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ABSTRACT. In this work we give a study of generalizations of Stirling permutations, a restricted class of permuta-
tions of multisets introduced by Gessel and Stanley [15]. First we give several bijections between such generalized
Stirling permutations and various families of increasing trees extending the known correspondences of [20, 21].
Then we consider several permutation statistics of interest for generalized Stirling permutations as the number of
left-to-right minima, the number of left-to-right maxima, the number of blocks of specified sizes, the distance be-
tween occurrences of elements, and the number of inversions. For all these quantities we give a distributional study,
where the established connections to increasing trees turn out be very useful. To obtain the exact and limiting distri-
bution results we use several techniques ranging from generating functions, connections to urn models, martingales
and Stein’s method.

1. INTRODUCTION

Stirling permutations were defined by Gessel and Stanley [15]. A Stirling permutation is a permutation
of the multiset {1, 1, 2, 2, . . . , n, n} such that, for each i, 1 ≤ i ≤ n, the elements occurring between the
two occurrences of i are larger than i. E.g., 1122, 1221 and 2211 are Stirling permutations, whereas the
permutations 1212 and 2112 of {1, 1, 2, 2} aren’t. The name of these combinatorial objects is due to relations
with the Stirling numbers, see [15] for details.

A straightforward generalization of Stirling permutations is to consider permutations of a more general
multiset {1k1 , 2k2 , . . . , nkn}, with ki ∈ N for 1 ≤ i ≤ n (here and throughout this work we use in this
context jl := j, . . . , j︸ ︷︷ ︸

l

, for l ≥ 1). We call a permutation of the multiset {1k1 , 2k2 , . . . , nkn} a generalized

Stirling permutation, if for each i, 1 ≤ i ≤ n, the elements occurring between two occurrences of i are at
least i. (Alternatively, one might say that the elements occurring between two consecutive occurrences of i
are larger than i.) Such permutations have already been considered previously by Brenti [8, 9]. Probably the
most natural generalizations of Stirling permutations are obtained when all labels of the multiset appear with
the same multiplicity; as in [21] we thus define the class Qn = Qn(k) of k-Stirling permutations of order n
as generalized Stirling permutations of the multiset {1k, 2k, . . . , nk}, with an integer k ≥ 1. Note that k = 2
yields exactly Stirling permutations as defined by Gessel and Stanley [15], whereas k = 1 gives just ordinary
permutations. This class of k-Stirling permutations has been introduced already by Park [32, 33, 34] under the
name k-multipermutations.

In the recent papers [7, 20, 21] several classes of generalized Stirling permutations have been considered,
where a main focus has been given to a study of the number of ascents, descents and plateaux. We call an
element σi, with 1 ≤ i ≤ s, an ascent of the generalized Stirling permutation σ = σ1σ2 · · ·σs, if σi−1 < σi
(we set here σ0 := 0); analogous definitions can be given for descents and plateaux. During the studies [20, 21]
close relations between classes of generalized Stirling permutations and families of so-called increasing trees
have been established. Increasing trees are rooted labelled trees, where the nodes are labelled in such a way,
that each child of a node has a label larger than its parent node. In the first part of this work we reconsider this
issue and give three general constructions, which relate generalized Stirling permutations with various kinds
of increasing trees. Such connections between classes of generalized Stirling permutations and increasing tree
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families turn out to be quite useful, since they also link specific quantities in generalized Stirling permutations
with quantities in increasing trees.

The second part of this work is devoted to a study of interesting quantities in k-Stirling permutations. There,
besides obtaining exact results, a main focus is given to a description of the limiting behaviour of the pa-
rameters. For our study we will throughout this paper always assume that all Qn = Qn(k) := |Qn(k)| =∏n−1
i=1

(
ki+1

)
(see Section 2) different k-Stirling permutations of order n, i.e., of the multiset {1k, 2k, . . . , nk},

are occurring with the same probability; we will thus speak about random k-Stirling permutations of order n.
In particular, if we introduce a random variable Xn measuring a certain quantity in the class Qn(k) we use this
model of randomness; furthermore, for any particular σ ∈ Qn(k), Xn(σ) gives the value of the quantity for
the k-Stirling permutation σ.

First we consider the number of left-to-right minima and the number of left-to-right maxima in k-Stirling
permutations. For a generalized Stirling permutation σ = σ1σ2 · · ·σs of the multiset {1k1 , 2k2 , . . . , nkn}, with
s =

∑n
i=1 ki, an element σi, with 1 ≤ i ≤ s, is a left-to-right minimum if σi′ > σi, for all i′ < i; analogous σi

is a left-to-right maximum if σi′ < σi, for all i′ < i. Thus we are introducing the random variables Ln andMn,
which will count the number of left-to-right minima and the left-to-right maxima, respectively, in a random k-
Stirling permutation of order n. Of course, due to symmetry the number of right-to-left minima (maxima),
which can be defined analogously, are equidistributed with the number of left-to-right minima (maxima) and
they do not have to be studied separately. Furthermore, for k = 1, due to the complementation j 7→ n+ 1− j
the random variables Ln and Mn are equidistributed, which is no more true for k ≥ 2. The number of
left-to-right minima in k-Stirling permutations has already been considered in [32], where a formula for the
exponential generating function has been given. Here we add a simple explicit formula for the number of k-
Stirling permutations of order n with exactly m left-to-right minima (or alternatively, for the exact probability
P{Ln = m}) and also establish a central limit theorem for Ln. The parameter Mn is more difficult to treat,
but we are able to give exact and asymptotic results for the expected number E(Mn) of left-to-right maxima in
a random k-Stirling permutation of order n. During the analysis we even show refined results, i.e., exact and
asymptotic results for the expected number of left-to-right maxima amongst the first i elements σ1σ2 · · ·σi,
with i ≤ kn, of a k-Stirling permutation σ = σ1 · · ·σkn.

Then we carry out a precise local study of the block structure of k-Stirling permutations. A block in a
generalized Stirling permutation σ = σ1 · · ·σs is a substring σa · · ·σb, with σa = σb, that is maximal, i.e.,
which is not contained in any larger such substring. There is obviously at most one block for every j ∈
{1, 2, . . . , n}, extending from the first occurrence of j to the last one; we say that j forms a block if this
substring is indeed a block, i.e., when it is not contained in a string j′ · · · j′, for some j′ < j. It can be
shown easily by induction that any generalized Stirling permutation has a unique decomposition as a sequence
of its blocks. Janson et al. [21] studied several global parameters related to the block structure of k-Stirling
permutations; more precisely, they analyzed the (asymptotic) distribution of the total number of blocks as well
as the (joint) distribution of the sizes of the largest blocks. To obtain their results the authors used various
methods, in particular descriptions via so-called urn models (see [17, 19]); such relations to urn models are
also of interest here. In the present work we are interested in the number of blocks of a certain size, i.e., blocks
of size ˜̀, with 1 ≤ ˜̀ ≤ n, in a random k-Stirling permutation of order n, where we explicitly allow that ˜̀

may also be a function of n such that ˜̀ = ˜̀(n); we use here the convention that the size of a block σa · · ·σb
is given by b − a + 1, i.e., by the number of its elements. Since for k-Stirling permutations the size of a
block is always a multiple of k we introduce the random variable Xn,` that counts the number of blocks of size
˜̀= k` in a random k-Stirling permutation of order n. In our studies we obtain for Xn,` the exact distribution,
the moments, and a full characterization of the limiting distributions appearing depending on the growth of
` = `(n). For the analysis the correspondence between k-Stirling permutations and increasing trees as well as
generating functions techniques are heavily used. Moreover, we briefly show how to extend our study to obtain
the joint distribution of the number of blocks of sizes k`1, . . . , k`r, with 1 ≤ `1 < · · · < `r ≤ n, for arbitrary
but fixed r ∈ N. Furthermore, we show that our problem is also related to an urn model, which turns out to be
exactly solvable by using methods of Flajolet et al. [13].

Then we study the distribution of distances in k-Stirling permutations, a parameter which was considered
briefly by Janson [20] for the case k = 2. For the analysis Janson used the specific connection between
distances in 2-Stirling permutations and descendants in plane-oriented increasing trees, which only holds for
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k = 2, see Section 2 and also [20, 21]. Let ∆n;j,p measure the distance between the p-th and the (p + 1)-th
occurrence of j in a random k-Stirling permutation of order n, with 1 ≤ p ≤ k− 1 and 1 ≤ j ≤ n. For a given
k-Stirling permutation σ = σ1σ2 · · ·σkn of order n let ip and ip+1 denote the indices of the p-th and (p+ 1)-th
occurrence of the number j in a k-Stirling permutation of order n (i.e., σip = j, σip+1 = j, and there are exactly
p− 1 indices 1 ≤ i1 < i2 < · · · < ip−1 < ip such that σiq = j, 1 ≤ q ≤ p− 1); then the distance between the
p-th and (p+ 1)-th occurrence of j is defined as ip − ip+1. Alternatively ∆n;j,p counts one plus the number of
elements between the p-th and (p+ 1)-th occurrence of j in a random k-Stirling permutation of order n. In our
analysis we will determine the exact distribution of ∆n;j,p, 1 ≤ p ≤ k − 1, and again we are able to give a full
characterization of the limiting distributions appearing depending on the growth of j = j(n). Moreover, using
relations between k-Stirling permutations and increasing trees, we also obtain distribution results of statistics
related to the number of descendants of nodes in (k+1)-ary increasing trees; more precisely, using the bijective
correspondence between (k + 1)-ary increasing trees and k-Stirling permutations described in Section 2 we
will show that ∆n;j,p counts one plus k times the number of descendants of node j contained in the (p+ 1)-th
branch of node j (i.e., the number of nodes in the (p+1)-th branch of node j), with 1 ≤ p ≤ k−1, in a random
(k + 1)-ary increasing tree of order n. Thus we also obtain a refinement of known results for the number of
descendants of the nodes in such random increasing trees, see [23, 28, 36].

The last section of this work is devoted to a distributional study of the number of inversions in k-Stirling
permutations. An inversion in a generalized Stirling permutation σ = σ1σ2 · · ·σs is defined as a pair of indices
(i, i′), 1 ≤ i < i′ ≤ s, such that σi > σi′ . An enumerative study of the number of inversions in k-Stirling
permutations has been carried out already by Park [32]. Here we are interested in the limiting behaviour of this
quantitiy and introduce the random variable In, which counts the number of inversions in a random k-Stirling
permutation of order n. By an application of Stein’s method (see, e.g., [2]) we show a central limit theorem for
In.

We find a study of parameters in generalized Stirling permutations of interest at least for the following two
reasons. Firstly, generalized Stirling permutations are a natural restricted class of permutations (avoiding the
pattern 212, see, e.g., [6] for permutation patterns) of a multiset and the influence of this restriction to the
behaviour of “classical” permutation statistics (as the number of left-to-right maxima, minima and inversions)
arises as a natural question. Secondly, classes of generalized Stirling permutations can be considered as encod-
ings of important increasing tree families as recursive trees, plane-oriented recursive trees and d-ary increasing
trees, and a study of quantities in generalized Stirling permutations also leads to results for corresponding pa-
rameters in such tree families (as it is the case for the number of left-to-right maxima, minima, blocks or the
distance between occurrences of elements).

The following example shall illustrate the parameters studied in this work.

