation formula for the trees of a given size in the tree family considered, where
the hook-lengths, i.e., the number of descendants, of the nodes in each tree are oc-
curring) for unordered labelled trees. Here we will give a systematic treatment of
families of bilabelled increasing trees, which relies on a general symbolic combi-
natorial description of such tree classes leading to an implicit characterization of
the exponential generating function of the number of bilabelled increasing trees
of size n (whose nodes are bilabelled with distinct integers of the label set [2n]).
As a consequence we will present new enumerative results, extending the known
result [25] concerning unordered bilabelled increasing trees, where our focus is
here on tree classes yielding interesting enumeration formulæ. E.g., for ordered bi-
labelled increasing trees we are able to express the generating function in terms of
the antiderivative of the inverse error function, whereas for increasingly bilabelled
3-bundled trees (increasing bilabellings of trees from a certain family of so-called
generalized plane-oriented trees, see [24]) we even get a simple closed-form enu-
meration result.

We also present several families of bilabelled increasing trees of an elliptic
nature. Combinatorial families whose generating functions are of an elliptic na-
ture have occasionally appeared in the literature: Dumont [10, 11], Flajolet [13],
Françon [14] and Viennot [36] studied some models related to permutations. Pan-
holzer and Prodinger [29] uncovered the elliptic nature of fringe-balanced binary
search trees. Flajolet et al. [15] discussed urn models whose history generating
functions can be expressed in terms of the Weierstrass-℘ function. The Weierstrass-
℘ function also appeared recently in the work of Bouttier et al. [4], and Drmota [9]:
they studied the support of the random measure ISE and its relation to embedded
tree families. In this article we discuss families of increasingly bilabelled trees,
whose generating functions can be expressed in terms of the Weierstrass-℘ func-
tion or related elliptic functions such as the lemniscate-sine function. In particular,
strict-binary bilabelled increasing trees and unordered bilabelled increasing trees
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with only even degrees are of an elliptic type. Furthermore, we show that arbitrary
families of binary or ternary bilabelled increasing trees have an elliptic nature.

It is well known (see, e.g., [26]) that enumerative results for (unilabelled) in-
creasing trees can be transferred into hook-length formulæ for the corresponding
tree families. Based on the fact that the number of increasing bilabellings of a
given tree can be described by a nice product formula containing the hook-lengths
of the nodes in the tree, we will show that the enumeration of bilabelled increasing
trees gives rise to hook-length formulæ in a natural way. In this context we also
present a “reverse engineering approach”, i.e., a general method for discovering
hook-length formulæ associated to families of bilabelled increasing trees.

The concept of increasing bilabellings of trees can be extended in a natural way
to k-labelled trees: in a k-labelled increasing tree (or increasingly k-labelled tree)
of size n a total of kn distinct labels is distributed amongst the vertices of the tree
such that each node gets a set of exactly k labels and each label of a child node is
larger than all labels of its parent node. Such labellings also lead to hook-length
formulæ and the before-mentioned reverse engineering approach could be extended
to k-labelled increasing trees. We discuss trilabelled unordered increasing trees and
relate the generating function with the solution of the so-called Blasius differential
equation

y′′′(z) + y′′(z)y(z) = 0, y(0) = 0, y′(0) = 0, lim
z→∞

y′(z) = 1,

arising in the study of the Prandtl-Blasius Flow [3, 5, 12, 20], providing a combi-
natorial interpretation of the coefficients of the Blasius function y(z).

The labellings introduced so far could be considered as “label regular”, since
each node in the tree gets the same number of labels. However, one can also con-
sider non-regular labellings, where the number of labels a node can get is not fixed.
Here it is natural to consider the number m of distinct labels, which are distributed
amongst the nodes in a tree, instead of the tree-size n. A free multilabelled in-
creasing tree (or increasingly free multilabelled tree) is a tree of size n, where the
m = |M| ≥ n labels of the label setM are distributed amongst the nodes in the
tree in such a way that each node in the tree gets a non-empty set of labels and
each label of a child node is larger than all nodes of its parent node. We are able to
provide a recursive description of the number of free multilabelled increasing trees
with a label set of size m for general tree families and we provide explicit enumer-
ation results for a few interesting instances. Although such non-regular labellings
are no more directly amenable to hook-length formulæ, we also give an extension
of the notion of the hook-length of a node yielding corresponding results.

One can also consider such multilabelled increasing trees with restrictions on
the number of labels a node can get, e.g., we can assume that each node in the tree
can only hold up to two labels. Such unilabelled-bilabelled increasing tree families
also yield recurrences for the number of trees with a label set of size m and as
an example we give an enumeration formula for unordered unilabelled-bilabelled
increasing trees.

Finally, we shortly consider another concept of increasing multilabellings of
trees, namely so-called k-tuple labelled increasing trees, where each node in a tree
T of size n gets a k-tuple of labels, such that the j-th component of the labels of the
nodes, with 1 ≤ j ≤ k, are forming an increasing labelling of T with label set [n].
The particular instance k = 2 has been introduced in [25] to give a combinatorial
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explanation of a certain hook-length formula for unordered labelled trees, but also
instances k > 2 naturally lead to hook-length formulæ.

1.2. Weighted ordered tree families. In order to formulate combinatorial de-
scriptions of the various multilabelled increasing tree families as well as to give
hook-length formulæ for them it is advantageous to state the fundamental results
for a class of weighted trees, which is known in the literature as simple families
of trees, see [16]. The basic objects considered in this context are ordered trees,
also called planted plane trees, i.e., rooted trees, where to each node v there is
attached a (possibly empty) sequence of child-nodes (thus the left-to-right order of
the children is important). Throughout this paper we denote by O the family of
ordered trees. Different simply generated tree models are then obtained by consid-
ering weighted ordered trees, where each node v in an ordered tree T ∈ O gets a
certain weight factor depending on the out-degree of v, i.e., the number of children
of v, and the weight of the tree T is defined as the product of the weight factors of
all of its nodes.

More precisely, we define a family T of weighted ordered trees as follows. A
sequence of non-negative numbers (ϕj)j≥0, with ϕ0 > 0, is used to define the
weight w(T ) of any ordered tree T ∈ O by

w(T ) :=
∏
v∈T

ϕdeg(v),

where v ranges over all vertices of T and deg(v) is the out-degree of v. The
family T consists then of all ordered trees T (or equivalently of all ordered trees
T with w(T ) 6= 0) together with their weights w(T ), i.e., one might think of pairs
(T,w(T )). Furthermore, T (n) denotes the family of weighted ordered trees of
size n, i.e., all pairs (T,w(T )), with |T | = n; more generally, for a family C of
combinatorial objects, with C(n) we always denote the set of objects of C of size
n.

It is well-known that many important combinatorial tree families such as ordered
trees (ϕj = 1, j ≥ 0), d-ary trees (ϕj =

(
d
j

)
), strict-binary trees (ϕ0 = ϕ2 = 1,

and ϕj = 0, otherwise) and d-bundled trees (ϕj =
(
j+d−1
j

)
, j ≥ 0) are equiv-

alent to such weighted tree models, where the degree-weights are chosen in an
appropriate way, see, e.g., [16, 26]. Of course, one can also consider correspond-
ing (uni)labelled tree families T̃ , where the nodes of a tree of size n are labelled
with distinct integers of [n]; such trees can be considered as weighted instances of
the family Õ of (uni)labelled ordered trees. In particular, by choosing the degree-
weights ϕj = 1

j! , j ≥ 0, this labelled weighted ordered tree model is equivalent to

the family Ũ of unordered labelled trees. This justifies in this context the choice
of this general tree model: all tree families considered later on can be considered
as specifically multilabelled weighted ordered trees, i.e., trees from a weighted
ordered tree family T (or the labelled counterpart T̃ ) are equipped with certain
increasing multilabellings.

1.3. Hook-length formulæ. Besides the enumerative interest in families of in-
creasingly multilabelled trees, we present hook-length formulæ associated to the
various tree families. Given a rooted tree T , we call a node u ∈ T a descendant
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of node v ∈ T if v is lying on the unique path from the root of T to u. The hook-
length hv := h(v) of a node v ∈ T is defined as the number of descendants of v
including the node v itself (i.e., it is the size of the subtree rooted at v).

Various hook-length formulæ for different tree families have been obtained re-
cently, see, e.g., [6, 19, 21, 31]. In particular, Han [21] developed a very versa-
tile expansion technique for deriving hook-length formulæ for partitions and trees.
Han’s method for trees was extended by Chen et al. [6] and by the authors [26],
which allows to determine the “hook-weight function” ρ(n) itself from the con-
sidered generating function (or, when considering labelled tree families, the corre-
sponding exponential generating function)

G(z) =
∑
n≥1

( ∑
T∈T (n)

∏
v∈T

ρ(hv)
)
zn,

with T (n) the set of trees of size n of a family T . As a prominent example, Han’s
expansions technique can be used to give a simple proof of the hook-length formula∑

T∈B(n)

∏
v∈T

(
1 +

1

hv

)
=

2n(n+ 1)n−1

n!

for the family of binary trees B obtained by Postnikov [31].
Besides the search and derivation of hook-length formulæ for trees a second

important research aspect is to give combinatorial interpretations of them and thus
to obtain a “concrete meaning”. In this work we provide such interpretations in
terms of families of increasing multilabelled trees, thus giving concrete realizations
for certain hook-length formulæ for labelled ordered trees. In particular, we also
obtain “elliptic hook-length formulæ”. For example, we show that the family S of
strict-binary labelled trees satisfies∑
T∈S(n)

1∏
v∈T (2hv(2hv − 1))

=
n!(2n+ 1)23n+4πn+1

3
n−1
2 Γ4n+4(1

4)

×
∑

n1,n2∈Z

1

(1 + n1 + n2 + i(n1 − n2))2n+2
.

1.4. Notation. The double factorial (2n − 1)!! is defined as the product (2n −
1)!! =

∏n
i=1(2i − 1). We denote with xs = x(x − 1) . . . (x − (s − 1)), s ≥

0, the falling factorials. For the reader’s convenience we give throughout this
work, whenever possible, links to the On-Line Encyclopedia of Integer Sequences
- OEIS.

2. BILABELLED INCREASING TREES

2.1. Combinatorial description of bilabelled increasing trees. It follows a for-
mal definition of a family T̂ of bilabelled increasing trees, which can be considered
as containing all increasingly bilabelled instances of a weighted ordered tree family
T as defined in Section 1.2.

A sequence of non-negative numbers (ϕj)j≥0, with ϕ0 > 0, is used to define the
weightw(T ) of any ordered tree T ∈ O byw(T ) :=

∏
v∈T ϕdeg(v), where v ranges

over all vertices of T and deg(v) is the out-degree of v. Furthermore, L(T ) denotes
the set of different increasing bilabellings of the tree T with distinct integers of the
label set {1, 2, . . . , 2 · |T |}, and `(T ) :=

∣∣L(T )
∣∣ its cardinality. Then the family

https://oeis.org
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T̂ consists of all trees T ∈ O together with their weights w(T ) and the set of
increasing bilabellings L(T ), i.e., one might think of triples (T,w(T ), L(T )), with
L(T ) ∈ L(T ) an increasing bilabelling of T . For a combinatorial tree family T̂ ,
the total weights Tn :=

∑
T∈O(n)w(T ) · `(T ) of size-n trees can be interpreted

simply as the number of bilabelled increasing trees in T̂ with n nodes and label set
[2n].