Example 1. We consider the 3-Stirling permutation σ = 355777534443112888221666 of order 8. There
are two left-to-right minima, namely σ1 = 3 and σ13 = 1, and four left-to-right maxima, namely σ1 = 3,
σ2 = 5, σ4 = 7 and σ16 = 8, thus L8(σ) = 2 and M8(σ) = 4. Furthermore σ can be decomposed into three
blocks leading to the block decomposition [355777534443][112888221][666], which consists of single blocks
of sizes 3, 9 and 12, respectively. Thus X8,1(σ) = 1, X8,3(σ) = 1 and X8,4(σ) = 1 (recall that Xn,` counts
the number of blocks of size k`). Moreover, the distance between the first and second occurrence of 3 is 7,
whereas the distance between the second and third occurrence of 3 is 4; thus ∆8;3,1(σ) = 7 and ∆8;3,2(σ) = 4.
Finally we denote by qj the number of inversions obtained by elements with label j together with elements to
the right that are smaller than j and collect them in an “inversion table” (q1, q2, . . . , qn). This leads for σ to
(0, 3, 18, 21, 33, 0, 45, 18) and thus to a total number of inversions I8(σ) =

∑8
i=1 qi = 138.

Throughout this work Ψ(x) = (ln Γ(x))′ denotes the Psi-function, Ψ′(x) its derivative, whereas Φ(x)
denotes the distribution function of the standard normal distributionN (0, 1). Moreover, we use the abbreviation[
n
k

]
for the signless Stirling numbers of the first kind,

{
n
k

}
for the Stirling numbers of the second kind, and

Hn :=
∑n
j=1

1
j for the harmonic numbers. The floor and ceiling function returning the largest integer ≤ x

and the smallest integer ≥ x, respectively, are denoted by bxc and dxe, respectively. We write xm := x(x −
1) · · · (x−m+1) for the falling factorials and δi,j for the Kronecker delta function. Sometimes it is convenient
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to use the notion of multifactorials n!(k), which are, for integers n ≥ 0, recursively defined as follows:

n!(k) :=

{
1, for 0 ≤ n < k,

n ·
(
(n− k)!(k)

)
, for n ≥ k.

For independent random variables X and Y we write X ⊕ Y for the sum of X and Y . For not necessarily

mutually independent random variables X and Y we write X + Y . Furthermore, X
(d)
= Y denotes the equality

in distribution of the random variables X and Y , whereas Xn
(d)−−→ X denotes the weak convergence, i.e., the

convergence in distribution, of the sequence of random variables Xn to a random variable X; the almost sure

convergence is denoted by Xn
(a.s.)−−−→ X .

2. STIRLING PERMUTATIONS AND INCREASING TREES

2.1. Generalized Stirling permutations. We consider the class of generalized Stirling permutations of the
multiset {1k1 , 2k2 , . . . , nkn}. It is seen easily and already stated in [21] that there are exactly

∏n
j=1

(
1 +∑j−1

i=1 ki
)

different generalized Stirling permutations of that kind. This can be shown by induction, since the
kn copies of n have to form a substring and thus each such generalized Stirling permutation can be obtained
uniquely by inserting the string nkn into a generalized Stirling permutation of the multiset {1k1 , 2k2 , . . . , (n−
1)kn−1} at one of the 1 +

∑n−1
i=1 ki possible positions (viz., anywhere, including first or last). Moreover, when

considering the insertion process, where we start with a string 1k1 and successively insert at step j > 1 the
string jkj randomly at one of the 1 +

∑j−1
i=1 kj possible positions (or “gaps”) into the generated string, we

obtain after step n each of the
∏n
j=1

(
1 +

∑j−1
i=1 ki

)
generalized Stirling permutations of this multiset with the

same probability, i.e., we obtain a random generalized Stirling permutation of this multiset.

Example 2. In the following we list all 12 generalized Stirling permutations of the multiset {12, 2, 33}: 112333,
113332, 133312, 333112, 121333, 123331, 133321, 333121, 211333, 213331, 233311, 333211.

When specializing to the class of k-Stirling permutations Qn we obtain that the number Qn = Qn(k) :=
|Qn(k)| of different k-Stirling permutations of order n is given by

Qn(k) =

n−1∏
i=1

(ki+ 1) = n!kn
(
n− 1 + 1

k

n

)
= kn

Γ(n+ 1/k)

Γ(1/k)
= (k(n− 1) + 1)!(k). (1)

For k = 2 this number is just Qn(2) = (2n − 1)!!. Moreover, the insertion process, where one starts with
a string 1k and successively inserts at step j > 1 the string jk randomly at one of the k(j − 1) + 1 possible
positions into the generated string, yields after step n a random k-Stirling permutation of order n, i.e., each of
the Qn different k-Stirling permutations of order n is obtained with the same probability 1/Qn.

2.2. Relations to increasing trees. Increasing trees are rooted labelled trees, where the nodes of a tree with
n nodes (i.e., of order n) are labelled with distinct integers from a given label set L in such a way that each
child node has a larger label than its parent node. Alternatively one might say that the labels along any path
starting at the root node and ending at an arbitrary node v are forming an increasing sequence. Usually we use
as label set L = {1, 2, . . . , n} to label the nodes of an increasing tree of order n; if we use another label set L
then we express this by saying “increasing trees of L”, e.g., sometimes the set L = {0, 1, . . . , n − 1} is more
convenient. If we want to express that the left-to-right order of the children of the nodes is important we speak

about ordered trees, otherwise we use the term unordered trees. E.g., the increasing trees 1
32 and 1

23

are considered as two different ordered trees, but as unordered trees they are considered as the same tree.

To formulate the first correspondence with generalized Stirling permutations we consider ordered increasing
tree families, where, depending on the labels, the nodes are of different node types. We say that node v is of
node type Ad, with d ≥ 1, if there are exactly d positions, where a child might be attached or not. Thus there
are exactly

(
d
r

)
different possibilities that the sequence of 0 ≤ r ≤ d nodes v1, v2, . . . , vr is attached to v in

this left-to-right order.
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Theorem 1. There is a bijective correspondence between the class of generalized Stirling permutations of the
multiset {1k1 , 2k2 , . . . , nkn}, with ki ≥ 1 for 1 ≤ i ≤ n, and the family of ordered increasing trees, where
node 1 is of node type Ak1+1, node 2 is of node type Ak2+1, . . . , node n is of node type Akn+1.

Proof. We introduce a mapping ϕ from the family of ordered increasing trees of the given node types to the
class of generalized Stirling permutations of the given multiset and show that ϕ is indeed a bijection. We start
with an ordered increasing tree T . In order to describe the image of ϕ we use a depth-first walk of T : the
depth-first walk of a rooted (ordered) tree starts at the root, goes first to the leftmost child of the root, explores
that branch (recursively, using the same rules), returns to the root, and continues with the next child of the root,
until there are no more children left. To do this we think of the increasing tree T , which consists of n nodes with
the given node types, as a tree, where all empty places (i.e., each position at a node, where no child is attached)
are represented by “external nodes”. Hence, any (internal) node of node type Ad always has d children, some
of which may be external nodes. Between these d edges going out from a node labelled v, we place d − 1
integers v. (External nodes have no children and no labels.) Now we perform the depth-first walk and encode
the increasing tree T by the sequence of the labels visited as we go around the tree (one may think of actually
going around the tree like drawing the contour). Thus, for each node labelled v of node type Ad, we add label
v to the code the d− 1 first times we return to node v, but not the first time we arrive there or the last time we
return. Of course, the sequence of labels σ we obtain by this depth-first walk is a permutation of the multiset
{1k1 , 2k2 , . . . , nkn}. Since the nodes in each branch of a node labelled v in the increasing tree T have labels
larger than v it is guaranteed that all labels between two occurrences of v are larger than v, which shows that
σ is indeed a generalized Stirling permutation. It is apparent that different trees lead to different generalized
Stirling permutations, i.e., that ϕ is injective. To show that ϕ is also surjective we first describe the following
insertion procedure, which allows to generate all increasing trees with the given node types: start with the
root node 1, where k1 + 1 external nodes are attached. Then successively insert nodes with label j > 1 by
substituting in the tree generated so far one of the external nodes by node j and attaching kj + 1 external nodes
to j. It can be shown easily by induction that there are exactly 1 +

∑j−1
i=1 ki external nodes before inserting

node j, which furthermore shows that there are exactly
∏n
j=1

(
1 +

∑j−1
i=1 ki

)
different increasing trees with

the given node types. Moreover, when coupling the insertion procedures for increasing trees and generalized
Stirling permutations by the rule that inserting the string jkj at the rj-th possible position (at the rj-th gap)
into the string generated so far corresponds to a substitution of the rj-th external node (in left-to-right order) by
node j, then we obtain after n steps exactly the tree, whose mapping ϕ leads to the desired generalized Stirling
permutation.

To describe the inverse mapping ϕ−1 we start with a generalized Stirling permutation σ and recursively con-
struct a corresponding increasing tree T as follows. We consider the decomposition of σ into substrings accord-
ing to the occurrences of the smallest label, i.e., to the k1 occurrences of 1: σ = τ11τ21τ3 . . . τk1

1τk1+1. The
substrings τ1, τ2, . . . , τk1+1 can itself be considered as generalized Stirling permutations of certain multisets.
More precisely, the multiset S = {2k2 , . . . , nkn} (the original multiset, where all occurrences of the smallest
label have been removed) is partitioned into possibly empty multisets S1, S2, . . . , Sk1+1, with Si ∩ Si′ = ∅,
for i 6= i′, such that, for each q, τq is a generalized Stirling permutation of the multiset Sq . Now we can
recursively apply the (analogous) construction to each of the substrings τq and obtain increasing trees T1, . . . ,
Tk1+1; if τq is the empty string we set Tq as the empty tree (or as an external node, if we like). E.g., if
S1 = {jkj11 , j

kj2
2 , . . . , j

kjt
t } we obtain an increasing tree T1 with labels j1, j2, . . . , jt, such that node j1 is of

node type Akj1+1, . . . , node jt is of node type Akjt+1. Finally, the root nodes of each tree T1, . . . , Tk1+1 are
attached at positions 1, . . . , k1 + 1 to the node labelled by 1, which is of node type Ak1+1; if Tq is the empty
tree then at position q nothing (or alternatively an external node) will be attached. The resulting tree T is indeed
an ordered increasing tree, where each node j is of node type Akj+1. Theorem 1 is illustrated in Figure 1. �

For the instance of k-Stirling permutations, Theorem 1 has been stated already in [21] and [32]: then all
nodes of the corresponding increasing trees are of the same node typeAk+1 and one gets thus so-called (k+1)-
ary increasing trees, members of well-known combinatorial tree families. The tree family T = T (k + 1) of
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FIGURE 1. All eight generalized Stirling permutations of the multiset {1, 22, 33} and the
corresponding increasing trees, where the nodes 1, 2 and 3 are of node types A2, A3 and A4,
respectively.

(k + 1)-ary increasing trees can also be described by the following formal recursive equation:

T =©1 ×
(
{ε} ∪̇ T

)
∗
(
{ε} ∪̇ T

)
∗ · · · ∗

(
{ε} ∪̇ T

)︸ ︷︷ ︸
k+1 times

=©1 ×
(
{ε} ∪̇ T

)k+1
, (2)

where©1 denotes the node labelled by 1, ε the empty tree, × the cartesian product, ∪̇ the disjoint union, and ∗
the partition product for labelled objects (see, e.g., the books [14, 38]).

Moreover, we denote by Tn = Tn(k + 1) the family of (k + 1)-ary increasing trees of order n and by
Tn = Tn(k + 1) := |Tn(k + 1)| the number of different (k + 1)-ary increasing trees of order n. When
introducing the generating function T (z) =

∑
n≥1 Tn

zn

n! , then a direct application of the symbolic method
(see, e.g., [14]) yields from (2) the following differential equation:

T ′(z) = (1 + T (z))k+1, T (0) = 0,

with solution

T (z) =
1

(1− kz) 1
k

− 1. (3)

Extracting coefficients also shows that Tn(k + 1) =
∏n−1
i=1 (ki + 1), n ≥ 1, which coincides with the number

Qn(k) of k-Stirling permutations of order n.

For the second correspondence we again consider ordered increasing tree families, where, depending on the
labels, the nodes are of different node types. We say that node v is of node type Bd, with d ≥ 1, if there are d
positions, such that at each position a (possibly empty) sequence of children might be attached. Equivalently
one might think of node v having d− 1 separating walls, which can be regarded as a special type of edges and
which are separating the sequence of children attached to node v into d parts. Note that node type B1 simply
means that a possibly empty sequence of nodes might be attached to v.

Theorem 2. There is a bijective correspondence between the class of generalized Stirling permutations of the
multiset {1k1 , 2k2 , . . . , nkn}, with k1 ≥ 0 and ki ≥ 2, for 2 ≤ i ≤ n, and the family of ordered increasing
trees, where node 1 is of node type Bk1+1, node 2 is of node type Bk2−1, node 3 is of node type Bk3−1, . . . ,
node n is of node type Bkn−1. 1

1We allow here k1 = 0, i.e., that there are no occurrences of element 1 in the multiset; on the other hand we have the restriction that
each element 2 ≤ j ≤ n appears at least twice in the multiset.
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FIGURE 2. All eight generalized Stirling permutations of the multiset {1, 22, 33} and the
corresponding increasing trees, where the nodes 1, 2 and 3 are of node types B2, B1 and B2,
respectively.

Proof. Again we introduce a mapping ψ from the family of increasing trees with the given node types to the
class of generalized Stirling permutations of the given multiset by using a depth-first walk. We start with an
ordered increasing tree T and label each auxiliary separation wall of a node labelled v by the label of the node
v. Moreover, we label any (proper) edge by the label of the child. Hence, node 1 of node type Bk1+1 has k1
separation walls labelled 1, whereas each node labelled v 6= 1 of node type Bd has d − 1 separation walls
labelled v and additionally an incoming edge labelled v. Now we perform the depth-first walk of T by going
around the tree and encode it by the sequence of the labels visited on the edges, under the additional rule that
a label on a separation wall only contributes once. Since every proper edge is traversed twice, and every label
except 1 occurs on exactly one proper edge, the sequence of labels σ we obtain is a permutation of the multiset
{1k1 , 2k2 , . . . , nkn}. Note that for each j, 1 ≤ j ≤ n, the elements occurring between two occurrences of j
are larger than j, since T is an increasing tree and thus we can only visit nodes with higher labels. Hence σ is
indeed a generalized Stirling permutation of the given multiset. Finally, in a way analogous to Theorem 1 one
shows that ψ is a bijection; we skip this (and also formulating explicitly the inverse mapping ψ−1) here, but
rather illustrate Theorem 2 in Figure 2. �

For the particular instance k1 = 0 and kj = 2, for 2 ≤ j ≤ n, Theorem 2 gives a bijection between
generalized Stirling permutations of the multiset {22, 32, . . . , n2} (which are of course isomorphic to 2-Stirling
permutations of order n− 1) and ordered increasing trees of order n, where all nodes are of node type B1 (i.e.,
ordered increasing trees, where at each node a sequence of children might be attached). But such increasing
trees are so-called plane-oriented recursive trees and Theorem 2 gives then exactly the bijection between 2-
Stirling permutations of order n and plane-oriented recursive trees of order n + 1 introduced by Janson [20].
The family P of plane-oriented recursive trees is one of the most important increasing tree families with many
applications, see, e.g., [4]. It can be described by the following formal recursive equation:

P =©1 ×
(
{ε} ∪̇ P ∪̇ P2 ∪̇ P3 ∪̇ · · ·

)
. (4)

Additionally the instances k1 = k − 2 and ki = k, for 2 ≤ i ≤ n, of Theorem 2 have been described for
arbitrary k ≥ 2 in [21].
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FIGURE 3. The construction of the generalized Stirling permutation 333122 of the multiset
{1, 22, 33} and the corresponding construction of an increasing tree with 4 internal and 7
external nodes.

For our last correspondence between generalized Stirling permutations and increasing trees we consider the
insertion process for generalized Stirling permutations together with a corresponding one that will generate
certain increasing trees. For each generalized Stirling permutation of the multiset {1k1 , 2k2 , . . . , nkn} we
obtain a specific increasing tree, which has n + 1 internal nodes labelled by distinct integers of {0, 1, . . . , n};
moreover, it has 1 +

∑n
i=1 ki external nodes, where one external node is labelled by 0 and, for 1 ≤ j ≤ n,

kj are labelled by j. We note that the tree we obtain is an increasing tree by satisfying that the label of each
internal node is larger than the label of its parent node; however, this condition is not necessarily satisfied for
the external nodes.

Construction 1.
Generalized Stirling permutations:
• Step 0: we start with the empty word ε
• Step j: we insert the string jkj at the q-th possible position (starting from the left) in the string obtained

so far, with 1 ≤ q ≤ 1 +
∑j−1
i=1 ki

Increasing trees:
• Step 0: we start with the root node labelled 0, which has exactly one external node labelled 0
• Step j: we insert the internal node labelled j together with kj external nodes labelled j into the tree

obtained so far by the following procedure: take the q-th external node x (in left-to-right order; it holds
that 1 ≤ q ≤ 1 +

∑j−1
i=1 ki) in the tree and replace it by the internal node j, but attach the external

node x to j as the only child of j; furthermore attach a sequence of kj external nodes labelled j to the
parent of the internal node j as the immediate right brothers of it.

The construction is illustrated in Figure 3. Apparently it holds (by construction) that the corresponding gen-
eralized Stirling permutation can be retrieved from the generated increasing tree by collecting the labels of the
external nodes during a depth-first walk and removing the preceeding label 0. Furthermore, as a consequence
of the construction, it holds that an internal node j does not have internal nodes as child nodes (i.e., if we
remove all external nodes then j is a leaf node in the resulting tree) if and only if the first occurrence of j in the
corresponding generalized Stirling permutation is an ascent.

We consider now the problem of characterizing the class of increasing trees generated by Construction 1.
We treat the important case of k-Stirling permutations separately. First we have a look on the instance k = 1,
i.e., ordinary permutations. If we start with a permutation σ of the set {1, 2, . . . , n} we obtain, by applying
Construction 1, an increasing tree T with n + 1 internal nodes labelled by {0, 1, . . . , n}; furthermore, T has
n + 1 external nodes labelled also by distinct integers of {0, 1, . . . , n} and it holds that the rightmost child of
each internal node is an external node. We remove now all external nodes of T and consider the resulting tree
as an unordered increasing tree T ′, i.e., the left-to-right order of the children of a node is irrelevant, thus we can
always consider them in increasing order, which is exactly the way they are obtained by Construction 1 (for
k = 1). It is now important to note that the increasing tree T and thus the labels of the external nodes and so
the permutation σ can be retrieved from the unordered increasing tree T ′ simply by applying Construction 1:
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now at each step j we know the parent node of j, but since during the procedure there is always exactly
one external node attached to each internal node and thus in particular to the parent node of j, we regain the
external node where j is inserted and can indeed apply Construction 1. It is now immediate to see that the
class of permutations of {1, 2, . . . , n} corresponds bijectively with the family of unordered increasing trees of
{0, 1, . . . , n}. The family of unordered increasing trees is maybe the most important increasing tree family
with applications in many branches and is usually called the family of recursive trees. This bijection between
recursive trees and permutations can also be described in an alternative way by using a depth-first walk of
the recursive tree (where we assume that the children of each node are arranged in increasing order of their
labels): when going around the tree each edge is traversed twice; we encode now the tree by the sequence of
labels obtained when encoding only the second traversal of an edge by the label of its incident child node. As
a consequence one obtains that node j is exactly a leaf node in the recursive tree if element j is an ascent in
the corresponding permutation. We remark that there are many well-known correspondences between recursive
trees and permutations; the present one is described, in a different way via the rotation correspondence between
binary trees and ordered trees, in [4].

Now we stick to the more general case k ≥ 2. When starting with a k-Stirling permutation σ we obtain via
Construction 1 an increasing tree T with n+ 1 internal nodes labelled by {0, 1, . . . , n}, which additionally has
kn + 1 external nodes, one is labelled by 0 and, for each 1 ≤ j ≤ n, k ones are labelled by j. If we remove
all these external nodes from T and just consider the resulting unordered increasing tree, i.e., recursive tree,
T ′, then it is no more possible to reconstruct σ in a unique way. The point is that, although we know for each
node the parent node, we do not know which external node attached to the parent node has to be replaced when
inserting a particular node via Construction 1. Consider a node v with d children j1 < j2 < · · · < jd: before
attaching node j1 to v there was only one external node attached to v, before attaching node j2 to v there were
k external nodes attached to v, before attaching node j3 to v there were 2k − 1 external nodes attached to v,
. . . , before attaching node jd to v there were (d− 1)(k − 1) + 1 external nodes attached to v. Thus in order to
reconstruct the tree T and so to retrieve the k-Stirling permutation σ, we have to store this information. We do
this by introducing the following edge-labelled recursive trees: each r-th child edge gets a label from the set
{1, 2, . . . , (k− 1)(r− 1) + 1}; here an r-th child edge is an edge e = (v, w), whose corresponding child node
w is the r-th (smallest) child amongst all children of the corresponding parent node v. If an edge e = (v, w)
has label q then the meaning in Construction 1 is that the child node w is inserted at the q-th external node
attached to the parent node v. Thus the following theorem follows.

Theorem 3. There is a bijective correspondence between the class of k-Stirling permutations of order n and
the family of edge-labelled recursive trees of {0, 1, . . . , n}, where each r-th child edge gets a label from the set
{1, 2, . . . , (k − 1)(r − 1) + 1}. Moreover, node j is a leaf node in the edge-labelled recursive tree if and only
if the first occurrence of j in the corresponding k-Stirling permutation is an ascent.

It holds, for each node v in a recursive tree of out-degree d, that there are exactly ωd :=
∏d−1
i=0

(
1+(k−1)i

)
possibilities to label the out-going edges of v to obtain a proper edge-labelled recursive tree. Thus if we consider
the familyR of weighted recursive trees (i.e., weighted unordered increasing trees), where each node of degree
d gets a weight ωd and the weight of a tree is simply the product of the weights of the nodes in the tree, thenR
can be described by the following formal equation (recall that we are considering unordered trees and that 0 is
contained in the label set of the nodes):

R =©0 ×
(
ω0 · {ε} ∪̇

ω1

1!
· R ∪̇ ω2

2!
· R2 ∪̇ ω3

3!
· R3 ∪̇ · · ·

)
. (5)

Furthermore, it holds that the distribution of the number of leaves amongst the trees of order n + 1 of R is
equal to the distribution of the number of ascents in the class of k-Stirling permutations of order n. Thus the
bijection given here gives an answer to the question raised in [21] concerning a combinatorial meaning of (5).

It is easy to see that analogous considerations can be made also for arbitrary generalized Stirling permuta-
tions, where we again introduce edge-labelled recursive trees; but now the size of the set of allowed labels for
each r-th child edge e = (v, w) depends on the r − 1 brothers of w with a label smaller than w.