Given a degree-weight sequence (ϕj)j≥0, we define the corresponding degree-
weight generating function via ϕ(t) :=

∑
j≥0 ϕjt

j . Then it follows that the family
T̂ can be described by the following symbolic equation:

T̂ = Z� ∗
(
Z� ∗ ϕ

(
T̂
))
, (1)

where Z denotes the atomic class (i.e., a single (uni)labelled node), A ∗ B de-
notes the labelled product and A� ∗ B the boxed product (i.e., the smallest label
is constrained to lie in the A component) of the combinatorial classes A and B,
and ϕ(A) = ϕ0 · {ε} + ϕ1 · A + ϕ2 · A2 + · · · denotes the class containing all
labelled finite weighted sequences of objects of A (i.e., each sequence of length k
is weighted by ϕk; ε denotes here the neutral object of size 0), see [16].

2.2. Generating functions and differential equations. Let T (z) denote the ex-
ponential generating function T (z) :=

∑
n≥1 Tn

z2n

(2n)! of the number of bilabelled

increasing trees in T̂ with n nodes and label set [2n]. Note that Tn counts objects
with 2n labels and the definition of T (z) is thus in accordance with the symbolic
description of T̂ given in (1). Namely, the combinatorial construction (1) translates
directly into an autonomous second order differential equation for the exponential
generating function T (z):

T ′′(z) = ϕ
(
T (z)

)
, T (0) = 0, T ′(0) = 0. (2)

It is convenient to translate the second order equation into a first-order equation,
leading to an implicit representation of T (z).

Proposition 1. The exponential generating function T (z) of bilabelled increasing
trees with degree-weight generating function ϕ(t) satisfies the first order differen-
tial equation

T ′(z) =
√

2 · Φ(T (z)), T (0) = 0, (3)
with Φ(x) =

∫ x
0 ϕ(t)dt. Moreover, T = T (z) is given implicitly via∫ T

0

dx√
2 · Φ(x)

= z.

Proof. In order to obtain the first-order differential equation we proceed in a stan-
dard way. Multiplying (2) with T ′(z) gives

T ′(z) · T ′′(z) = T ′(z)ϕ
(
T (z)

)
,

and integrating this equation yields(
T ′(z)

)2
2

= Φ(T (z)).

Consequently, we obtain

T ′(z) =
√

2 · Φ(T (z)), T (0) = 0.
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Note that by definition of Φ(x) and T (0) = 0 we always have T ′(0) =
√

2Φ(0) =
0. Separation of variables and integration gives∫ T

0

dx√
2 · Φ(x)

= z + C.

Evaluating at z = 0 further yields 0 = 0 +C and thus shows the stated result. �

2.3. Bilabelled increasing trees and hook-length formulæ. Given a tree T of
size n with distinguishable nodes (e.g., an ordered tree or an unordered labelled
tree) and the label set M = [2n]. When enumerating the number of increasing
bilabellings of T the hook-lengths of the nodes of T appear naturally.

Lemma 1 ( [25]). The number |L(T )| of different increasing bilabellings of a tree
T of size n with distinguishable nodes is given as follows:

|L(T )| = (2n)!∏
v∈T (2hv(2hv − 1))

.

The proof of Lemma 1 can be carried out using induction; in Lemma 8 we will
prove a generalization of this result.

As pointed out above, a family T̂ of bilabelled increasing trees, i.e., a fam-
ily of increasingly bilabelled weighted ordered trees with degree-weight sequence
(ϕj)j≥0, consists of all triples (T,w(T ), L(T )), with T ∈ O an ordered tree, w(T )
the weight of the ordered tree T defined in terms of the degree-weight sequence via
w(T ) =

∏
v∈T ϕdeg(v), and L(T ) ∈ L(T ) an increasing bilabelling of T . Since

the number `(T ) = |L(T )| of increasing bilabellings of T is given in Lemma 1,
we get that the total weight (i.e., for combinatorial tree families the number) Tn of
increasingly bilabelled size-n trees in T̂ is given as follows:

Tn =
∑

T∈O(n)

w(T ) · (2n)!∏
v∈T (2hv(2hv − 1))

.

Thus, expressing the total weight w(T ) in terms of the degree-weights ϕdeg(v), this
results in a hook-length formula for ordered trees.

Theorem 2. The family O of ordered trees satisfies the following hook-length for-
mula: ∑

T∈O(n)

∏
v∈T

(
ϕdeg(v)

2hv(2hv − 1)

)
=

Tn
(2n)!

,

where Tn denote the total weights of bilabelled increasing trees with 2n labels and
degree-weight generating function ϕ(t) =

∑
j≥0 ϕjt

j .

2.4. Unordered bilabelled increasing trees. As a first application of Proposi-
tion 1 and Theorem 2 we rederive the earlier results from [25] concerning the fam-
ily of unordered bilabelled increasing trees with degree-weight generating function
ϕ(t) = et. Thus, Φ(x) = ex − 1 and∫ T (z)

0

dx√
2 · (ex − 1)

= z.

Integration gives the equation
√

2 arctan
(√

eT − 1
)

= z,
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and we obtain
T (z) = ln

(
1 + tan2(

z√
2

)
)
.

Extracting coefficients leads to the so-called reduced tangent numbers

Tn = (2n)![z2n]T (z) = Ẽn,

which might be defined via the following generating function:∑
n≥1

Ẽn
z2n−1

(2n− 1)!
=
√

2 tan
( z√

2

)
.

These numbers appear in the enumeration of various combinatorial objects [17, 32]
and the sequence starts with

(Tn) = (1, 1, 4, 34, 496, 11056, . . . ),

compare with Figure 1; in the OEIS they appear as A002105.

 3, 4

 1, 2

 5, 6

 1, 2

 3, 4

 5, 6

 1, 2

 3, 4

 1, 2

 3, 5

 1, 2

 4, 6  3, 6

 1, 2

 4, 5

Figure 1: All unordered bilabelled increasing trees with two, four and six labels.

Since ϕj = [tj ]et = 1
j! , Theorem 2 gives the following hook-length formula.

Corollary 1. The family O of ordered trees satisfies the following hook-length
formula: ∑

T∈O(n)

∏
v∈T

(
1

deg(v)! · 2hv(2hv − 1)

)
=

Ẽn
(2n)!

.

Note that in [25] the above result is stated in terms of the family Ũ of un-
ordered (uni)labelled trees, thus compared to ordered labelled trees without the
factor 1

deg(v)! , but with an additional factor n! on the right-hand side for the num-
ber of labellings.

3. FAMILIES OF PLANAR BILABELLED INCREASING TREES

In this section we enumerate combinatorial models of bilabelled increasing trees,
which all can be described as increasing bilabellings of certain planar rooted tree
models called d-bundled trees, see [22]. As pointed out above, each enumeration
result yields a corresponding hook-length formula, which is presented occasion-
ally.

The family T of d-bundled trees, with d a positive integer, can be described as
follows: The root node has d positions, and at each position a (possibly empty)
sequence of d-bundled trees is attached. Alternatively one might think of a d-
bundled tree as an ordered tree, where the sequence of subtrees attached to any
node in the tree is separated by d − 1 bars into d bundles. Of course, d = 1

https://oeis.org/A002105


COMBINATORIAL FAMILIES OF MULTILABELLED INCREASING TREES 9

simply gives the family O of ordered trees, and in general, d-bundled tree families
are weighted ordered trees with degree-weight generating function ϕ(t) = 1

(1−t)d .
In the following we state results for increasingly bilabelled d-bundled trees with
d ≤ 3.

3.1. Ordered bilabelled increasing trees. Recall that the so-called error function
erf(z) is defined by

erf(z) =
2√
π

∫ z

0
e−x

2
dx,

and its inverse function erf−1(z) can be written as follows:

erf−1(z) =
∞∑
k=0

ck
2k + 1

(√
π

2
z

)2k+1

, (4)

with coefficients ck defined by c0 = 1 and ck =
∑k−1

m=0
cmck−1−m

(m+1)(2m+1) , for k > 0.
Then, the enumerative result for the family of ordered bilabelled increasing trees

can be stated as follows.

Theorem 3. The exponential generating function T (z) of ordered bilabelled in-
creasing trees with 2n labels and degree-weight generating function ϕ(t) = 1

1−t is
given by

T (z) = 1− exp

(
−
(

erf−1(

√
2√
π
z)
)2
)

=
√
π

∫ z
√
2√
π

0
erf−1(x)dx.

The numbers Tn are given in terms of the coefficients cn occurring in the Taylor
expansion of the inverse error function (4) as follows:

Tn =
(2n− 2)!

2n−1
cn−1, n ≥ 1,

and they satisfy the recurrence relation

Tn =

n−1∑
k=1

(
2n− 2

2k

)
TkTn−k, for n ≥ 2, with T1 = 1.

Remark 1. The sequence (Tn) begins with

(Tn)n≥1 = (1, 1, 7, 127, 4369, 243649, . . . ),

compare with Figure 2; in the OEIS the numbers Tn appear as A002067.

Proof. In order to solve the differential equation

T ′′(z) =
1

1− T (z)
, T (0) = T ′(0) = 0, (5)

we apply Proposition 1 using the definitions given there. We have

Φ(x) =

∫ x

0
ϕ(t) =

∫ x

0

1

1− t
dt = L(x),

where we use the shorthand notation L(x) = − ln(1 − x). Thus, we get the
equation ∫ T

0

1√
2L(x)

dx = z.

https://oeis.org/A002067
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 3, 4

 1, 2

 5, 6

 1, 2

 3, 4

 5, 6

 1, 2

 3, 4

 1, 2

 3, 5

 1, 2

 4, 6  3, 6

 1, 2

 4, 5

 4, 5

 1, 2

 3, 6  4, 6

 1, 2

 3, 5  5, 6

 1, 2

 3, 4

Figure 2: All ordered bilabelled increasing trees with two, four and six labels.

An antiderivative of 1√
2L(x)

is readily obtained using the substitution x = 1−e−u2 :∫ T

0

1√
2L(x)

dx =

√
π√
2

erf(
√
L(T )) = z.

Consequently,

erf
(√
− ln(1− T (z))

)
=

√
2√
π
z,

such that

ln(1− T (z)) = −
(

erf−1
(√2√

π
z
))2

.

We readily obtain the first part of the stated result by solving for T (z). The an-
tiderivative

∫
erf−1(x)dx of the inverse error function can be obtained using the

formula for the antiderivative of an inverse function∫
f−1(x)dx = xf−1(x)− F (f−1(x)) + C, F (x) =

∫
f(x)dx,

which is easily proven using the substitution y = f(x). The antiderivative of the
error function is obtained by integration by parts:

∫
erf(x)dx =

∫
1 · erf(x)dx =

x erf(x) + 1√
π
e−x

2
+ C. Thus,∫

erf−1(z)dz = z erf−1(z)− erf−1(z) erf(erf−1(z))

− 1√
π

exp
(
−
(

erf−1(z)
)2)

+ C

= C − 1√
π

exp
(
−
(

erf−1(z)
)2)

.

Consequently,
√
π

∫ z

0
erf−1(x)dx = 1− exp

(
−
(

erf−1(z)
)2)

.

Thus we obtain the second part of the stated result replacing z by z
√

2/
√
π. Con-

cerning extracting coefficients it is beneficial to use the second expression for T (z)
in terms of the antiderivative and the power series expansion of erf−1(z) as stated
in (4). The recurrence relation for Tn follows from (5) by extracting coefficients
(after multiplying with (1− T (z))), which completes the proof. �
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Since the degree-weight generating function is given by ϕ(t) = 1
1−t =

∑
j≥0 t

j ,
it follows that ϕj = [tj ]ϕ(t) = 1, for j ≥ 0. Hence, from Theorem 2 and Proposi-
tion 3 we obtain the following result.