Theorem 4. There is a bijective correspondence between the class of generalized Stirling permutations of the
multiset {1k1 , 2k2 , . . . , nkn} and the family of edge-labelled recursive trees of {0, 1, . . . , n}, where each r-th
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FIGURE 4. All eight generalized Stirling permutations of the multiset {1, 22, 33} and the
corresponding edge-labelled recursive trees according to Theorem 4.

child edge e = (v, w), with v the parent node and w the child node, gets a label from the set {1, 2, . . . , 1 +∑r−1
i=1

(
kji − 1

)
}, where j1 < j2 < · · · < jr−1 are the labels of the r − 1 brothers of w with a label smaller

than w. Moreover, node j is a leaf node in the edge-labelled recursive tree if and only if the first occurrence of
j in the corresponding generalized Stirling permutation is an ascent.

Theorem 4 is illustrated in Figure 4.

2.3. Relations between quantities in increasing trees and generalized Stirling permutations. The bijec-
tions stated in Subsection 2.2 often also give a connection between interesting quantities in generalized Stirling
permutations and parameters in incrasing trees. In the following we will give such connections, where we
restrict ourselves to correspondences between parameters in k-Stirling permutations Qn(k) and (k + 1)-ary
increasing trees Tn(k + 1) of order n as a consequence of Theorem 1. Sometimes it is here useful to think
about (k + 1)-ary trees as trees, where external nodes are added to the empty places of the internal nodes.

First we consider the random variable Ln, i.e., the number of left-to-right minima in a random k-Stirling
permutation of order n. We introduce now the random variable L̃n, which counts the length of the path (i.e.,
the number of edges) from the root to the leftmost external node in a random (k + 1)-ary tree of order n. Due
to Theorem 1 it holds that Ln(σ) = L̃n(T ), for corresponding σ ∈ Qn(k) and T ∈ Tn(k + 1).

For Mn, i.e., the r.v. counting the number of left-to-right maxima in a random object of Qn(k), there is not
such a direct correspondence to a quantity in Tn(k+ 1). However, we give a description by using the so-called
inorder traversal code of a (k + 1)-ary tree. The inorder traversal code S(T ) of a (k + 1)-ary tree T is a
sequence containing exactly the (internal) nodes of T , which is obtained via the following recursive definition
(here � denotes an external node and ε the empty sequence):

S(�) = ε and S(T ) = S(T1) r S(T2)S(T3) . . . S(Tk+1),

if the tree T consists of a root node r with the sequence of subtrees T1, T2, . . . , Tk+1. We introduce now the r.v.
M̃n counting the number of left-to-right maxima of the inorder traversal code of a random object of Tn(k+ 1).
Apparently it holds then Mn(σ) = M̃n(T ) for corresponding objects σ and T .
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We turn now to the random variable Xn,` counting the number of blocks of size k` in a random k-Stirling
permutation of order n. We say that an internal node v in a (k+ 1)-ary tree is a left-right-node if the path from
the root node to v exclusively consists of the leftmost or rightmost possible edge at each node, i.e., contains
only edges to the first or the (k + 1)-th branch, but does not contain “inner” edges leading to the second, third,
. . . , k-th branch. It is easily seen that node j is forming a block in σ ∈ Qn(k) iff j is a left-right-node in the
corresponding tree T ∈ Tn(k + 1). We further say that the internal node w is an inner-descendant of node v in
a (k + 1)-ary tree if w is contained either in the second, the third, . . . , or the k-th branch of v. One can then
give the following refinement of the previous statement: element j is forming a block of size k` iff node j is a
left-right-node that has exactly ` − 1 inner descendants. Thus, if we introduce the r.v. X̃n,`, which counts for
a random (k + 1)-ary tree of order n the number of left-right-nodes that have exactly ` inner-descendants, it
apparently holds Xn,`(σ) = X̃n,`−1(T ) for corresponding objects σ and T .

Finally we consider the random variable ∆n;j,p, which counts the distance between the p-th and the (p+ 1)-
th occurrence of j in a random k-Stirling permutation of order n. We introduce now the r.v. Dn;j,p, which
counts the number of descendants of node j contained in the p-th branch of node j in a random (k + 1)-ary
increasing tree of order n. It holds then ∆n;j,p(σ) = 1 + kDn;j,p+1(T ) for corresponding objects σ and T .

Of course, this also implies the following distributional equations.

Theorem 5. The random variables Ln, Mn, Xn,` and ∆n;j,p for quantities in random k-Stirling permutations
of order n and the random variables L̃n, M̃n, X̃n,` andDn;j,p (with 1 ≤ ` ≤ n, 1 ≤ j ≤ n and 1 ≤ p ≤ k−1)
for (k + 1)-ary increasing trees satisfy the following distributional equations:

Ln
(d)
= L̃n, Mn

(d)
= M̃n, Xn,`

(d)
= X̃n,`−1, ∆n;j,p

(d)
= 1 + kDn;j,p+1,

where the latter ones can be readily extended to joint distributions (with r ∈ N and 1 ≤ `1 < `2 < · · · < `r ≤
n): (

Xn,`1 , Xn,`2 , . . . , Xn,`r

) (d)
=
(
X̃n,`1−1, X̃n,`2−1, . . . , X̃n,`r−1

)
,(

∆n;j,1,∆n;j,2, . . . ,∆n;j,k−1
) (d)

=
(
1 + kDn;j,2, 1 + kDn;j,3, . . . , 1 + kDn;j,k

)
.

Theorem 5 is illustrated in Figure 5.

3. NUMBER OF LEFT-TO-RIGHT MINIMA

Here we consider the number of left-to-right minima Ln in a random k-Stirling permutation of order n. As
pointed out in Subsection 2.3, Ln is equidistributed with L̃n counting the distance between the root and the
leftmost external node in a random (k + 1)-ary increasing tree of order n. We use this correspondence and
introduce the bivariate generating function

L(z, v) =
∑
n≥1

∑
m≥0

Tn(k + 1)P{L̃n = m}z
n

n!
vm,

with Tn(k + 1) = Qn(k) and T (z) given by (1) and (3), respectively. Using the symbolic method (see, e.g.,
[14]) the formal equation (2) of the family T of (k + 1)-ary increasing trees, i.e., the decomposition of a tree
with respect to the root node, can be translated into a differential equation for L(z, v). One just has to take
into account that the length of the path from the root to the leftmost external node is one plus the length of the
corresponding path in the leftmost branch of the root node. This immediately gives the following differential
equation (note that the derivative of L(z, v) with respect to z on the left side of the equation reflects the fact
that the root node is labelled by 1):

∂

∂z
L(z, v) = v

(
1 + L(z, v)

)
·
(
1 + T (z)

)k
=

v

1− kz
(
1 + L(z, v)

)
, L(0, v) = 0.

Solving this differential equation leads to the following solution

L(z, v) =
1

(1− kz) vk
− 1, (6)
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FIGURE 5. The 2-Stirling permutation σ = 366318822155994774 and the corresponding
3-ary increasing tree T . L9(σ) = L̃9(T ) = 2, since 3 and 1 are the only left-to-right
minima of σ and the length of the path from the root to the leftmost external node is two.
M9(σ) = M̃9(T ) = 4, since 3, 6, 8, 9 are left-to-right maxima of σ and they are also left-
to-right maxima in the inorder-traversal code 361825947 of T . The block decomposition
of σ is given by [3663][188221][55][99][4774]. Thus the elements 3, 1, 5, 9, 4 are forming a
block of σ, but they are also the left-right nodes of T . There are two blocks of size 4 formed
by the elements 3 and 4, respectively, whereas each of the elements 3 and 4 has one inner-
descendant. Thus X9,2 = X̃9,1 = 2. Finally the distance between the two occurrences of 1
is 5, whereas the number of descendants of 1 in the second branch is 2, thus ∆9;1,1 = 5 =
1 + 2D9;1,1.

which has been given already in [32]. From (6) we can easily deduce the exact distribution of Ln as well as the
limiting distribution, for n → ∞. Using the well-known formula 1

(1−z)v =
∑
n≥0

∑
m≥0

[
n
m

]
zn

n! v
m for the

bivariate generating function of the signless Stirling numbers of first kind
[
n
m

]
, see, e.g., [14], we immediately

obtain an exact formula for the number Ln,m = Qn(k)P{Ln = m} of k-Stirling permutations of order n with
exactly m left-to-right minima. It holds, for n ≥ 1 and 0 ≤ m ≤ n:

Ln,m = n![znvm]L(z, v) = n!kn−m[(kz)n(
v

k
)m]

1

(1− kz) vk
= kn−m

[
n

m

]
,

with initial value L0,0 = 1. To obtain a limiting distribution result for Ln we consider the moment generating
function E

(
etLn

)
=
∑
m≥0 P{Ln = m}etm, for which we get by using Stirling’s formula for the Gamma

function:

Γ(z) =
(z
e

)z√2π√
z

(
1 +O(

1

z
)
)
, (7)

the following asymptotic expansion, which holds uniformly in a neighbourhood of t = 0:

E
(
etLn

)
=

n!

Qn
[zn]L(z, et) =

(
n+ et

k −1
n

)(
n+ 1

k−1
n

) =
Γ
(
1
k

)
Γ
(
et

k

)n et−1
k ·

(
1 +O

( 1

n

))

= e

(
et−1
k

)
logn+log

(
Γ( 1
k

)

Γ( e
t
k

)

)
·
(

1 +O
( 1

n

))
. (8)

From expansion (8) a direct application of the so-called quasi power theorem of Hwang [16] shows a central
limit theorem for Ln. Additionally exact formulæ for the expectation E(Ln) and the variance V(Ln) of Ln
can be obtained easily by extracting coefficients from the first and second derivative of L(z, v) with respect to
v evaluated at v = 1: E(Ln) =

[zn]Fv(z,v)|v=1

[zn]T (z) and V(Ln) =
[zn]Fvv(z,v)|v=1

[zn]T (z) + E(Ln)−
(
E(Ln)

)2
. We omit

these straightforward computations and collect the results in the following theorem.
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Theorem 6. The number of k-Stirling permutations Ln,m = Qn(k)P{Ln = m} of order n with exactly m
left-to-right minima is given by

Ln,m = kn−m
[
n

m

]
.

Moreover, the number Ln of left-to-right minima in a random k-Stirling permutation of order n is, for n→∞,
asymptotically normal distributed, where the rate of convergence is of order O

(
1√
logn

)
:

sup
x∈R

∣∣∣∣∣ P
{
Ln − E(Ln)√

V(Ln)
≤ x

}
− Φ(x)

∣∣∣∣∣ = O
( 1√

log n

)
,

and the expectation E(Ln) and the variance V(Ln) satisfy

E(Ln) =
1

k

(
Ψ
(
n+

1

k

)
−Ψ

(1

k

))
=

1

k
log n+O(1),

V(Ln) =
1

k

(
Ψ
(
n+

1

k

)
−Ψ

(1

k

))
+

1

k2

(
Ψ′
(
n+

1

k

)
−Ψ′

(1

k

))
=

1

k
log n+O(1).

4. THE NUMBER OF LEFT-TO-RIGHT MAXIMA

A study of the number Mn of left-to-right maxima in a random k-Stirling permutation of order n is more
involved than the previous one for Ln. Now the correspondence to (k+ 1)-ary increasing trees and the combi-
natorial decomposition of a (k+ 1)-ary increasing tree with respect to the root node, i.e., equation (2), does not
simplify the problem. Thus we want to treatMn by considering the insertion process for the random generation
of k-Stirling permutations of order n described in Subsection 2.1. In order to do that we have to introduce a
refinement of Mn: the random variable Mn,i, for 0 ≤ i ≤ kn, counts the number of left-to-right maxima in
the substring σ1σ2 · · ·σi of a random k-Stirling permutation σ = σ1 · · ·σkn of order n.