Corollary 2. The family O of ordered trees satisfies the following hook-length
formula: ∑

T∈O(n)

∏
v∈T

(
1

2hv(2hv − 1)

)
=

cn−1

n(2n− 1) 2n
,

with cn occurring as coefficients in the Taylor expansion of the inverse error func-
tion (4).

3.2. 3-bundled bilabelled increasing trees. We state the surprisingly explicit enu-
meration results for this tree family.

Theorem 4. The exponential generating function T (z) of the number Tn of 3-
bundled bilabelled increasing trees with 2n labels and degree-weight generating
function ϕ(t) = 1

(1−t)3 is given by

T (z) = 1−
√

1− z2.

The numbers Tn are given by

Tn = (2n− 3)!! (2n− 1)!!.

Remark 2. The sequence (Tn) starts with

(Tn) = (1, 3, 45, 1575, 99225, . . . ),

and in the OEIS the numbers Tn appear as A079484.

 3, 4

 1, 2  1, 2

 3, 4

 1, 2

 3, 4

 1, 2

Figure 3: All 3-bundled bilabelled increasing trees with two and four labels.

Proof. Again we apply Proposition 1. Here we get

Φ(x) =

∫ x

0
ϕ(t) =

1

2(1− x)2
− 1

2
.

Separation of variables leads to∫ T

0

1− x√
x(2− x)

dx =
√
T (2− T ) = z.

https://oeis.org/A079484
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Solving the quadratic equation yields T (z) = 1−
√

1− z2, and extracting coeffi-
cients, for n ≥ 1, gives the stated explicit enumeration result:

Tn = (2n)![z2n]T (z) = (2n)![zn](1−
√

1− z) = (2n)! ·
(1

2

n

)
(−1)n−1

=
(2n)!

2nn!
· (2n− 3)!! = (2n− 1)!! · (2n− 3)!!.

�

The degree-weight generating function of 3-bundled bilabelled increasing trees
is given by ϕ(t) = 1

(1−t)3 , thus it holds that ϕj = [tj ]ϕ(t) =
(
j+2

2

)
, for j ≥ 0.

Consequently,

ϕdeg(v) =
(deg(v) + 2)(deg(v) + 1)

2
.

Moreover, we have∏
v∈T

ϕdeg(v) =
1

2|T |

∏
v∈T

(
(deg(v) + 2)(deg(v) + 1)

)
.

Since
Tn

(2n)!
· 2n =

(2n− 3)!!

n!
,

Theorem 2 and Proposition 4 give the following result.

Corollary 3. The family O of ordered trees satisfies the following hook-length
formula: ∑

T∈O(n)

∏
v∈T

(
(deg(v) + 2)(deg(v) + 1)

2hv(2hv − 1)

)
=

(2n− 3)!!

n!
.

3.3. 2-bundled bilabelled increasing trees.

Theorem 5. The exponential generating function T (z) of the number Tn of 2-
bundled bilabelled increasing trees with 2n labels and degree-weight generating
function ϕ(t) = 1

(1−t)2 is given implicitly via

2
(

arcsin(
√
T ) +

√
T
√

1− T
)2

= z2.

The numbers Tn satisfy for n ≥ 2 the following recurrence (with T1 = 1):

Tn = 2

n−1∑
k=1

(
2n− 2

2k

)
TkTn−k −

∑
j+k+`=n−1

(
2n− 2

2j, 2k, 2`

)
TjTkT`+1.

Let the sequence (xk) be defined by xk = k!
k(2kk )

4k(2k+1)
. The number Tn of trees with

2n labels n > 1 can be given in terms of the Bell polynomials as follows:

Tn =
(2n)!

n

1

8n

n−1∑
m=1

(
2n− 1 +m

m

)
Bn−1,m(x1, . . . , xn−m).

Remark 3. The sequence (Tn) begins with

(Tn)n≥1 = (1, 2, 22, 584, 28384, 2190128, . . . );

in the OEIS the numbers Tn appear as A120419, but without giving a combinatorial
interpretation of this enumeration sequence. Thus we are able to present such one.

https://oeis.org/A120419
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Proof. We apply Proposition 1 to the differential equation

T ′′(z) =
1

(1− T (z))2
, T (0) = T ′(0) = 0, (6)

and take into account

Φ(x) =

∫ x

0
ϕ(t) =

∫ x

0

1

(1− t)2
dt =

x

1− x
.

In order to solve ∫ T

0

√
1− x√

2x
dx = z,

we obtain first an antiderivative of
√

1−x√
2x

. Standard substitutions x = u2 and u =

sin(v) give ∫ T

0

√
1− x√

2x
dx =

√
2
(

arcsin(
√
T ) +

√
T
√

1− T
)
,

such that T = T (z) is defined by the equation
√

2
(

arcsin(
√
T ) +

√
T
√

1− T
)

= z.

We know a priori that T (z) is a power series in z2. Hence, we square the equation
to obtain

2
(

arcsin(
√
T ) +

√
T
√

1− T
)2

= z2.

This proves the first part of the stated result. The recurrence for the numbers Tn can
be obtained in a straightforward way by extracting coefficients from the equation

T ′′(z) = 1 + 2T (z)T ′′(z)− T 2(z)T ′′(z),

which follows immediately from (6). In order to obtain the expression for the
number Tn we can use Lagrange’s inversion formula. Let Z = z2 and φ(w) be
given by

φ(w) =
w

2
(

arcsin(
√
w) +

√
w
√

1− w
)2 ,

such that

Z =
T

φ(T )
.

Consequently, T (Z) is the inverse function of w
φ(w) and its coefficients can be ob-

tained as follows:

Tn = (2n)![z2n]T (z) = (2n)![Zn]T (Z) =
(2n)!

n
[wn−1]φ(w)n.

In order to extract coefficients we use the fact that

arcsin(
√
w) = w

1
2

∑
k≥0

(
2k
k

)
4k(2k + 1)

wk,
√
w
√

1− w = w
1
2

(
1−
∑
k≥1

(
2k

k

)
wk

4k

)
,

such that φ(w) = 1
8(1−ϑ(w))2

, with

ϑ(w) =
∑
k≥1

ϑkw
k =

∑
k≥1

k
(

2k
k

)
4k(2k + 1)

wk. (7)
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Hence, we obtain the formal power series

φn(w) =
1

8n(1− ϑ(w))2n
=

1

8n

(
1 +

∑
k≥1

φn,kw
k
)
,

with φn,k for k ≥ 1 given by

φn,k =

k∑
m=1

(
2n− 1 +m

m

) ∑
j1+···+jk=m∑k

i=1 iji=k

(
m

j1, . . . , jm

) k∏
`=1

(
`
(

2`
`

)
4`(2`+ 1)

)j`
.

We can use Bell polynomials Bk,m(x1, . . . , xk−m+1) evaluated at xk = k!ϑk to
get the equivalent expression

φn,k =
k∑

m=1

(
2n− 1 +m

m

)
Bk,m(x1, . . . , xk−m+1).

Consequently,

Tn =
(2n)!

n
[wn−1]φ(w)n =

(2n)!

n

1

8n
φn,n−1

=
(2n)!

n

1

8n

n−1∑
m=1

(
2n− 1 +m

m

)
Bn−1,m(x1, . . . , xn−m).

This proves the stated result about Tn. �

4. ELLIPTIC FAMILIES OF BILABELLED INCREASING TREES

In the following we present several elliptic families of bilabelled increasing
trees: we discuss in detail increasing bilabellings of strict-binary trees with degree-
weight generating function ϕ(t) = 1 + t2 and of unordered even-degree trees
with degree-weight generating function ϕ(t) = cosh(t). Moreover, we present a
general approach to uncover the elliptic nature of arbitrary families of binary and
ternary bilabelled increasing trees.

An elliptic function is a function that is meromorphic in the whole complex
plane and that is doubly periodic. A standard way of presenting the theory of
elliptic functions is the one proposed by Eisenstein and Weierstrass, where elliptic
functions are defined as sums of rational functions taken over lattices. Given a
pair of complex numbers ω1 and ω2 generating a lattice Ω = Zω1 + Zω1, the
Weierstrass-℘ function, see [23], ℘(z) = ℘(z | ω1, ω2) is by construction a double-
periodic function with periods ω1, ω2 defined as

℘(z | ω1, ω2) =
1

z2
+
∑

06=ω∈Ω

(
1

(z − ω)2
− 1

ω2

)
. (8)

It satisfies the first-order differential equation

(℘′(z))2 = 4(℘(z))3 − g2℘(z)− g3, (9)

and also the second-order differential equation

2℘′′(z) = 12(℘(z))2 − g2.
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Here g2 and g3 are the so-called Weierstrass-invariants defined by

g2 = 60
∑

06=ω∈Ω

1

ω4
, g3 = 140

∑
0 6=ω∈Ω

1

ω6
,

which can be used to specify the Weierstrass-℘ function alternatively in terms of
its invariants: ℘(z) = ℘(z; g2, g3); in this case we use the notation ω1(g2, g3) and
ω2(g2, g3) for the resulting periods. All solutions of the differential equation (9)
have the form ℘(z + C), where the constant C depends on the initial value.

We also introduce the lemniscate sine function sl(z), see [23], which is an ellip-
tic function defined as the inverse of the Fagnano elliptic integral:

sl(z) = s, z =

∫ s

0

1√
1− t4

dt.

The coefficients Sn in the series expansion of the lemniscate sine function:

sl(z) =
∑
n≥1

Sn
zn

n!
, (10)

appear in the OEIS as A104203. Moreover, $ denotes the so-called lemniscate
constant:

$ = 2

∫ 1

0

1√
1− t4

dt =
Γ(1

4)2

2
√

2π
. (11)

4.1. Strict-binary bilabelled increasing trees.

Theorem 6. The exponential generating function T (z) of the number Tn of strict-
binary bilabelled increasing trees with 2n labels and degree-weight generating
function ϕ(t) = 1 + t2 is given in terms of the Weierstrass-℘ function ℘(z; g2, g3)
as follows:

T (z) =
6√
3
· ℘(3−

1
4 z +$;−1, 0).

Alternatively, T (z) can be expressed in terms of the square of the lemniscate sine
function sl(z):

T (z) =
√

3i sl2
( z

3
1
4 (1 + i)

)
.

The numbers Tn satisfy the recurrence relation

Tn =
n−2∑
k=1

(
2n− 2

2k

)
TkTn−1−k, for n ≥ 2, with T1 = 1.

Moreover, they can be expressed as a lattice sum in the following way:

Tn =
(2n+ 1)! 23n+4πn+1

3
n−1
2 Γ4n+4(1

4)

∑
n1,n2∈Z

1

(1 + n1 + n2 + i(n1 − n2))2n+2
.

Remark 4. The sequence (Tn) starts with

(Tn) = (1, 0, 6, 0, 336, 0, 77616, 0, 50916096, 0, . . . ),

and in the OEIS it appears as A144849. The relation of these numbers to the
(square of the) lemniscate sine function sl(z) has been observed before by Michael
Somos (see A144849).

https://oeis.org/A104203
https://oeis.org/A144849
https://oeis.org/A144849
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Proof. By Proposition 1 the exponential generating function T (z) satisfies

T ′′(z) = 1 + T 2(z), T (0) = 0, T ′(0) = 0. (12)

Thus, by extracting coefficients we obtain directly the stated recurrence relation:

Tn = (2n− 2)![z2n−2]T (z) = (2n− 2)!
n−1∑
k=1

[z2k]T (z)[z2n−2−2k]T (z).