We consider now the quantities Tn,i,m = Qn(k) · P{Mn,i = m}, which give the number of k-Stirling
permutations of order n with exactly m left-to-right maxima amongst the first i elements. By distinguishing
whether the first occurrence of element n (in the block nk) is amongst the first i elements of a k-Stirling
permutation σ = σ1 · · ·σkn (then the number of left-to-right maxima amongst the first i elements of σ is one
plus the number of left-to-right maxima amongst the first ` elements of σ′, if σ`+1 is the first occurrence of n in
σ and where σ′ denotes the k-Stirling permutation of order n−1 obtained after removing the block nk from σ)
or not (then the number of left-to-right maxima amongst the first i elements in σ is equal to the corresponding
number in σ′), we obtain the following recurrence for Tn,i,m:

Tn,i,m =
(
k(n− 1)− i+ 1

)
Tn−1,i,m +

i−1∑
`=0

Tn−1,`,m−1, for n ≥ 1 and 0 ≤ i ≤ k(n− 1) + 1, (9a)

Tn,i,m =

kn−n∑
`=0

Tn−1,`,m−1, for n ≥ 1 and k(n− 1) + 1 < i ≤ kn, (9b)

with initial values T0,0,m = δ0,m. Plugging i = k(n − 1) + 1 into (9a) shows, by comparing with recurrence
(9b), that Tn,i,m = Tn,k(n−1)+1,m, for k(n − 1) + 1 ≤ i ≤ kn and n ≥ 1; thus we can restrict ourselves to a
study of Tn,i,m, with 0 ≤ i ≤ k(n− 1) + 1. In a probabilistic language this implies that Mn,i = Mn,k(n−1)+1,
for k(n− 1) + 1 ≤ i ≤ kn, and in particular that Mn = Mn,kn = Mn,k(n−1)+1.

By a differencing argument (replacing i by i − 1 and subtracting the resulting equation from the original
one) we obtain from (9a) the following recurrence (for n ≥ 1 and 1 ≤ i ≤ k(n− 1) + 1):

Tn,i,m − Tn,i−1,m = (kn− k + 1− i)
(
Tn−1,i,m − Tn−1,i−1,m

)
+ Tn−1,i−1,m−1 − Tn−1,i−1,m. (10)

This recurrence seems difficult to treat (e.g., a generating functions approach leads to partial differential equa-
tions with unknown boundary values). We continue by introducing the numbers Sn,i :=

∑
m≥0mTn,i,m =

Qn(k) · E(Mn,i) for a study of the expectation E(Mn,i). We note that
∑
m≥0 Tn,i,m = Qn(k) = (k(n −

1) + 1)!(k), for 0 ≤ i ≤ kn. Thus we obtain from (10) the following recurrence for Sn,i, for n ≥ 1 and
1 ≤ i ≤ k(n− 1) + 1, with Sn,0 = 0:

Sn,i − Sn,i−1 = (kn− k + 1− i)
(
Sn−1,i − Sn−1,i−1

)
+ (k(n− 2) + 1)!(k). (11)
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This first order linear recurrence (11) for the difference Sn,i − Sn,i−1 can be treated by standard methods and
gives the solution:

Sn,i − Sn,i−1 = (kn− k + 1− i)!(k)
n−1−d i−1

k e∑
`=0

(kn− 2k + 1− k`)!(k)

(kn− k + 1− i− k`)!(k)
. (12)

Iterating (12) leads then to the following exact solution for the numbers Sn,i, for 0 ≤ i ≤ kn− k + 1:

Sn,i =

i∑
q=0

n−1−d q−1
k e∑

`=0

(kn− k + 1− q)!(k)(kn− 2k + 1− k`)!(k)

(kn− k + 1− q − k`)!(k)
. (13)

Using elementary relations between the multifactorials and the ordinary factorials equation (13) can be written
as follows:

Sn,i = (kn− 2k + 1)!(k)
i∑

q=1

n−1−d q−1
k e∑

`=0

(n−1+ 1−q
k

`

)(n−2+ 1
k

`

) . (14)

The inner sum can be evaluated, since the summand has a hypergeometric term antidifference, and we obtain

Sn,i = (kn− 2k + 1)!(k)
i∑

q=1

k(n− 1) + 1

q
−

(
k(n− 1) + 1− k(n− d q−1k e)

)(n−1− q−1
k

n−d q−1
k e

)
q
( n−2+ 1

k

n−d q−1
k e

)
 .

Simple manipulations lead then to the following expression for Sn,i, 0 ≤ i ≤ kn− k + 1:

Sn,i = (kn− k + 1)!(k)Hi − (kn− 2k + 1)!(k)
i∑

q=1

(
kd q−1k e − k + 1

)(n−1− q−1
k

n−d q−1
k e

)
q
( n−2+ 1

k

n−d q−1
k e

)
= (kn− k + 1)!(k)Hi − (kn− k + 1)!(k)

i∑
q=1

(n−1− q−1
k

n−d q−1
k e

)
q
( n−1+ 1

k

n−d q−1
k e

)
= Qn(k)

Hi −
i∑

q=1

(n−1− q−1
k

n−d q−1
k e

)
q
( n−1+ 1

k

n−d q−1
k e

)
 . (15)

We will also give an asymptotic estimate of Sn,i, which holds uniformly for 0 ≤ i ≤ kn − k + 1 (with more
effort refined asymptotic expansions can be obtained, but we refrain from giving them here). Since the sum
only contains non-negative terms it obviously holds

i∑
q=1

(n−1− q−1
k

n−d q−1
k e

)
q
( n−1+ 1

k

n−d q−1
k e

) ≤ kn−k+1∑
q=1

(n−1− q−1
k

n−d q−1
k e

)
q
( n−1+ 1

k

n−d q−1
k e

) .
Furthermore we get(n−1− q−1

k

n−d q−1
k e

)
q
( n−1+ 1

k

n−d q−1
k e

) =

(
k(n− 1) + 1− q

)
·
(
k(n− 2) + 1− q

)
· · ·
(
kd q−1k e+ 1− q

)
q
(
k(n− 1) + 1

)
·
(
k(n− 2) + 1

)
· · ·
(
kd q−1k e+ 1

)
=

0, q ≡ 1 mod k,

(k(n−1)+1−q)!(k)
(
k(d q−1

k e−1)+1
)
!(k)

q(k(n−1)+1)!(k) , otherwise.

Thus we can write

kn−k+1∑
q=1

(n−1− q−1
k

n−d q−1
k e

)
q
( n−1+ 1

k

n−d q−1
k e

) =

n−1∑
p=1

k−1∑
r=1

(k(n− p− 1) + r)!(k)(k(p− 1) + 1)!(k)

(kp+ 1− r)(k(n− 1) + 1)!(k)
.
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The trivial estimates (k(n−p−1)+r)!(k) ≤ (k(n−p−1)+k−1)!(k) and kp+1−r ≥ kp, for 1 ≤ r ≤ k−1,
give thus

kn−k+1∑
q=1

(n−1− q−1
k

n−d q−1
k e

)
q
( n−1+ 1

k

n−d q−1
k e

) ≤ n−1∑
p=1

(k(n− p− 1) + k − 1)!(k)(k(p− 1) + 1)!(k)

p(k(n− 1) + 1)!(k)
=

n−1∑
p=1

(
n−p− 1

k
n−p

)
p
(
n−1+ 1

k
n−p

) . (16)

The sum occurring in (16) can be estimated easily by dissecting into three parts, p = 1, 2 ≤ p ≤ bn2 −
1
k c and

bn2 −
1
k c < p ≤ n − 1 and using monotonicity considerations. We omit these straightforward computations

and just give the result:
kn−k+1∑
q=1

(n−1− q−1
k

n−d q−1
k e

)
q
( n−1+ 1

k

n−d q−1
k e

) = O
(
n−

2
k

)
+O

(
n−1

)
. (17)

Actually the O(n−1) term can be removed, since for k = 1 the whole sum is actually 0. Thus collecting (15)
and (17) we obtain via Sn,i = Qn(k)E(Mn,i) the following theorem.

Theorem 7. The expected number E(Mn,i) of left-to-right maxima in the substring σ1σ2 · · ·σi of a random
k-Stirling permutation σ = σ1 · · ·σkn of order n is given by the following expression, where the asymptotic
estimate holds for n→∞ and uniformly for 0 ≤ i ≤ kn− k + 1:

E(Mn,i) = Hi −
i∑

q=1

(n−1− q−1
k

n−d q−1
k e

)
q
( n−1+ 1

k

n−d q−1
k e

) = Hi +O(n−
2
k ).

For the number Mn of left-to-right maxima of a random k-Stirling permutation of order n holds Mn =
Mn,kn = Mn,kn−k+1, which implies

E(Mn) = Hkn−k+1 −
kn−k+1∑
q=1

(n−1− q−1
k

n−d q−1
k e

)
q
( n−1+ 1

k

n−d q−1
k e

) = log n+ log k + γ +O(n−
2
k ) +O(n−1).

For the asymptotic expansion of E(Mn) we additionally used the following well-known asymptotic expan-
sion of the harmonic numbers, where γ = 0.57721 . . . denotes the Euler-Masceroni constant:

Hn = log n+ γ +O(n−1). (18)

Although we do not provide a distributional study of Mn we remark that it is possible to show a central limit
theorem for Mn by using the so-called “method of moments” (applied later in Section 5) starting with the
distributional recurrence (9). Since the centered moments have to be studied the approach requires a lot of
computations, which we do not give here.

To end this section we give a result concerning the number of k-Stirling permutations possessing the maxi-
mum possible number of left-to-right maxima.

Theorem 8. The number Tn,kn,n of k-Stirling permutations of order n with exactly n left-to-right maxima is
equal to the number of k-ary trees and thus given by the generalized Catalan numbers:

Tn,kn,n =
1

kn− n+ 1

(
kn

n

)
.

Proof. We consider the representation of k-Stirling permutations as (k + 1)-ary increasing trees. We first note
that node j can only contribute as a left-to-right maximum, if the leftmost branch of j is empty. Thus, since
each node shall contribute as a left-to-right maximum, it must hold that the leftmost branch of each node in the
(k + 1)-ary increasing tree is empty. It is easily seen that for each such (k + 1)-ary tree of order n, where the
leftmost branch of each node is empty, there exists exactly one increasing labelling with {1, 2, . . . , n}, such
that all nodes contribute as a left-to-right maximum. This labelling can be described recursively as follows: the
root gets the smallest label and all remaining labels are distributed amongst the branches T2, T3 . . . , Tk+1 of
the root, such that all labels of the branch Tr are smaller than all labels of the branch Ts, if r < s. Of course,
the trees obtained are isomorphic to (unlabelled) k-ary trees. �
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5. THE NUMBER OF BLOCKS OF A CERTAIN SIZE

5.1. Results. We collect here the exact and limiting distribution results obtained for the random variableXn,`,
which counts the number of blocks of size k` in a random k-Stirling permutation of order n. Due to the

relation Xn,`
(d)
= X̃n,`−1, where X̃n,` counts the number of left-right-nodes with exactly ` inner descendants

in a random (k + 1)-ary increasing tree of order n, corresponding results also hold for X̃n,`.

Theorem 9. The probability mass function of the random variable Xn,`, which counts the number of blocks of
size k` in a random k-Stirling permutation of order n, is, for 1 ≤ ` ≤ n and m ≥ 0, given by the following
exact formula:

P{Xn,` = m} =
1(

n−1+ 1
k

n

) bn−m`` c∑
h=0

(−1)h

(`−1− 1
k

`−1
)h+m(

m+h
h

)(n−1−(m+h)`+m+1+h
k

n−(m+h)`

)
(k`)h+m

.