Let Φ(x) =
∫ x

0 (1 + t2) = x + x3

3 . The relation to the Weierstrass-℘ function
℘(z; g2, g3) is a direct consequence of the first order equation:

(T ′(z))2 = 2Φ
(
T (z)

)
=

2

3
T 3(z) + 2T (z), T (0) = 0, (13)

and we obtain that
T (z) = C1 · ℘(z + C2; g2, g3).

Obviously, g3 = 0. In order to identify g2 we compare (9) and (13), which gives

(T ′(z))2 = C2
1 (℘′(z + C2; g2, 0))2

=
2

3
· C3

1℘
3(z + C2; g2, 0) + 2C1℘(z + C2; g2, 0)

= 4C2
1℘

3(z + C2; g2, 0)− C2
1g2℘(z + C2; g2, 0).

Consequently, we obtain the pair of relations
2

3
C3

1 = 4C2
1 , C2

1 g2 = −2C1,

such that C1 = 6 and g2 = −1
3 leading to T (z) = 6 · ℘(z + C2;−1

3 , 0).
The case g2 < 0 and g3 = 0 can be reduced to the so-called pseudo-lemniscatic

case with g2 = −1 and g3 = 0 for which the periods are known, see [1]. By the
homogeneity relation

℘(z; g2, 0) = |g2|
1
2℘(z · |g2|

1
4 ;−1, 0)

we obtain
T (z) =

6√
3
· ℘(3−

1
4 (z + C2);−1, 0).

Hence we know, see [1, page 662], that ω1 = (1 + i)$ and ω2 = (1 − i)$, with
$ denoting the lemniscate constant (11).

It remains to adapt the constant C2 ∈ C, where we use that T (z) has a double
zero at z = 0. In the following we use the standard notation ek = ℘(ωk/2), for
k = 1, 2, 3, with ω3 = ω1 +ω2 the sum of the periods. It is known, see [23, p. 29],
that ℘(z) − ek has a double zero at z = ωk/2 for k = 1, 2, 3. The values ek are
alternatively defined as the roots of a third order polynomial: 4X3 − g2X − g3 =
4(X − e1)(X − e2)(X − e3). In our case g3 = 0 and −g2 = 1 > 0, such that
e1, e2 ∈ i · R with e2 = e1, and e3 = 0. Consequently, ℘(z) − e3 = ℘(z) has a
double zero at

ω3/2 = (ω1 + ω2)/2 = $, (14)

which implies C2 = 3
1
4$. This proves the stated result.

The lattice sum expression for Tn, n ≥ 1, is now readily obtained using

[z2n]
1

(z − ω)2
= [z2n]

1

ω2(1− z
ω )2

=
2n+ 1

ω2n+2
, (15)
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and taking into account the periods ω1 = (1 + i)$ and ω2 = (1 − i)$. First, we
obtain

Tn = (2n)! · [z2n]
6

3
1
2

· ℘(3−
1
4 z +$;−1, 0)

=
2(2n)!

3
n−1
2

· [t2n]℘(t+$ | ω1, ω2).

Extracting coefficients from (8) using (15) and replacing the lemniscate constant
$ by its explicit expression (11) yields the enumeration formula for Tn.

The relation to the lemniscate sine function could be obtained from the expres-
sion for the Weierstrass-℘ function and its relation to the Jacobi elliptic function.
However, we directly show that g(z) = sl2(z) satisfies the differential equation

g′′(z) = 2− 6g2(z), g(0) = g′(0) = 0.

Since the lemniscate sine function has a power series expansion around z = 0
with sl(0) = 0 and sl′(0) 6= 0, g(z) = sl2(z) satisfies g(0) = g′(0) = 0. By its
definition the derivative of the lemniscate sine function is given

sl′(z) =

(
1√

1− sl4(z)

)−1

=

√
1− sl4(z). (16)

Consequently,
(sl′(z))2 = 1− sl4(z),

and thus

2 sl′(z) sl′′(z) = −4 sl′(z) sl3(z), such that sl′′(z) = −2 sl3(z).

Hence,

g′′(z) =
(

sl2(z))′′ = 2(sl′(z))2 + 2 sl′′(z) sl(z) = 2− 2 sl4(z)− 4 sl4(z)

= 2− 6g2(z),

which proves that g(z) = sl2(z) satisfies the stated differential equation. Setting
T (z) = a · g(bz), a, b ∈ C, leads to the system of equations

2ab2 = 1, −6b2

a
= 1.

This system is readily solved and we obtain the stated result. �

The family S of strict-binary trees corresponds to weighted ordered trees with
degree-weight generating function ϕ(t) = 1 + t2 and, according to Theorem 2, the
enumeration result for the number Tn of strict-binary bilabelled increasing trees of
size n can be translated into a hook-length formula for ordered trees O. However,
we prefer to state this formula directly in terms of the family S .

Corollary 4. The family S of strict-binary trees satisfies the following hook-length
formula:∑
T∈S(n)

1∏
v∈T (2hv(2hv − 1))

=
(2n+ 1) 23n+4πn+1

3
n−1
2 Γ4n+4(1

4)

×
∑

n1,n2∈Z

1

(1 + n1 + n2 + i(n1 − n2))2n+2
.
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4.2. Unordered even-degree bilabelled increasing trees.

Theorem 7. The derivative of the exponential generating function T (z) of the
number Tn of unordered even-degree bilabelled increasing trees with 2n labels
and degree-weight generating function ϕ(t) = cosh(t) is given in terms of the
lemniscate sine function as follows:

T ′(z) = (1− i) sl
((1 + i)z

2

)
.

The numbers Tn are given in terms of the coefficients Sn occurring in the Taylor
expansion of the lemniscate sine function (10) via

Tn =

(
i

2

)n−1

S2n−1, n ≥ 1,

and they satisfy the recurrence relation

Tn+2 =
1

2

∑
j+k+`=n−1

(
2n+ 1

2j + 1, 2k + 1, 2`+ 1

)
Tj+1Tk+1T`+1, for n ≥ 0,

with T1 = 1.

Remark 5. The sequence (Tn) starts with

(Tn) = (1, 0, 3, 0, 189, 0, 68607, 0, . . . );

currently the sequence itself does not appear in the OEIS, but the closely related
sequence (Sn) of the coefficients of the lemniscate sine function can be found as
A104203.

Proof. The generating function T (z) satisfies the differential equation

T ′′(z) = cosh(T (z)) (17)

with T (0) = T ′(0) = 0; thus T ′′(0) = 1. Multiplying by T ′(z) and integrating the
resulting equation yields

T ′(z)2

2
= sinh(T (z)) + C̃,

with a certain constant C̃. Due to the initial conditions we get C̃ = 0, and thus

T ′(z)2 = 2 sinh(T (z)).

Plugging this result into the derivative of (17), we get

T ′′′(z) = sinh(T (z))T ′(z) =
T ′(z)3

2
.

Let us denote U(z) := T ′(z); then U(z) satisfies the differential equation

U ′′(z) =
U3(z)

2
, (18)

with U(0) = 0 and U ′(0) = 1. Multiplying (18) by U ′(z) and integrating the
resulting equation gives

U ′(z)2 =
U(z)4

4
+ C,

https://oeis.org/A104203
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and due to the initial conditions the constant is given by C = 1. Thus, U(z)
satisfies the differential equation

U ′(z)2 =
U(z)4

4
+ 1, U(0) = 0. (19)

Comparing (19) with the differential equation (16) for the lemniscate sine function,
shows that U(z) can be written in the form

U(z) = a sl(bz),

with certain constants a, b. Differentiating yields

(sl′(bz))2 =
1

a2b2
+

a2

4b2
sl(bz)4,

which gives the systems of equations

1 =
1

a2b2
, −1 =

a2

4b2
.

Solving this system, immediately leads to the stated result expressing T ′(z) =
U(z) in terms of sl(z). Furthermore, extracting coefficients gives the relation be-
tween Tn and Sn:

Tn = (2n− 1)![z2n−1]T ′(z) = (2n− 1)![z2n−1](1− i) sl
((1 + i)z

2

)
= (1− i)

(1 + i

2

)2n−1
S2n−1 =

( i
2

)n−1
S2n−1.

Moreover, the recurrence relation for Tn can be obtained easily by extracting coef-
ficients from the differential equation (18). �

4.3. Binary and ternary bilabelled increasing trees. The relation between bi-
labelled increasing tree families and elliptic functions extends to more general
degree-weight generating functions. In general, by the theory of elliptic func-
tions, all binary bilabelled increasing trees families with degree-weight generat-
ing functions ϕ(t) of the form ϕ(t) = ϕ2t

2 + ϕ1t + ϕ0, with ϕ0, ϕ2 > 0 and
ϕ1 ≥ 0, can be represented in terms of the Weierstrass-℘ function. We have
Φ(t) = ϕ2

3 t
3 + ϕ1

2 t
2 + ϕ0t and obtain by Proposition 1 the differential equation(
T ′(z)

)2
=

2ϕ2

3
T 3(z) + ϕ1T

2(z) + 2ϕ0T (z).

We can reduce the equation to a depressed cubic using T (z) = f(z) − ϕ1

2ϕ2
, and

then identify the invariants g2, g3 similar to the analysis of the previous elliptic tree
families. We obtain the result

T (z) =
6

ϕ2
℘(z + C; g2, g3)− ϕ1

2ϕ2
,

with invariants g2, g3 and constant C determined by

g2 = −1

3
ϕ0ϕ2 +

1

12
ϕ2

1, g3 = − 1

216
ϕ3

1 +
1

36
ϕ0ϕ1ϕ2, ℘(C; g2, g3) =

ϕ1

12
.

In particular, for binary bilabelled increasing trees with ϕ(t) = (1 + t)2 =
1 + 2t+ t2, the sequence (Tn) of the number of trees starts with

(Tn) = (1, 2, 10, 80, 1000, 17600, 418000, . . . );
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in the OEIS these numbers appear as A063902. They satisfy the recurrence relation

Tn = 2Tn−1 +
n−2∑
k=1

(
2n− 2

2k

)
TkTn−1−k, for n ≥ 2, with T1 = 1,

which can be shown easily by extracting coefficients from the second order differ-
ential equation for T (z).

Moreover, all ternary bilabelled increasing tree families with degree-weight gen-
erating functions ϕ(t) of the form ϕ(t) = ϕ3t

3 +ϕ2t
2 +ϕ1t+ϕ0, with ϕ0, ϕ3 > 0

and ϕ1, ϕ2 ≥ 0, can be expressed as a reciprocal of the Weierstrass-℘ function.
First, we obtain

Φ(t) =

4∑
k=1

Φkt
k =

ϕ3

4
t4 +

ϕ2

3
t3 +

ϕ1

2
t2 + ϕ0t.

The polynomial has the root zero and by Descartes’ rule of signs also one negative
root, which we denote by t0 ∈ (−∞, 0). We can use a classical reduction, see [23,
page 2], of the differential equation(
T ′(z)

)2
= 2Φ(T (z)) =

ϕ3

2
T 4(z)+

2ϕ2

3
T (z)3+ϕ1T (z)2+2ϕ0T (z), T (0) = 0,

to a differential equation for R(z) = 1
T (z)−t0 :(

R′(z)
)2

= q3R
3(z) + q2R

2(z) + q1R(z) + q0, R(0) = − 1

t0
,

with

q(t) =

3∑
k=0

qkt
k =

3∑
k=0

2
Φ(4−k)(t0)

(4− k)!
tk.

Thus, for a representation ofR(z) as a Weierstrass-℘ function (and a representation
of T (z) as a reciprocal of ℘, respectively) one may proceed along the lines as
carried out before for families of binary bilabelled increasing trees. We omit these
more involved explicit computations and the corresponding results.

5. A REVERSE ENGINEERING APPROACH

We have observed interesting connections of the generating functions of bil-
abelled increasing trees to special functions and elliptic functions, respectively.
However, it turns out that besides the family of increasing bilabelled 3-bundled
trees there does not seem to exist simple closed-from expressions for the numbers
Tn associated to the most common degree-weight generating functions ϕ(t) = et,
ϕ(t) = 1/(1 − t)α with α > 0, or ϕ(t) = (1 + t)d, d ≥ 2. We can use a dif-
ferent approach in order to obtain simple closed form solutions for the number of
bilabelled increasing trees with n nodes and label set [2n]. Instead of choosing the
degree-weight generating function ϕ(t) and studying the differential equations (2)
and (3), we select first1 the exponential generating function T (z), and determine
the arising degree-weight generating function afterwards.

1We follow the maxim of Jacobi: “man muss immer umkehren”, which means “Invert, always
invert”.

https://oeis.org/A063902
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5.1. The general procedure.
(1) Select an exponential generating function T = T (z) =

∑
n≥1 Tn

z2n

(2n)!

with a priori given numbers Tn. We assume that T (z) = f(z2), with f
invertible and twice differentiable.

(2) Express z = z(T ) using the inverse function of f : z =
√
f−1(T ).

(3) Rewrite the differential equation T ′′(z) = ϕ(T (z)) in terms of f and z =
z(T ): using T ′′(z) = 4z2f ′′(z2) + 2f ′(z2) we get

ϕ
(
T
)

= T ′′(z(T )) = 4f−1(T )f ′′
(
f−1(T )

)
+ 2f ′

(
f−1(T )

)
.

(4) Test if ϕ(T ) =
∑

j≥0 ϕjT
j has non-negative coefficients, with ϕ0 > 0,

ϕ` ≥ 0, for all ` ∈ N. If yes, we have found a combinatorial family T of
bilabelled increasing trees satisfying the formal equation

T = Z� ∗
(
Z� ∗ ϕ

(
T
))
,

with degree-weight generating function given via

ϕ
(
T
)

= 4f−1(T )f ′′
(
f−1(T )

)
+ 2f ′

(
f−1(T )

)
.

(5) Interpret the tree family T with degree-weight generating function ϕ(t) in
terms of weighted ordered trees O, which, according to Theorem 2, yields
the hook-length formula∑

T∈O(n)

∏
v∈T

(
ϕdeg(v)

2hv(2hv − 1)

)
=

Tn
(2n)!

.

Example 1. Let
T (z) = C · (1− (1−Az2)B),

with A,B,C ∈ R constant. Extracting coefficients leads to

Tn = (2n)![z2n]T (z) = (2n)! · (−C) · (−A)n
(
B

n

)
.

For the two cases (i) B < 0, such that C < 0 and A > 0, and (ii) 0 < B < 1 with
C > 0 and A > 0, the total weights Tn are positive, Tn > 0, for n ≥ 1.

Then, T (z) = f(z2) with f(z) = C · (1− (1−Az)B). Consequently,

z = z(T ) =
√
f−1(T ) =

√√√√1−
(

1− T
C

) 1
B

A
.

The second derivative of T (z) is given by

T ′′(z) = 4A2BC(1−B)(1−Az2)B−2 + 2ABC(1−Az2)B−1.

Consequently, due to the demand ϕ(T ) = T ′′(z(T )) we obtain the result

ϕ(T ) = 4ABC(1−B)
(
1− T

C

)1− 2
B + 2ABC(2B − 1)

(
1− T

C

)1− 1
B .

In case (i) A > 0, B < 0, C < 0, the function ϕ(T ) satisfies

ϕ(T ) =
∑
j≥0

ϕjT
j = 2ABC

∑
j≥0

(2− 2B)
(1− 2

B
j

)
− (1− 2B)

(1− 1
B
j

)
(−C)j

T j .
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From the condition ϕj ≥ 0, with

ϕj = 2ABC
2(1−B)

(1− 2
B
j

)
− (1− 2B)

(1− 1
B
j

)
(−C)j

, (20)

for all j ∈ N0, we obtain − 1
B ∈ N. Thus, the trees can be generated as weighted

b-ary trees with b = 1 − 2
B ∈ N, such that only out-degrees from zero to b are

allowed. A concrete example would be the choice A = 1, B = −1 and C = −1,
such that T (z) = 1

1−z2 − 1, and ϕj = 8
(

3
j

)
− 6
(

2
j

)
, j ∈ N0. The positive degree

weights are ϕ0 = 2, ϕ1 = 12, ϕ2 = 18, ϕ3 = 8 and ϕj = 0, for j ≥ 4.
In the case (ii) 0 < B < 1, A > 0 and C > 0 we note first that the special case

B = 1
2 leading to

T (z) = C · (1− (1−Az2)
1
2 ), ϕ(T ) =

AC

(1− T
C

)3 .
The choice A = C = 1 leads to the family of three-bundled bilabelled increasing
trees discussed earlier. More generally, we have

ϕ(T ) = 2ABC
∑
j≥0

[
(2− 2B)

(
2B − 1 + j

j

)
− (1− 2B)

(
B − 1 + j

j

)]
CjT j .

Consequently, the coefficients

ϕj = 2ABC
∑
j≥0

[
(2− 2B)

(
2B − 1 + j

j

)
− (1− 2B)

(
B − 1 + j

j

)]
Cj , (21)

j ∈ N0, are non-negative, for all 0 < B < 1, C > 0 and A > 0.
Concerning hook-length formulæ we interpret in both cases the weight sequences

in terms of weighted ordered trees. For both families with degree-weights ϕj given
by (20) or (21) we get∑

T∈O(n)

∏
v∈T

(
ϕdeg(v)

2hv(2hv − 1)

)
= (−C) · (−A)n

(
B

n

)
.

6. k-LABELLED INCREASING TREES AND HOOK-LENGTH FORMULÆ

6.1. Combinatorial description. Similar to bilabelled increasing tree families we
can consider in general k-labelled increasing tree families T̂ = T̂k, with k ≥ 1.
We call a tree T a k-labelled tree, if each node v ∈ T has got a set `k(v) =

{`[1](v), . . . , `[k](v)} of k-different integers. We may always assume that `[1](v) <

· · · < `[k](v), and where furthermore the label sets of different nodes are disjoint,
i.e., `k(v) ∩ `k(w) = ∅, for v 6= w. We say then that T is a k-labelled tree with
label setM = M(T ) =

⋃
v∈T `k(v); of course, |M| = kn, for a tree T of size

|T | = n.
A k-labelled tree T is called increasing, if it holds that each label of a child

node is always larger than all labels of its parent node: `k(v) ≺ `k(w), whenever
w is a child of v, where we use the relation {a[1], . . . , a[k]} ≺ {b[1], . . . , b[k]} ⇐⇒
maxi a

[i] < minj b
[j]. In Figure 4 we give an example of a 3-labelled increasing

tree.
We denote by T̂ = T̂k the family of increasingly k-labelled weighted ordered

trees, which contains all (non-empty) increasingly k-labelled ordered trees T ∈ O
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1, 2, 3

5,6,10 4,7,158,9,12

11,16,18 13,14,17

Figure 4: A 3-labelled increasing tree of size 6, i.e., with 18 labels.

of size |T | ≥ 1 with label set M = {1, 2, . . . , k|T |} and given degree-weight
generating function ϕ(t). Analogous to (1), such a family T̂ can be described by
the combinatorial construction

T̂ =
(
Z�)k ∗ ϕ(T̂ ).

Equivalently, the exponential generating function T (z) =
∑

n≥1 Tn
zkn

(kn)! satisfies
the differential equation (with Dz denoting the differential operator w.r.t. z):

Dk
z (T (z)) = T (k)(z) = ϕ

(
T (z)

)
, T (`)(z) = 0, 0 ≤ ` ≤ k − 1. (22)

One can readily adapt the reverse engineering approach presented in Section 5 to
k-labelled increasing tree families.

6.2. Hook-length formulæ. Moreover, in order to derive hook-length formulæ
we can generalize Lemma 1, which has been shown in [25], for the number of
increasing bilabellings of a given tree T to increasing k-labellings.

Lemma 8. The number |L[k](T )| of different increasing k-labellings of a tree T of
size n with distinguishable nodes is given as follows:

|L[k](T )| = (kn)!∏
v∈T ((k · hv)k)

.

Proof. The formula can be shown easily by using induction on the size |T | = n
of T . For n = 1 there is exactly one increasing k-labelling of T and h(v) = 1
such that k!

kk
= 1. Let n > 1: we assume that the root of T has out-degree r. Let

us denote the subtrees of the root, which have corresponding sizes s1, . . . , sr, by
T1, . . . , Tr. It holds that after an order preserving relabelling each of the subtrees
T1, . . . , Tr is itself an increasingly k-labelled tree. Taking into account that the root
node of T is labelled by {1, . . . , k} and that the remaining nodes are distributed
over the nodes of the subtrees one obtains:

|L[k](T )| =
(

kn− k
ks1, ks2, . . . , ksr

)
· |L[k](T1)| · |L[k](T2)| · · · |L[k](Tr)|.

Using the induction hypothesis we further get:

|L[k](T )| = (kn− k)!∏r
j=1(ksj)!

r∏
j=1

(ksj)!∏
v∈Tj ((k · hv)k)

=
(kn)!∏

v∈T ((k · hv)k)
,

which completes the proof. �
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As a consequence we obtain a generalization of Theorem 2.

Theorem 9. Given a family T̂ of increasingly k-labelled weighted ordered trees
with degree-weight generating function ϕ(t) =

∑
j≥0 ϕjt

j . Then, the family O of
ordered trees satisfies the following hook-length formula:∑

T∈O(n)

∏
v∈T

(
ϕdeg(v)

(khv)k

)
=

Tn
(kn)!

.

6.3. Trilabelled unordered increasing trees. We consider the family of unordered
trilabelled increasing trees with degree-weight generating function ϕ(t) = et. The
Blasius function y(z) is the solution of the so-called Blasius differential equation

y′′′(z) + y′′(z)y(z) = 0, y(0) = 0, y′(0) = 0, lim
z→∞

y′(z) = 1,

arising in the study of the Prandtl-Blasius Flow [3, 5, 12, 20]. It is known that the
solution of this differential equation satisfies the power series expansion

y(z) =
∞∑
n=0

(−1)n
pnξ

n+1

(3n+ 2)!
z3n+2, ξ = y′′(0)

.
= 0.4695999883,

with p0 = 1 and pn a certain positive integer sequence, see [3, 12]. We obtain the
following result.

Proposition 2. The derivative F (z) = T ′(z) of the exponential generating func-
tion T (z) of unordered trilabelled increasing trees can be given in terms of the
Blasius function y(z) as follows:

F (z) =
1

ξ
1
3

y
(−z
ξ

1
3

)
,

Moreover, the numbers Tn, counting unordered trilabelled increasing trees with 3n
labels, are the shifted Blasius numbers: Tn+1 = pn. They satisfy the recurrence
relation

Tn+1 =
n∑
k=1

(
3n− 1

3k − 3

)
TkTn−k, n > 1, T1 = 1.

Remark 6. The sequence (Tn) starts with

(Tn) = (1, 1, 11, 375, 27897, 3817137, . . . ),

compare with Figure 1; in the OEIS they appear as A018893 without a combinato-
rial interpretation.