The s-th factorial moments E(X
s
n,`) = E

(
Xn,`(Xn,` − 1) . . . (Xn,` − (s− 1))

)
are, for integers s ≥ 0, given

by

E(X
s
n,`) =

s!

(k`)s

(
`− 1− 1

k

`− 1

)s
·
(n−`s+ s+1

k −1
n−`s

)(
n−1+ 1

k
n

) .

Theorem 10. The limiting distribution of the random variable Xn,` is, depending on the growth of ` = `(n)
as n→∞, characterized as follows, where we define λn,` via

λn,` :=
1

k`

(
`− 1− 1

k

`− 1

)
n

1
k . (19)

• Range (`, n), such that λn,` →∞ as n→∞. The normalized random variable Xn,`/λn,` converges
in distribution to a random variable ζ, which is characterized by its sequence of integer moments:

Xn,`

λn,`

(d)−−→ ζ, with E(ζs) = (s+ 1)!
Γ(1 + 1

k )

Γ(1 + s+1
k )

, s ≥ 0.

Furthermore, ζ has a density function f(x) that can be written as f(x) = Γ( 1
k )x−kg(x−k), x > 0,

where g is the density function of a positive 1
k -stable distribution with Laplace transform e−λ

1/k

; thus
f(x) is given by the series expansion

f(x) =
Γ( 1

k )

π

∞∑
j=1

(−1)j−1
Γ( jk + 1) sin jπ

k

j!
xj , x > 0.

• Range (`, n), such that λn,` → λ ∈ R+ ∪ {0} as n→∞. The random variable Xn,` converges in
distribution to a random variable ϑλ, which is characterized by its sequence of integer moments:

Xn,`
(d)−−→ ϑλ, with E(ϑsλ) =

s∑
q=0

{
s

q

}
(q + 1)!

Γ(1 + 1
k )

Γ(1 + q+1
k )

λq, s ≥ 0.

Furthermore, let ψζ(t) = E(etζ) and ϕϑλ(t) = E(etϑλ) denote the moment generating functions of
the random variables ζ and ϑλ; then both random variables are related as follows:

ϕϑλ(t) = ψζ

(
λ · (et − 1)

)
.

Remark 1. Note that the random variable ζ already appeared in the characterization of the limiting distribution
of the total number of blocks in random k-Stirling permutations, see [21]. For the instance λ = 1 the moments
of ζ and ϑ = ϑ1 are related by a particularly appealing classical pair of combinatorial relations:

E(ϑs) =

s∑
q=0

{
s

q

}
E(ζq), E(ζs) =

s∑
q=0

(−1)s−q
[
s

q

]
E(ϑq).
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Furthermore, we want to point out that a phase change similar to the one presented here occurred in the study
of certain “diminishing” urn models, see [24], where a corresponding relation connects a gamma distribution
with a geometric distribution.

5.2. Deriving the explicit formulas. We use the correspondence between k-Stirling permutations and (k+1)-
ary increasing trees and study the r.v. X̃n,` by introducing the bivariate generating function

T`(z, v) =
∑
n≥1

∑
m≥0

Tn(k + 1)P{X̃n,` = m}z
n

n!
vm.

We consider the decomposition of a (k + 1)-ary increasing tree w.r.t. the root node as given by the formal
equation (2) and derive from it a differential equation for T`(z, v). To do this we take into account that, apart
from the root node, all left-right-nodes with ` inner descendants can be found in the leftmost and rightmost
branch of the root, which give the contribution (1 + T`(z, v))2(1 + T (z))k−1, where T (z) is given by (3). But
if the root has exactly ` inner descendants then it also contributes to X̃n,`, which gives the following correction
term: (v − 1)z`[z`](1 + T (z))k−1. Thus we obtain the following differential equation:

∂

∂z
T`(z, v) = (1 + T`(z, v))2

(
(1 + T (z))k−1 − (1− v)z`κ`

)
, T (0, v) = 0,

with κ` given by

κ` = [z`](1 + T (z))k−1 = k`
(
`− 1

k

`

)
.

This differential equation can be solved by separation of variables, which leads to the exact solution

T`(z, v) =
1

(1− kz) 1
k + (1− v)k`

(`− 1
k
`

)
z`+1

`+1

− 1. (20)

We use now the exact solution (20) to obtain our exact results for the probabilities and the factorial moments
of Xn,`. We use that, for n ≥ 1, it holds:

P{Xn,` = m} =
n!

Qn(k)
[znvm]T`−1(z, v)

=
n!

Qn(k)
[znvm]

1(
(1− kz) 1

k + k`−1
(`−1− 1

k
`−1

)
z`

`

)(
1−

vk`−1(`−1− 1
k

`−1 )z`

`
(
(1−kz)

1
k+k`−1(`−1− 1

k
`−1 ) z``

)) .
Consequently, we obtain

P{Xn,` = m} =
n!km(`−1)(`−1− 1

k
`−1

)m
`mQn(k)

[zn−m`]
1(

(1− kz) 1
k + k`−1

(`−1− 1
k

`−1
)
z`

`

)m+1

=
n!km(`−1)(`−1− 1

k
`−1

)m
`mQn(k)

bn−m`` c∑
h=0

(−1)h
kh(`−1)

(`−1− 1
k

`−1
)h(

m+h
h

)
kn−(m+h)`

(n−1−(m+h)`+m+1+h
k

n−(m+h)`

)
`h

,

which leads, by using the explicit result (1) for Qn(k), to the formula stated in Theorem 9.

For the factorial moments we proceed as before, but use the relation

E(X
s
n,`) =

s!n!

Qn(k)
[znws]T`−1(z, 1 + w).

One obtains

[znws]T (z, 1 + w) =
kn−s

(`−1− 1
k

`−1
)s

`s

(
n− `s+ s+1

k − 1

n− `s

)
,

which leads to the result given in Theorem 9.
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5.3. Deriving the limiting distributions. To show the limiting distribution results given in Theorem 10 we
use the so-called method of moments, i.e., the Theorem of Fréchet and Shohat (see, e.g., [25]), which works as
follows. Let (Xn)n be a sequence of random variables; if one can show that E(Xs

n)→ E(Xs), for each integer
s ≥ 0, whereX has to be a random variable that is uniquely defined by its sequence of positive integer moments

(guaranteed if the moment sequence satisfies certain growth conditions), then it holds that Xn
(d)−−→ X .

First assume that a sequence (`, n) is given, such that λn,` → ∞, with λn,` given in (19). It is immediate
to see that this implies ` = o(n

1
k+1 ). We consider the explicit formula for the factorial moments E(Xs

n,`) as
given in Theorem 9 and apply Stirling’s formula (7). We obtain, for α fixed, the asymptotic expansion(

n+ α

n

)
=

nα

Γ(α+ 1)

(
1 +O

( 1

n

))
,

which gives

E(X
s
n,`) =

s!

(k`)s

(
`− 1− 1

k

`− 1

)s
·

(n− `s) s+1
k −1Γ( 1

k )

Γ( s+1
k )n

1
k−1

(
1 +O

( 1

n− `s
))

= (s+ 1)!
Γ(1 + 1

k )

Γ(1 + s+1
k )

λsn,`

(
1 +O

( `
n

))
. (21)

Using the relation

E(Xs
n,`) = E(X

s
n,`) +

s−1∑
q=0

{
s

q

}
E(X

q

n,`) (22)

between the factorial moments and the ordinary moments together with the asymptotic expansion (21) of the
factorial moments proves convergence of the (ordinary) moments of the scaled random variable Xn,`

λn,`
. It can

be shown easily by elementary growth estimates that the arising moment sequence determines a distribution
uniquely; thus the theorem of Fréchet and Shohat is applicable. Moreover, random variables giving such a
sequence of integer moments have been studied previously by Janson [19] (see also Janson et al. [21]) and we
can use results obtained there to characterize the density function of the distribution.

Now assume that a sequence (`, n) is given, such that λn,` → λ ∈ R+ ∪ {0}, with λn,` given in (19). This
implies that ` ∼ c · n

1
k+1 , with c > 0. Proceeding exactly as before, we obtain the asymptotic expansion

E(X
s
n,`) = (s+ 1)!

Γ(1 + 1
k )

Γ(1 + s+1
k )

λsn,`

(
1 +O

( `
n

))
∼ (s+ 1)!

Γ(1 + 1
k )

Γ(1 + s+1
k )

λs.

Hence, by using the relation between the factorial moments and the ordinary moments (22), we obtain the
moment sequence stated in Theorem 10. In order to show that the arising sequence of moments defines a
distribution uniquely, we compute the corresponding moment generating function ϕϑλ(t) = E(etϑλ) and show
that it is analytic around t = 0 (which is a well-known sufficient criterion). We get

ϕϑλ(t) =
∑
s≥0

E(ϑsλ)
ts

s!
=
∑
s≥0

s∑
q=0

{
s

q

}
E(ζq)λq

ts

s!
=
∑
q≥0

λqE(ζq)
∑
s≥q

{
s

q

}
ts

s!
.

Using the bivariate generating function identity of the Stirling numbers of the second kind:∑
n≥0

∑
m≥0

{
n

m

}
tn

n!
um = eu(e

t−1) =
∑
m≥0

(
et − 1

)mum
m!

,

we obtain further

ϕϑλ(t) =
∑
q≥0

E(ζq)
λq(et − 1)q

q!
.

Since the latter expression is the moment generating function ψζ(u) = E(euζ) of the random variable ζ evalu-
ated at u = λ(et − 1), we obtain that ϕ(t) is indeed analytic around t = 0, which completes the proof.
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5.4. The joint distribution of the number of blocks of specified sizes. The generating function approach pre-
sented above can be extended to study even the joint distribution of the number of blocks of sizes k`1, . . . , k`r.
We find it of interest to note that such an extension is indeed possible and we will state the corresponding
results; however, we will only sketch the proof of the results, since the ideas and the actual computations are
straightforward extensions of the ones given in Subsections 5.2–5.3.

Here it is appropriate to use a vector notation. We denote with Xl = (Xn,`1 , Xn,`2 , . . . , Xn,`r ) the random
vector counting the joint distribution of the number of blocks of sizes kl, with l = (`1, . . . , `r), and with
X̃l = (X̃n,`1 , X̃n,`2 , . . . , X̃n,`r ) the random vector counting the joint distribution of the number of left-right

nodes that have exactly `1, . . . , `r inner descendants, with 1 ≤ `1 < · · · < `r ≤ n. Note that Xl
(d)
= X̃l−1.

Furthermore, we use v = (v1, . . . , vr) and s = (s1, . . . , sr).
We introduce now the multivariate generating function

Tl(z,v) =
∑
n≥1

∑
m≥0

Tn(k + 1)P{X̃l = m}z
n

n!
vm.

Using the tree decomposition (2) with respect to the root node we obtain the following differential equation for
Tl(z,v):

∂

∂z
Tl(z,v) = (1 + Tl(z,v))2

(
(1 + T (z))k−1 −

r∑
i=1

z`ik`i
(
`i − 1

k

`i

)
(1− vi)

)
,

with initial condition Tl(0,v) = 0. Separation of variables gives the explicit solution

Tl(z,v) =
1

(1− kz) 1
k +

∑r
i=1(1− vi)k`i

(`i− 1
k

`i

)
z`i+1

`i+1

− 1.

We refrain from deriving the joint distribution of Xl and proceed directly to the computation of the mixed
factorial moments, where we use the identity

E(X
s
l ) := E

( r∏
q=1

X
sq

n,`q

)
=

(∏r
q=1 sq!

)
n!

Qn(k)
[znws]Tl−1(z,1 + w).