Proof. According to Equation 22 the exponential generating function T (z) satisfies
the third order non-linear autonomous differential equation

T ′′′(z) = eT (z), T (0) = 0, T ′(0) = 0, T ′′(0) = 0.

Let F (z) = T ′(z). We translate the equation T ′′′′(z) = eT (z)T ′(z) into a differen-
tial equation for F (z):

F ′′′(z) = F ′′(z)F (z),

or equivalently

F ′′′(z)− F ′′(z)F (z) = 0, F (0) = 0, F ′(0) = 0, F ′′(0) = 1.

We directly obtain the stated recurrence relation by extraction of coefficients from
F (z) =

∑
n≥1 Tn

z3n−1

(3n−1)! . Moreover, we observe that the differential equation

https://oeis.org/A018893
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for F (−z) is identical to the Blasius differential equation except the last initial
condition. The relation of F (z) = T ′(z) to the Blasius function is now readily
obtained by matching the power series expansion of F (z) to the known expansion
of y(x). �

 7,8,9

 4,5,6

 1,2,3  1,2,3  1,2,3

 4,5,6

 1,2,3

 4,5,6  7,8,9

 1,2,3

 4,5,7  6,8,9

 1,2,3

 4,5,8  6,7,9

 1,2,3

 4,5,9  6,7,8

 1,2,3

 4,6,7  5,8,9

 1,2,3

 4,6,8  5,7,9

 1,2,3

 4,6,9  5,7,8

 1,2,3

 4,7,8  5,6,9

 1,2,3

 4,7,9  5,6,8

 1,2,3

 4,8,9  5,6,7

Figure 5: All Blasius trees - unordered trilabelled increasing trees - with three, six
and nine labels.

Since ϕj = [tj ]et = 1
j! , Theorem 9 gives the following hook-length formula.

Corollary 5. The family O of ordered trees satisfies the following hook-length
formula: ∑

T∈O(n)

∏
v∈T

(
1

deg(v)! · 3hv(3hv − 1)(3hv − 2)

)
=
pn−1

(3n)!
,

where (pn)n≥0 denote the coefficients of the Blasius function y(z).

7. FREE MULTILABELLED INCREASING TREES

7.1. Definition and enumeration results. So far we considered increasing la-
bellings, where each node in the tree has got the same number of labels. In or-
der to get rid of this restriction, we change the point of few and think of m la-
bels, which we want to distribute over the nodes of trees of size n ≤ m in an
“increasing way”. Given a label set M of m = |M| labels, we call a tree T
a free multilabelled tree with label set M, if each node v ∈ T has got a non-
empty set `(v) ⊂ M of labels satisfying `(v) ∩ `(w) = ∅, for v 6= w, and⋃
v∈T `(v) = M. In other words, the labellings of the nodes v ∈ T are form-

ing a partition of the label setM. A free multilabelled tree T is called increasing,
if it holds that each label of a child node is always larger than all labels of its par-
ent node: `(v) ≺ `(w), whenever w is a child of v, where we use the relation
{a[i] : i ∈ I} ≺ {b[j] : j ∈ J} ⇐⇒ maxi a

[i] < minj b
[j].

We denote by T̂ the family of increasingly free multilabelled weighted ordered
trees (= free multilabelled increasing trees), which contains all increasingly free
multilabelled trees T ∈ O of size |T | ≥ 1 with label sets M = M(T ) =
{1, 2, . . . , |M|} and |M| ≥ |T |, and given degree-weight generating function
ϕ(t). In Figure 6 we give all ordered multilabelled increasing trees with 3 labels.

Let us denote by Tm the number of free multilabelled increasing trees of T̂ with
m labels, i.e., label setM = [m], and by T (z) :=

∑
m≥1 Tm

zm

m! the exponential
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1, 2, 3 1, 2

32, 3

1 1

2

3

1

2 3

1

3 2

Figure 6: All ordered multilabelled increasing trees with 3 labels.

generating function. We get the following simple characterization of the generating
function T (z).

Proposition 3. The exponential generating function T (z) of the number of free
multilabelled increasing trees Tm with m labels and degree-weight generating
function ϕ(t) satisfies the following first order differential equation:

T ′(z) = ϕ(T (z)) + T (z), T (0) = 0. (23)

Proof. The number Tm of free multilabelled increasing trees with m labels can
be counted recursively by distinguishing a tree into the root node and its r ≥ 0
subtrees and taking into account the number j ≥ 1 of labels the root node as well
as the numbers s1, . . . , sr of labels the subtrees will get. After an order preserving
relabelling each of the subtrees is itself a free multilabelled increasing tree, which
yields the following recurrence.

Tm =

m∑
j=1

∑
r≥0

ϕr
∑

s1+···+sr=m−j

(
m− j

s1, s2, . . . , sr

)
Ts1Ts2 · · ·Tsr , m ≥ 1,

with T0 = 0. Considering the cases j = 1 and j > 1 separately, we further obtain

Tm =
∑
r≥0

ϕr
∑

s1+···+sr=m−1

(
m− 1

s1, s2, . . . , sr

)
Ts1Ts2 · · ·Tsr

+

m∑
j=2

∑
r≥0

ϕr
∑

s1+···+sr=m−j

(
m− j

s1, s2, . . . , sr

)
Ts1Ts2 · · ·Tsr

=
∑
r≥0

ϕr
∑

s1+···+sr=m−1

(
m− 1

s1, s2, . . . , sr

)
Ts1Ts2 · · ·Tsr

+

m−1∑
j=1

∑
r≥0

ϕr
∑

s1+···+sr=m−1−j

(
m− 1− j
s1, s2, . . . , sr

)
Ts1Ts2 · · ·Tsr

=
∑
r≥0

ϕr
∑

s1+···+sr=m−1

(
m− 1

s1, s2, . . . , sr

)
Ts1Ts2 · · ·Tsr + Tm−1, m ≥ 1,

with T0 = 0. Treating this recurrence with the generating function T (z) =∑
m≥1 Tm

zm

m! , we immediately get the differential equation stated above. �

Comparing the differential equation (23) for the generating function of the num-
ber of free multilabelled increasing trees with the well-known differential equation
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for the generating function of the number of (unilabelled) increasing trees, which
is the instance k = 1 in (22), we immediately get from Proposition 3 the following
corollary.

Corollary 6. Let T̂ denote the family of free multilabelled increasing trees with
degree-weight generating function ϕ(t) and (Tm) the sequence of the number of
such trees with m labels. Moreover, let T̃ denote the family of (unilabelled) in-
creasing trees with degree-weight generating function ϕ̃(t) := ϕ(t) + t and (T̃m)
the sequence of the number of such trees with m nodes (= labels). Then it holds
for all m ≥ 1:

Tm = T̃m.

In the following we give a combinatorial interpretation of this link between free
multilabelled increasing trees and unilabelled increasing trees. We formulate this
relation for the family of ordered trees, but it is straightforward to extended it to
weighted ordered trees.

Theorem 10. There is a bijection from the family Ô(m) of ordered free multil-
abelled increasing trees with m labels to the family Õ(m) of ordered increasing
trees of size m, where each node of out-degree 1 is either coloured black or white.

Proof. Consider an ordered free multilabelled increasing tree T ∈ Ô(m) with la-
bel set [m]. In order to construct an ordered increasing tree T̃ ∈ Õ(m) of size m,
where each node of out-degree 1 is either coloured black or white, do the following
procedure for each node v ∈ T . Let `(v) = {`[1](v), . . . , `[k](v)}, for a k ≥ 1,
be the label set associated to v, where we assume that `[1](v) < · · · < `[k](v).
Then replace v by a chain v1 − v2 − · · · − vk of k nodes with respective la-
bels `[1](v), `[2](v), . . . , `[k](v), where the first k − 1 nodes, i.e., v1, . . . , vk−1, are
coloured black and vk is coloured white. Moreover, the original subtrees of v will
be the subtrees of vk.

Obviously, the resulting tree T̃ is contained in Õ(m), and the original tree
T ∈ Ô(m) can be reobtained in a straightforward way by pushing together chains
of black nodes with the subsequent white node. The bijection is exemplified in
Figure 7. �

7.2. Combinatorial families of free multilabelled increasing trees. Here we
give a few concrete examples of combinatorial families of free multilabelled in-
creasing trees. Of course, due to Corollary 6, many well-known enumeration re-
sults for unilabelled increasing trees have its correspondence in results for free
multilabelled increasing trees.

Example 2 (Ordered trees without nodes of out-degree 1). We consider the fam-
ily T̂ of free multilabelled increasing trees with degree-weight generating function
ϕ(t) =

∑
j≥0 ϕjt

j = 1
1−t − t, i.e., ϕj = 1, for j 6= 1, and ϕ1 = 0. Due to Corol-

lary 6 and the well-known enumeration result for unilabelled ordered increasing
trees (often called plane-oriented recursive trees), see, e.g., [2, 28], we obtain the
following result.
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7

1, 2, 3

4, 6 5, 9

8,10 11
⇐⇒

1

2

3

4 5

6 9

7 8

10

11

Figure 7: An ordered free multilabelled increasing tree with 11 labels and the
corresponding ordered increasing tree of size 11, where nodes of out-degree 1 are
coloured either black or white.

Corollary 7. The number Tm of ordered free multilabelled increasing trees without
nodes of out-degree 1 and with m labels is given as follows:

Tm = (2m− 3)!! =
(2m− 2)!

2m−1 (m− 1)!
, m ≥ 1.

Example 3 (Unordered trees without nodes of out-degree 1). We consider the fam-
ily T̂ of free multilabelled increasing trees with degree-weight generating function
ϕ(t) =

∑
j≥0 ϕjt

j = et − t, i.e., ϕj = 1
j! , for j 6= 1, and ϕ1 = 0. Again, Corol-

lary 6 and the well-known enumeration result for unilabelled unordered increasing
trees (usually called recursive trees), see, e.g., [2, 28], yields the following result.

Corollary 8. The number Tm of unordered free multilabelled increasing trees with-
out nodes of out-degree 1 and with m labels is given as follows:

Tm = (m− 1)!, m ≥ 1.

Example 4 (Strict-binary trees). We consider the family T̂ of strict-binary free
multilabelled increasing trees, which correspond to increasingly free multilabelled
weighted ordered trees with degree-weight generating function ϕ(t) =

∑
j≥0 ϕjt

j

= 1+t2. Corollary 6 shows that the number Tm of such trees withm labels is equal
to the number of increasingly labelled unary-binary trees (= increasingly labelled
Motzkin tree) of size m. Due to Proposition 3 the exponential generating function
T (z) of the number of trees with m labels satisfies the differential equation

T ′(z) = 1 + T (z) + T (z)2, T (0) = 0.

Solving this differential equation by standard methods and extracting coefficients
yields the following results.

Corollary 9. The exponential generating function T (z) =
∑

m≥1 Tm
zm

m! of the
number Tm of strict-binary free multilabelled increasing trees with m labels is
given as follows:

T (z) =
1

√
3 cot

(√
3 z
2

)
− 1

=
2
(
ei
√

3 z − 1
)

√
3i+ 1 + (

√
3i− 1)ei

√
3 z
.
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The numbers Tm are for m ≥ 1 given by the following explicit formula:

Tm =

m∑
k=1

3
m−k

2 cos

(
(3m+ 2− 5k)π

6

) k∑
`=1

(
k

`

)
(−1)k−``m.

Remark 7. The sequence (Tm) begins with

(Tm)m≥1 = (1, 1, 3, 9, 39, 189, 1107, . . . )

and in the OEIS the numbers Tm appear as A080635.