It is not difficult to extract the coefficients

[znws]Tl−1(z,1 + w) = [znws11 . . . wsrr ]
1

(1− kz) 1
k −

∑r
i=1 wik

`i−1
(`i−1− 1

k
`i−1

)
z`i
`i

− 1,

by using the identity

[ws11 . . . wsrr ]
1

1− w1α1 − · · · − wrαr
=

(∑r
q=1 sq

)
!∏r

q=1

(
sq!
) r∏
q=1

αsqq .

We eventually obtain the following theorem, where the limiting distributions are again derived by using the
method of moments. The computations occurring are very similar to the univariate case and are therefore
omitted.

Theorem 11. The mixed factorial moments of the random vector Xl, which counts the joint distribution of the
number of blocks of sizes kl, with l =

(
`1, . . . , `r

)
, in a random k-Stirling permutation of order n, are given

by

E(X
s
l ) =

( r∑
q=1

sq
)
!

(
r∏
q=1

( 1

k`q

(
`q − 1− 1

k

`q − 1

))sq) (n−∑r
q=1 `qsq+

1+
∑r
q=1 sq

k −1
n−

∑r
q=1 `qsq

)
(
n−1+ 1

k
n

) .

The limiting distribution of Xl is, depending on the growth of `q = `q(n), with 1 ≤ q ≤ r, as n → ∞,
characterized as follows, where we define λn,`q as before:

λn,`q :=
1

k`q

(
`q − 1− 1

k

`q − 1

)
n

1
k .



20 M. KUBA AND A. PANHOLZER

Assume that sequences (`q, n) are given such that λn,`1 , . . . , λn,`h → ∞, with 1 ≤ h ≤ r, and λn,`i → λi ∈
R+, with h+ 1 ≤ i ≤ r, as n→∞. The properly normalized random vector
X̂l =

(Xn,`1
λn,`1

, . . . ,
Xn,`h
λn,`h

, Xn,`h+1
, . . . , Xn,`r

)
converges in distribution to a limiting random vector ϑ, which

is characterized by its sequence of mixed (factorial) moments s ≥ 0:

X̂l
(d)−−→ ϑ = (ϑ1, . . . , ϑr), E

( h∏
j=1

ϑ
sj
j

r∏
i=h+1

ϑ
si
i

)
=
( r∑
h=1

sh
)
!

Γ( 1
k )

Γ
( 1+∑r

h=1 sh
k

) r∏
i=h+1

λsii .

5.5. An alternative approach using a description via Pólya-Eggenberger urn models. In this section we
introduce a Pólya-Eggenberger urn model, which also describes the joint distribution of the random variables
Xn,1, . . . , Xn,`. For a detailed description of Pólya-Eggenberger urn models see, e.g., [13, 19, 22, 27]; we just
give the basic notions for an urn model with balls of r different colours. At step 0 there are ai,0, for 1 ≤ i ≤ r,
balls of colour i in the urn; we might call this the initial configuration of the urn. The urn evolves at discrete

time steps according to the ball addition matrix A =

 α1,1 ... α1,r
α2,1 ... α2,r

... ...
...

αr,1 ... αr,r

: at each step a ball is chosen at random

from all of the balls in the urn, the colour the ball inspected and afterwards it is thrown back into the urn. If the
ball has colour i then balls are added to or removed from the urn as listed in the i-th row of the ball addition
matrix A, i.e., αi,j balls of colour j, for 1 ≤ j ≤ n, are added/removed. An urn is called balanced if all the row
sums of A are equal, i.e., if the total number of added/removed balls in each draw is constant, independently of
the colour observed; this implies that, after each draw, the total number of balls in the urn is deterministic.

For balanced urns in [13] a method is described, which, if applicable, leads to the exact distribution of the
number of balls of colour i, 1 ≤ i ≤ r, contained in the urn after n draws. It is sufficient to study the numbers

Hn

 a1,0 a1
a2,0 a2

...
...

ar,0 ar

, which give the number of urn histories of length n (i.e., sequences of n draws), such that the

urn contains exactly ai, for 1 ≤ i ≤ r, balls of colour i when starting with ai,0, 1 ≤ i ≤ r, balls. These
numbers are encoded in the generating function

H(y1, . . . , yr, z) :=
∑

n,a1,a2,...,ar

Hn

 a1,0 a1
a2,0 a2

...
...

ar,0 ar

 · ya1
1 ya2

2 · · · yarr
zn

n!
.

Crucial to the approach is a study of the associated ordinary system of differential equations

Σ : ẏi = y
αi,i+1
i

∏
1≤j≤r,j 6=i

y
αi,j
j ,

where the functions yi = yi(t) are assumed to be functions of an independent variable t. Let us assume that the
solution of the associated system of differential equations Σ with initial conditions y1,0, y2,0, . . . , yr,0 is given
as follows:

Y1

t
∣∣∣∣∣∣
y1,0
y2,0

...
yr,0

 , . . . , Yr

t
∣∣∣∣∣∣
y1,0
y2,0

...
yr,0

 .

Then the generating function H(y1, . . . , yr, z) of the urn histories is given as follows:

Theorem 12 (Flajolet, Dumas and Puyhaubert [13]).

H(y1, . . . , yr, z) =

(
Y1

z
∣∣∣∣∣∣
y1
y2

...
yr

)a1,0

·
(
Y2

z
∣∣∣∣∣∣
y1
y2

...
yr

)a2,0

· · ·
(
Yr

z
∣∣∣∣∣∣
y1
y2

...
yr

)ar,0 .
Of course, the exact joint distribution of the number of balls of colour i, 1 ≤ i ≤ r, can be obtained from

H(y1, . . . , yr, z) by extracting coefficients.

Now we go back to the problem of describing the joint distribution of the number of blocks of specified
sizes by means of an urn model. To do this we introduce the following urn.
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Urn I. Consider a balanced urn with balls of ` + 2 colours and let (Zn,0, . . . , Zn,`+1) count the number of
balls of each color at time n. At each time step draw one ball at random from the urn, observe its color, and
add balls according to the ball addition matrix

A =



1 k−1 0 ··· 0 0 0 0

0 −(k−1) 2k−1
. . . . . . . . . 0 0

0 0 −(2k−1) 3k−1
. . . . . . 0 0...

. . . . . . . . . . . . . . .
... 0...

. . . . . . . . . . . . . . .
... 0

0
. . . . . . . . . 0 −((`−1)k−1) `k−1 0

0
. . . . . . . . . 0 0 −(`k−1) (`+1)k−1

0 0 0 ··· 0 0 0 k


.

The initial configuration of the urn (it is here convenient to start at time 1) is specified by (Z1,0, . . . , Z1,`+1) =
(2, k − 1, 0, . . . , 0).

Note that, at each time step, a total number of k balls will be added to the urn. We further remark that
we opted to introduce balls of colour 0, 1, . . . , ` + 1; the reason for that will be obvious after the following
statement.

Theorem 13. The random variables Zn,i, with 1 ≤ i ≤ `, described by urn model I are related to the random
variables Xn,i, 1 ≤ i ≤ `, which count the number of blocks of size ki in a random k-Stirling permutation of
order n, as follows:

Zn,i = (ki− 1)Xn,i, 1 ≤ i ≤ `.

Proof. We give the following coupling between the growth process describing k-Stirling permutations and the
urn model. Consider a k-Stirling permutation σ. Then the balls of colour i, with 1 ≤ i ≤ `, will represent the
gaps within blocks of size ki in σ. Moreover, balls of colour `+1 will represent the gaps within blocks of sizes
≥ k(`+ 1) in σ, whereas balls of colour 0 will represent the gaps between blocks including the gap before and
the gap after σ (thus the number of balls of colour 0 is exactly one plus the number of blocks in σ).

Obviously at step 1, i.e., for σ = 1k, there are two balls of colour 0 and k − 1 balls of colour 1, which
matches the initial configuration. At step n a block of size ki, i ≥ 1, in σ “attracts” the sequence nk with
probability (ki−1)/((n−1)k+1) and gives then a block of size k(i+1). In the corresponding urn model this
is reflected by removing ki− 1 balls of colour i and adding k(i + 1)− 1 balls of colour i + 1, for 1 ≤ i ≤ `;
furthermore, if i ≥ `+ 1, then one simply adds k balls of colour `+ 1. Moreover, at step n a new block (which
is of size k) is created in σ with a probability proportional to one plus the number of blocks of σ; in the urn
model this is reflected by adding one ball of colour 0 and k − 1 balls of colour 1. �

Remark 2. As pointed out before the r.v. Zn,0 gives one plus the total number of blocks, a quantity that has
been already studied in [21]. The idea of introducing an additional random variable Zn,`+1, which is serving
as some kind of “superball’ collecting all contributions of larger sizes, has been applied in this context, e.g., by
Mahmoud and Smythe [28] or Janson [18].

The evolution of this balanced Urn I can be analyzed by using the approach of Flajolet et al. [13]. One has
to study the following associated system of differential equations Σ, where yi = yi(t):

ẏ0 = y20y
k−1
1 , y0(0) = y0,0,

ẏi = y
−(ik−1)+1
i y

(i+1)k−1
i+1 , for 1 ≤ i ≤ `, yi(0) = yi,0,

ẏ`+1 = yk+1
`+1 , y`+1(0) = y`+1,0.

First, one easily obtains

y`+1(t) =
1

(−kt+ C`+1)
1
k

, C`+1 =
1

yk`+1,0

.

Then, by induction with respect to i, it is not difficult to prove the general formula

y`+1−i(t) =

( i∑
q=1

C`+1−q
ti−q

(i− q)!

i∏
p=q+1

(
(`+ 1− p)k − 1

)
+

1

(−kt+ C`+1)
(`+1−i)k−1

k

) 1
(`+1−i)k−1

, (23)



22 M. KUBA AND A. PANHOLZER

for 0 ≤ i ≤ `, with

C`+1−i + C
−(`+1−i)k+1

k

`+1 = y
(`+1−i)k−1
`+1−i,0 , and thus C`+1−i = y

(`+1−i)k−1
`+1−i,0 − y(`+1−i)k−1

`+1,0 .

Consequently, we easily obtain y0(t) = 1/(−
∫
y1(t)k−1dt+ C0) and furthermore

y0(t) =
1

C0 −
∑`
q=1 C`+1−q

t`+1−q

(`+1−q)!
∏`
p=q+1

(
(`+ 1− p)k − 1

)
+ (−kt+ C`+1)

1
k

,

with

(C0 + C
1
k

`+1)−1 = y0,0, and thus C0 = y−10,0 − y
−1
`+1,0.

After simple manipulations we observe that the formula for y`+1−i(t) given in (23) is also valid for i = `+ 1.

Applying Theorem 12 we obtain the following result concerning the generating function of the urn histories
of Urn I.

Theorem 14. The (` + 2)-variable generating function H(y, z) = H(y0, y1, . . . , y`+1, z) of urn histories of
Urn I, with general initial conditions (Z1,0, . . . , Z1,`+1) = (a1,0, a1,1, . . . , a1,`+1), is given by

H(y, z) =

`+1∏
i=0

(
Ui(y, z)

)a1,i

,

where the functions U(y, z) are given by

U`+1−i(y, z) =

( i∑
q=1

(
y
(`+1−q)k−1
`+1−q − y(`+1−q)k−1

`+1

) zi−q

(i− q)!

i∏
p=q+1

(
(`+ 1− p)k − 1

)
+

y
(`+1−i)k−1
`+1

(1− kzyk`+1)
(`+1−i)k−1

k

) 1
(`+1−i)k−1

, for 0 ≤ i ≤ `+ 1.