Example 5 (Unary-binary trees). We consider the family T̂ of unary-binary free
multilabelled increasing trees (i.e., increasingly free multilabelled Motzkin trees),
which correspond to increasingly free multilabelled weighted ordered trees with
degree-weight generating function ϕ(t) =

∑
j≥0 ϕjt

j = 1 + t+ t2. According to
Corollary 6, the number Tm of such trees with m labels is enumerated by the num-
ber of unilabelled binary increasing trees of size m. The well-known enumeration
result for the latter tree family (see, e.g., [2]) immediately leads to the following
result.

Corollary 10. The number Tm of unary-binary free multilabelled increasing trees
with m labels is given as follows:

Tm = m!, m ≥ 1.

Example 6 (Binary trees). We consider the family T̂ of binary free multilabelled
increasing trees, which correspond to increasingly free multilabelled weighted or-
dered trees with degree-weight generating function ϕ(t) =

∑
j≥0 ϕjt

j = (1 + t)2.
Due to Proposition 3 the exponential generating function T (z) of the number of
trees with m labels satisfies the differential equation

T ′(z) = 1 + 3T (z) + T (z)2, T (0) = 0.

Solving this differential equation by standard methods and extracting coefficients
yields the following results.

Corollary 11. The exponential generating function T (z) of the number Tm of bi-
nary free multilabelled increasing trees with m labels is given as follows:

T (z) =
2
(

1− e
√

5 z
)

(3−
√

5)e
√

5 z − 3−
√

5
.

The numbers Tm are for m ≥ 1 given by the following explicit formula:

Tm =
√

5
∑
k≥1

(
7− 3

√
5

2

)k
·
(√

5 k
)m

.

Remark 8. The sequence (Tm) begins with

(Tm)m≥1 = (1, 3, 11, 51, 295, 2055, 16715, . . . )

and in the OEIS the numbers Tm appear as A230008, but without giving a combi-
natorial interpretation of this enumeration sequence.

https://oeis.org/A080635
https://oeis.org/A230008


30 M. KUBA AND ALOIS PANHOLZER

7.3. Free multilabelled increasing trees and hook-length formulæ. In order to
formulate hook-length formulæ associated to free multilabelled increasing trees we
consider a tree T and assume that each node v ∈ T has got a certain bucket-size
b(v) ∈ N≥1, i.e., node v can hold b(v) labels. Let us assume that the total bucket-
size of T is m =

∑
v∈T b(v), such that T can hold m labels in total. We might

consider then b : T → N≥1 as a bucket-size function with m labels for T . In
this context it is useful to consider an extension of the term hook-length of a node
v ∈ T , which we call bucket hook-length h[b](v) of v, which is defined as the sum
of the bucket-sizes of all descendants of v:

h[b](v) :=
∑
u∈T :

u descendant of v

b(u).

We can then formulate a generalization of Lemma 8 for the number of increasing
multilabellings of T taking into account the bucket-sizes of the nodes of T .

Lemma 11. Given a bucket-size function b : T → N≥1 with m labels for a tree
T with distinguishable nodes. Then it holds that the number |L(T )| of different
increasing multilabellings of T with m labels, such that each node v ∈ T gets
exactly b(v) labels, is given as follows:

|L(T )| = m!∏
v∈T

(
h[b](v)

)b(v)
.

Proof. The formula can be shown easily by using induction on the number m of
labels (i.e., the total bucket-size of T ) distributed amongst T . For m = 1 there is
exactly one increasing multilabelling of T and h[b](v) = 1 such that the formula
holds. Let m > 1: we assume that the root of T has out-degree r and that its
bucket-size is b(root). Let us denote the subtrees of the root by by T1, . . . , Tr,
and let us assume that the total bucket-sizes of the subtrees are given by sj :=∑

v∈Tj b(v), for 1 ≤ j ≤ r. It holds that after an order preserving relabelling each
of the subtrees T1, . . . , Tr is itself a multilabelled tree. Taking into account that
the root node of T is labelled by {1, . . . , b(root)} and that the remaining nodes are
distributed over the nodes of the subtrees one obtains:

|L(T )| =
(
m− b(root)
s1, s2, . . . , sr

)
· |L(T1)| · |L(T2)| · · · |L(Tr)|.

Using the induction hypothesis we further get:

|L(T )| = (m− b(root))!∏r
j=1 sj !

r∏
j=1

sj !∏
v∈Tj

(
h[b](v)

)b(v)
=

m!∏
v∈T

(
h[b](v)

)b(v)
,

which completes the proof. �

By considering all bucket-size functions with m labels, we get the following
hook-length formula for ordered trees as an immediate consequence of Lemma 11.

Proposition 4. Given a family T̂ of increasingly free multilabelled weighted or-
dered trees with degree-weight generating function ϕ(t) =

∑
j≥0 ϕjt

j , let us de-

note by Tm the number of trees of T̂ with m labels. Then, the family O of ordered
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trees satisfies the following hook-length formula:∑
T∈O

∑
b : T→N≥1,

with
∑
v∈T b(v)=m

∏
v∈T

(
ϕdeg(v)(
h[b](v)

)b(v)

)
=
Tm
m!

.

8. UNILABELLED-BILABELLED INCREASING TREES

8.1. Definition and enumeration results. According to the definition of families
of free multilabelled increasing trees as introduced in Section 7, such tree families
do not have any restriction on the number of labels a node can get. However, we
can request that each node only has a capacity k and thus can only hold up to k
labels. We will consider here exclusively the case k = 2, which means that each
node in the tree gets either one or two labels. More formally, given a label setM of
m = |M| labels, we call a tree T a unilabelled-bilabelled tree with label setM, if
each node v ∈ T has got a set `(v) ⊂M of labels of size 1 ≤ |`(v)| ≤ 2 satisfying
`(v)∩ `(w) = ∅, for v 6= w, and

⋃
v∈T `(v) =M. A unilabelled-bilabelled tree T

is called increasing, if it holds that each label of a child node is always larger than
all labels of its parent node.

We denote by T̂ the family of increasingly unilabelled-bilabelled weighted or-
dered trees (= unilabelled-bilabelled increasing trees), which contains all increas-
ingly unilabelled-bilabelled trees T ∈ O of size |T | ≥ 1 with label sets M =
M(T ) = {1, 2, . . . , |M|} and |T | ≤ |M| ≤ 2|T |, and given degree-weight gen-
erating function ϕ(t).

Let us denote by Tm the number of unilabelled-bilabelled increasing trees of T̂
withm labels, i.e., label setM = [m], and by T (z) :=

∑
m≥1 Tm

zm

m! the exponen-
tial generating function. Then T (z) is characterized via the following differential
equation.

Proposition 5. The exponential generating function T (z) of unilabelled-bilabelled
increasing trees Tm with m labels and degree-weight generating function ϕ(t) =∑

j≥0 ϕjt
j satisfies the following second order differential equation:

T ′′(z) = ϕ(T (z)) + T ′(z)ϕ′(T (z)), T (0) = 0, T ′(0) = ϕ0. (24)

Proof. The number Tm of unilabelled-bilabelled increasing trees with m labels
can be counted recursively by distinguishing a tree into the root node and its r ≥ 0
subtrees and taking into account, whether the root node gets one or two labels. Fur-
thermore, we take into consideration the numbers s1, . . . , sr of labels the subtrees
of the root will get. Since, after an order preserving relabelling, the subtrees of
the root are itself unilabelled-bilabelled increasing trees, we obtain the following
recurrence.

Tm =
∑
r≥0

ϕr
∑

s1+···+sr=m−1

(
m− 1

s1, s2, . . . , sr

)
Ts1Ts2 · · ·Tsr

+
∑
r≥0

ϕr
∑

s1+···+sr=m−2

(
m− 2

s1, s2, . . . , sr

)
Ts1Ts2 · · ·Tsr , m ≥ 2,

with T0 = 0 and T1 = ϕ0. After standard computations, this recurrence leads to the
stated differential equation for the generating function T (z) =

∑
m≥1 Tm

zm

m! . �
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8.2. Unordered unilabelled-bilabelled increasing trees. We study the combina-
torial family T̂ of unordered unilabelled-bilabelled increasing trees, i.e., unilabelled-
bilabelled increasing trees with degree-weight generating function ϕ(t) = et.

Theorem 12. Let Q(z) =
∑

m≥1Qm
zm

m! be defined implicitly via

z =

∫ Q(z)

0

dt

2et − t− 1
.

Then, the derivative of the exponential generating function T (z) =
∑

m≥1 Tm
zm

m!
of the number Tm of unordered unilabelled-bilabelled increasing trees with m la-
bels can be expressed in terms of Q(z) as follows:

T ′(z) = Q(z) +Q′(z).

Thus, the numbers Tm are given by

Tm = Qm +Qm−1,

where the numbers Qm satisfy the following recurrence:

Qm+2 =

m∑
k=0

(
m

k

)
(Qk +Qk+1)Qm−k+1, m ≥ 0, Q0 = 0, Q1 = 1.

Proof. According to Proposition 5, the generating function T (z) satisfies a second
order differential equation, which can be rewritten as follows:

(T ′(z)− ϕ(T (z)))′ = ϕ(T (z)). (25)

Setting
Q(z) := T ′(z)− ϕ(T (z)),

equation (25) gives
Q′(z) = ϕ(T (z)), (26)

which shows the stated relation between T (z) and Q(z):

T ′(z) = Q(z) +Q′(z). (27)

Differentiating (26) and using ϕ(t) = et yields the following differential equation
for Q(z), with initial conditions Q(0) = 0 and Q′(0) = 1:

Q′′(z) = ϕ′(T (z))(Q(z) +Q′(z)) = Q′(z)
(
Q(z) +Q′(z)

)
. (28)

This second order autonomous differential equation can be treated in a standard
way by introducing the function f(Q) := Q′(z), which gives the following first
order linear differential equation for f(Q):

f ′(Q) = f(Q) +Q.

This differential equation has the following general solution:

f(Q) = ceQ −Q− 1,

with an arbitrary constant c. Thus, we get

Q′(z) = ceQ(z) −Q(z)− 1,

and adapting to the initial conditions Q(0) = 0 and Q′(0) = 1 characterizes the
constant as c = 2. Therefore, Q(z) satisfies the following first order differential
equation:

Q′(z) = 2eQ(z) −Q(z)− 1, Q(0) = 0. (29)
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Solving (29) by separating variables and integrating leads to the implicit character-
ization of Q(z) stated in the theorem.

Extracting coefficients from relation (27) immediately yields the connection be-
tween the numbers Tm and Qm; furthermore, the recurrence relation for Qm fol-
lows by extracting coefficients from differential equation (28). �

Remark 9. The sequences (Qm) and (Tm) occurring in above theorem begin with

(Qm)m≥1 = (1, 1, 3, 11, 55, 337, 2469, . . . ),

(Tm)m≥1 = (1, 2, 4, 14, 66, 392, 2806, . . . );

currently, both sequences do not appear in the OEIS.

According to differential equation (29) for Q(z), the numbers Qm count trees
of size m of a certain family Q̂ of unilabelled increasing trees, i.e., of the one
associated to the degree-weight generating function ϕ(t) = 2et − t − 1. Combi-
natorially, such trees can be interpreted as unordered increasing trees, where each
node of out-degree ≥ 2 could be coloured either black or white (whereas nodes of
out-degree zero or one are always coloured white). Next we give a combinatorial
proof of the relation Tm = Qm +Qm−1 stated in Theorem 12.

Theorem 13. There is a bijection between the set T̂ (m) of unordered unilabelled-
bilabelled increasing trees withm labels and the set Q̂(m)∪̇Q̂(m−1) of unordered
increasing trees of size m or m − 1, where each node of out-degree ≥ 2 could be
coloured either black or white.

Proof. Consider a tree T ∈ T̂ (m); if the root of T has one label (i.e., it is labelled
by 1), then the recursive procedure below will map T to a tree Q ∈ Q̂(m), but if
the root of T has two labels (i.e., it is labelled by {1, 2}), T will be mapped to a
tree Q ∈ Q̂(m − 1). In the latter case we first remove label 1 from the root of
T (thus keeping only label 2), yielding a tree T ′, and then carry out this recursive
procedure.

In order to describe the mapping we always assume that the children of any node
in the tree are ordered from left to right in that way, such that the smaller labels
in the respective nodes are forming an ascending sequence. Now carry out the
procedure below starting by examining the root node v of T or T ′, respectively.

• If v has out-degree 0 then colour v white and return.
• Otherwise, let v1, . . . , vr be the children of v and T1, . . . , Tr be the respec-

tive subtrees.
∗ If all nodes v1, . . . , vr have only one label then do the following.

(1) Colour v white.
(2) Carry out this procedure to the nodes v1, . . . , vr.

∗ Otherwise, let vp be the first node (from left to right) having two la-
bels, let us say `[1] and `[2], whereas v1, . . . , vp−1 have only one label.
Let us denote by T [1]

p , . . . , T
[j]
p the (possibly empty) subtrees of the

node vp. Do the following.
(1) Split node vp, i.e., replace vp by two new nodes v[1]

p and v[2]
p ,

which are children of v; v[1]
p and v[2]

p will get the labels `[1] and
`[2], respectively.
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1

2, 4 3, 6

7, 95 8 ⇒

1

3, 6 7, 95

8

42

⇒

1

7, 95

42

3 6

8

⇒

1

5

42

3 6

8

7 9

Figure 8: An unordered unilabelled-bilabelled increasing tree T with 9 labels and
the corresponding unordered increasing treeQ of size 9, where nodes of out-degree
≥ 2 are coloured either black or white, obtained by the procedure given in Theo-
rem 13.

(2) Attach to node v[2]
p all the subtrees T [1]

p , . . . , T
[j]
p of the origi-

nal node vp, whereas attach to node v[1]
p the remaining subtrees

Tp+1, . . . , Tr of v.
(3) Colour v black.
(4) Carry out this procedure to the nodes v1, . . . , vp−1, v

[1]
p , v

[2]
p .

It is immediate to see that the resulting tree Q is indeed a member of Q̂(m) or
Q̂(m − 1), respectively. Moreover, each black node v in Q means that the two
rightmost children of v are obtained by splitting them and above procedure can be
inverted easily, yielding the original tree T with m labels or a tree T ′ with m − 1
labels; in the latter case the original tree T is obtained from T ′ by adding label 1 to
the root node. In Figure 8 above procedure is exemplified. �

8.3. Unilabelled-bilabelled increasing trees and hook-length formulæ. The con-
siderations made in Section 7.3 yielding relations between free multilabelled in-
creasing trees and hook-length formulæ can be carried over to unilabelled-bilabelled
increasing trees easily, where one just has to take into account that the bucket-size
b(v) of any node v in a tree can be only one or two. In particular, we get the
following result.

Proposition 6. Given a family T̂ of increasingly unilabelled-bilabelled weighted
ordered trees with degree-weight generating function ϕ(t) =

∑
j≥0 ϕjt

j , let us

denote by Tm the number of trees of T̂ with m labels. Then, the family O of
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1 11

2 23 3 42

4 34

Figure 9: A 3-tuple labelled increasing tree of size 4.

ordered trees satisfies the following hook-length formula:∑
T∈O

∑
b : T→{1,2},

with
∑
v∈T b(v)=m

∏
v∈T

(
ϕdeg(v)(
h[b](v)

)b(v)

)
=
Tm
m!

.

9. k-TUPLE LABELLED INCREASING TREES

We consider shortly another concept of increasing multilabellings of trees, where
the nodes in the tree get k-tuples of labels, such that the j-th component of a child
node is always larger than the j-th component of its parent node, for all 1 ≤ j ≤ k.
Alternatively, we can interpret each k-tuple labelled increasing tree as a tree, to
which a sequence of k increasing (uni)labellings is associated. The particular in-
stance k = 2, called double increasing trees, has been introduced by the authors in
[25], again in the context of combinatorial interpretations of hook-length formulæ.
Here we present for k-tuple labelled increasing tree families differential equations
for a suitable generating function of the number of trees of size n as well as rela-
tions to hook-length formulæ for ordered trees. We further note, that it is possible
to derive concrete hook-length formulas using the reverse-engineering approach
presented in Section 5.

We call a tree T a k-tuple labelled tree, if each node v ∈ T has got an ordered
k-tuple `D(v) = (`[1](v), . . . , `[k](v)) of integers (we may speak about the jth

label of v) such that the jth labels of two different nodes v 6= w are different,
1 ≤ j ≤ k. We say that T is a k-tuple labelled tree with label setsMj =Mj(T ) =⋃
v∈T `

[j](v), 1 ≤ j ≤ k, respectively; of course, |Mj | = n, for a tree T of size
|T | = n. A k-tuple labelled tree T is called increasing, if it holds that the jth

label of a child node is always larger than the jth label of its parent node: `D(v) ≺
`D(w), whenever w is a child of v, where we use the relation (a[1], . . . , a[k]) ≺
(b[1], . . . , b[k]) ⇐⇒

(
a[j] < b[j], 1 ≤ j ≤ k

)
. In Figure 9 we give an example of a

3-tuple labelled increasing tree.

We denote by T̂k the family of increasingly k-tuple labelled weighted ordered
trees, which contains all (non-empty) k-tuple increasingly labelled ordered trees
T ∈ O of size |T | ≥ 1 with label setsMi = {1, 2, . . . , |T |} and degree-weight
generating function ϕ(t). First, we derive a differential equation for the generating
function T (z) =

∑
n≥1 Tn

zn

(n!)k
.
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Proposition 7. The generating function T (z) of the number Tn of k-tuple labelled
weighted ordered trees of size n with degree-weight generating function ϕ(t) sat-
isfies the following differential equation:

1

z
Θk
z (T (z)) = ϕ (T (z)) , T `(0) =

T`
`!k
, 0 ≤ ` ≤ k − 1,

with differential operator Θz := zDz .

Proof. We use the decomposition of a tree T ∈ T̂k of size n ≥ 2 into the root
node and its subtrees. Let us assume that the out-degree of the root of T is r ≥ 1.
After an order preserving relabelling the subtrees T1, . . . , Tr are itself increasingly
k-tuple labelled weighted ordered trees of certain sizes s1, . . . , sr. Since the root
of T is always labelled by (1, . . . , 1) and the remaining labels are distributed over
the nodes of T1, . . . , Tr we obtain the following recurrence for the numbers Tn,
with T1 = 1:

Tn =
∑
r≥1

ϕr
∑

s1+···+sr=n−1

(
n− 1

s1, s2, . . . , sr

)k
· Ts1 · Ts2 · · ·Tsr , n ≥ 2. (30)

Note that the factor ϕr is appearing, since we are considering weighted ordered
trees. Translating this recurrence into a differential equation for the generating
function T (z) is straightforward and yields the stated result. �

To get a connection to hook-length formulæ we only have to take into account
that the number |L̃[k](T )| of different increasing k-tuple labellings of a given tree
T of size n with distinguishable nodes is given by

|L̃[k](T )| = |L̃[1](T )|k =
(n!)k∏
v∈T

(
hkv
) ,

where |L̃[1](T )| = |L[1](T )| is well-known, see Lemma 8.

Proposition 8. Given a family T̂k of increasingly k-tuple labelled weighted ordered
trees with degree-weight generating function ϕ(t). Then, the family O of ordered
trees satisfies the following hook-length formula:∑

T∈O(n)

∏
v∈T

(
ϕdeg(v)

hkv

)
=

Tn
(n!)k

.

OUTLOOK

We note that using the combinatorial setup presented in this work it is possible
to analyze certain tree-shape parameters like the root degree; this will be discussed
elsewhere.
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[14] P. Flajolet and J. Françcon, Elliptic functions, continued fractions and doubled permutations,
European Journal of Combinatorics 10, 235–241, 1989.
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formatique Théorique et Applications 10, 35–50, 1976.

[19] I. Gessel and S. Seo, A refinement of Cayley’s formula for trees, Electronic Journal of Combi-
natorics 11(2), #R27, 2006.

[20] W. H. Hager, Blasius: A life in research and education, Experiments in Fluids 34, 566-571,
2003.

[21] G.-N. Han, Discovering hook length formulas by an expansion technique, Electronic Journal
of Combinatorics 15, #R133, 2008.

[22] S. Janson, M. Kuba and A. Panholzer, Generalized Stirling permutations, families of increasing
trees and urn models, Journal of Combinatorial Theory, Series A 118, 94–114, 2011.

[23] M. Koecher and A. Krieg, Elliptische Funktionen und Modulformen, Springer-Verlag, Berlin,
2007.

[24] M. Kuba and A. Panholzer, On the degree distribution of the nodes in increasing trees, Journal
of Combinatorial Theory, Series A 114, 597–618, 2007.

[25] M. Kuba and A. Panholzer, Bilabelled increasing trees and hook-length formulas, European
Journal of Combinatorics 33, 248–258, 2012.

[26] M. Kuba and A. Panholzer, A unifying approach for proving hook-length formulas for weighted
tree families, Graphs and Combinatorics 29, 1839–1865, 2013.

[27] A. G. Kuznetsov, I. M. Pak and A. E. Postnikov, Increasing trees and alternating permutations,
Russian Mathematical Surveys 49(6), 79–114, 1994.

[28] H. Mahmoud and R. Smythe, A survey of recursive trees, Theoretical Probability and Mathe-
matical Statistics 51, 1–37, 1995.

[29] A. Panholzer and H. Prodinger, An analytic approach for the analysis of rotations in fringe-
balanced binary search trees, Annals of Combinatorics 2, 173–184, 1998.

[30] S. K. Park, The r-multipermutations, Journal of Combinatorial Theory, Series A 67, 44–71,
1994.

[31] A. Postnikov, Permutohedra, associahedra, and beyond. International Mathematics Research
Notices, IMRN, no. 6, 1016–1106, 2009.

www.people.fas.harvard.edu/~sfinch/csolve/bla.pdf
www.people.fas.harvard.edu/~sfinch/csolve/bla.pdf


38 M. KUBA AND ALOIS PANHOLZER

[32] C. Poupard, Deux propriétés des arbres binaires ordonnés stricts. European Journal of Combi-
natorics 10, 369–374, 1989.

[33] H. Prodinger and F. J. Urbanek, On monotone functions of tree structures, Discrete Applied
Mathematics 5, 223–239, 1983.

[34] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences (OEIS), Online availaible at
www.research.att.com/ njas/sequences/, 2009.

[35] R. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth & Brooks/Cole, 1986.
[36] G. Viennot, Une interprétation combinatoire des coefficients des développements en série

entière des fonctions elliptiques de Jacobi, Journal of Combinatorial Theory, Series A 29, 121–
133, 1980.

MARKUS KUBA, INSTITUTE OF APPLIED MATHEMATICS AND NATURAL SCIENCES, UNI-
VERSITY OF APPLIED SCIENCES - TECHNIKUM WIEN, HÖCHSTÄDTPLATZ 5, 1200 WIEN
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