Moreover, the generating function concerning the distribution of blocks of sizes k, 2k . . . , `k in random k-
Stirling permutations is obtained by the initial conditions (Z1,0, . . . , Z1,`+1) = (2, k − 1, 0, . . . , 0) leading to
H(y, z) = U2

0 (y, z)Uk−11 (y, z).

Remark 3. We want to point out that an advantage of this approach is that one obtains a result valid for
arbitrary initial conditions (chosen in such a way that the urn model is still tenable, i.e., that the urn never gets
“stuck”), whereas the previous approach using the description via (k+1)-ary increasing trees is only applicable
for the particular initial values (Z1,0, . . . , Z1,`+1) = (2, k− 1, 0, . . . , 0). From Theorem 14 it is not difficult to
reprove our results for Xn,` obtained in Theorems 9–11.

6. DISTANCES IN STIRLING PERMUTATIONS AND DESCENDANTS IN INCREASING TREES

In the following we use the notation ∆ = (∆n;j,1, . . . ,∆n;j,k−1) for the random vector counting the joint
distribution of distances of element j, and D = (Dn;j,1, . . . , Dn;j,k, Dn;j,k+1) for the random vector counting
the joint distribution of descendants of node j. Recall from Theorem 5 that the distances ∆n;j,p between the
p-th and the (p+ 1)-th occurrence of element j in a random k-Stirling permutation of order n and the numbers
Dn;j,p of descendants of node j in the p-th branch of a random (k+1)-ary increasing tree of order n are related

by the equation ∆n;j,p
(d)
= 1 + k ·Dn;j,p+1, 1 ≤ p ≤ k − 1. Thus it holds that the distribution of the random

vector ∆ is fully characterized by the distribution of the more general random vector D. Hence, in this section
we will mainly formulate our results for the random vector D, i.e., give results for (k+ 1)-ary increasing trees,
but note, that all the results can be translated immediately into corresponding ones for the random vector ∆,
i.e., for k-Stirling permutations.

In order to describe the evolution of D and ∆, respectively, we introduce a purely autistic hyper-Pólya urn
model (using the terminology of Flajolet et al. [13]).
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Urn II. Consider a balanced urn with balls of k+2 colors, and let (Wn,0,Wn,1, . . . ,Wn,k+1) count the number
of balls of each colour at time n. At each time step, draw one ball at random from the urn, observe its colour,
and add k balls of the observed colour to the urn, i.e., the urn evolves according to the ball addition matrix

A = (kδi,j)1≤i,j≤k+2 =


k 0 0 ... 0

0 k 0
. . . 0

0 0 k
. . . 0

...
. . . . . . . . . 0

0 0 0 ... k

 .

The initial configuration of the urn is specified by (W1,0,W1,1, . . . ,W1,k+1) = ((j − 1)k, 1, 1, 1, . . . , 1).

Then it holds the following theorem for Urn II.

Theorem 15. The distribution of the random vector (Wn,1, . . . ,Wn,k+1) is related to D and ∆ by the equa-
tions

(Wn,1 − 1, . . . ,Wn,k+1 − 1) = (k ·Dn;j,1, . . . , k ·Dn;j,k+1),

(Wn,2 + 1, . . . ,Wn,k + 1) = (∆n;j,1, . . . ,∆n;j,k−1).

Consequently, the distribution of D, (and of ∆) is exchangeable, invariant under any permutation of the k+ 1
variables (or k − 1 variables when considering ∆).

Proof. We give the following coupling between the growth process describing (k+ 1)-ary increasing trees and
the urn model. Due to the correspondence between (k+1)-ary increasing trees and k-Stirling permutations this
also gives a coupling with the growth process of k-Stirling permutations. Consider a (k+1)-ary increasing tree
T . Then the balls of colour p, for 1 ≤ p ≤ k + 1, will represent the external nodes of T , which are contained
in the p-th branch of node j. Moreover, balls of colour 0 will represent the external nodes of T , which are not
contained in the subtree rooted at node j.

The initial configuration of the urn corresponds to a tree T of order j, i.e., directly after inserting node j,
which leads to exactly one ball of each colour p, with 1 ≤ p ≤ k+ 1, whereas all remaining k(j − 1) + 1 balls
are of colour 0. Furthermore, in a tree T of order n − 1, each branch of node j “attracts” the newly inserted
node n with a probability proportional to the number of external nodes contained in this branch. If node n is
inserted into a certain branch of node j then the number of external nodes contained in this branch increases by
k. Moreover, the probability that node n is not inserted in the subtree rooted at j is proportional to the number
of external nodes not contained in one of the branches of j; by inserting node n the number of such external
nodes increases by k in this case. But this is exactly what is reflected by the ball addition matrixA. The relation
betweenWn,p andDn;j,p (and also ∆n;j,p) follows then by taking into account that a branch containing exactly
m internal nodes is containing km+ 1 external nodes. �

We obtain then the following exact and asymptotic results for the random vector D.

Proposition 1. The distribution of the random vector D, which counts the number of descendants of node j
according to its branches 1, . . . , k + 1 in a random (k + 1)-ary increasing tree of order n, is given as follows:

P{D = m} =

(
m1−1+ 1

k
m1

)
. . .
(
mk+1−1+ 1

k
mk+1

)(
n−2−

∑k+1
i=1 mk

j−2
)

(n−1+ 1
k

n−j
) , for m ≥ 0 and 1 ≤ j ≤ n.

(For the instance j = 1 we obtain
∑k+1
i=1 mk = n− 1, and use the convention

(−1
−1
)

= 1.)

The mixed binomial moments E
(∏k+1

p=1

(
Dn;j,p+

1
k+sp

sp

))
are given by the formula

E

(
k+1∏
p=1

(
Dn;j,p + 1

k + sp
sp

))
=

(n−1+ 1
k+

∑k+1
p=1 sp∑k+1

p=1 sp

)
(j−1+ 1

k+
∑k+1
p=1 sp∑k+1

p=1 sp

) k+1∏
p=1

(
sp − 1 + 1

k

sp

)
.

Theorem 16. The limiting distribution of the random vector D can be characterized according to the growth
of j = j(n).
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• Range arbitrary but fixed j ≥ 1. The normalized random vector (D, n −
∑k+1
p=1Dn;j,p)/n converges

almost surely to a Dirichlet distributed random vector of length k+2 with parameters ( 1
k , . . . ,

1
k ,

j−1
k ):

D

n

(a.s.)−−−→ Dirk+2

(1

k
, . . . ,

1

k
,
j − 1

k

)
.

• Range j →∞, such that j = o(n). The normalized random vector jD/n converges in distribution to

a random vector of i.i.d. gamma distributed random variables, γi
(d)
= γ( 1

k , 1), for 1 ≤ i ≤ k + 1:

jD

n

(d)−−→ (γ1, . . . , γk+1).

• Range j → ∞, such that j = ρn, with 0 < ρ < 1. The random vector D converges in distribution to

a random vector of i.i.d. negative binomial distributed random variables, NegBini
(d)
= NegBin( 1

k , ρ),
for 1 ≤ i ≤ k + 1:

D
(d)−−→ (NegBin1, . . . ,NegBink+1).

• Range j →∞, such that j = n− l with l = o(n). The random vector D is asymptotically degenerate,

D
(d)−−→ 0.

Remark 4. The explicit result for the distribution of D is well known in the literature, but the asymptotic
results generalize some of earlier results obtained by the authors [23] concerning descendants in increasing
trees. Note that the particular instance j = 1 describes the asymptotics of the subtree sizes of the subtrees
attached to the root node in a (k + 1)-ary increasing tree, which has been studied in a more general context by
Broutin et al. [10]. Interestingly, the case j → ∞ corresponds to an urn model, where the initial conditions
depend on the discrete time, as the time tends to infinity.

Proof. We will give here only a brief outline of the proof of Proposition 1 and Theorem 16, where we focus on
the main ideas leading to the results, but skip many of the (straightforward) computations.

The exact distribution of D given in Proposition 1 could be derived by using generating function techniques
based on the formal equation of (k+ 1)-ary increasing trees, or alternatively by studying the associated system
of differential equations of Urn II. However, one can even use a more direct approach, which is based on lattice
path counting arguments similar to the ones used by Prodinger [36]. Crucial to this approach is to observe
that the probability w = w(m) to obtain a certain configuration m = (m1,m2, . . . ,mk+1) of descendants
(in the branches 1, 2, . . . , k + 1) of node j is independent of the different histories to reach the configuration
m. Hence, we simply have to determine w, and the number H = H(m) of different histories leading to the
configuration m using lattice path counting arguments given by [36]. It is not difficult to show the following
formulas, which directly leads to the exact distribution of D:

P{D = m} = w ·H, with H =

(
n− j

m1, . . . ,mk+1, n− j −
∑k+1
p=1mp

)
,

w =

(∏k+1
p=1

∏mp−1
ip=0 (kip + 1)

)∏n−j−
∑k+1
p=1 mp+1

i=0 k(i+ j − 1)∏n−1
i=j (ik + 1)

.

The exact moments of D could be obtained by using the explicit formula for P{D = m} and carrying out
the summations required. However, the most convenient way to get the simple expressions for the binomial
moments is to use martingales. First we only consider a single variable Wn,1. Let Fn denote the σ-field
generated by the first n − j draws of the urn model (i.e., after inserting node n in the corresponding growth
process of (k+ 1)-ary increasing trees). Moreover denote by Θn = Wn,1 −Wn−1,1 ∈ {0, k} the increment at
step n (i.e., due to inserting node n). We get

E(Wn,1 | Fn−1) = E(Wn−1,1 + Θn | Fn−1) = Wn−1,1 + E(Θn | Fn−1).
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Since the probability that a ball of colour 1 is chosen at step n is proportional to the number of existing balls of
colour 1 (at step n− 1), we obtain further

E(Wn,1 | Fn−1) = Wn−1,1 +
kWn−1,1

k(n− 1) + 1
=

kn+ 1

k(n− 1) + 1
Wn−1, n ≥ j + 1.

Let W̃n = Wn,1

(
n−1+ 1

k
n−1

)
/
(
n+ 1

k
n−1

)
= Wn,1(1 + 1

k )/(n+ 1
k ), then it holds

E(W̃n | Fn−1) = W̃n−1, n ≥ j + 1.

Hence, W̃n (and also W̃n/k) is a positive martingale.

The idea can be extended to study the random variables Wn,s =
∏k+1
p=1

(
Wn,p/k−1+sp

sp

)
, where we obtain

due to the dynamics of the urn model:

E(Wn,s | Fn−1) =Wn−1,s +

k+1∑
i=1

Wn−1,i

(n− 1)k + 1

k+1∏
p=1

(Wn−1,p

k − 1 + sp
sp − δp,i

)

=Wn−1,s +Wn−1,s

k+1∑
i=1

si
(n− 1)k + 1

=Wn−1,s
n− 1 + 1

k +
∑k+1
i=1 ksi

n− 1 + 1
k

.

Consequently, we observe that the random variables W̃n,s := Wn,s

(
n−1+ 1

k
n−1

)
/
(
n−1+

∑k+1
i=1 si+

1
k

n−1
)

are forming
martingales with respect to the filtration Fn. The results for the binomial moments stated in Proposition 1 are
obtained easily by taking the expected value.

Next we outline the proof of the limiting distribution result given in Theorem 16 for the range j fixed as
n→∞. The martingale description given above shows immediately the almost sure convergence of W̃n,s, for
j fixed, to limiting random variables, since W̃n,s is a positive martingale. In particular, all the random variables
W̃n,p :=

(Wn,p

k + 1
)
(1 + 1

k )/(n+ 1
k ) converge almost surely to limiting random variables. This also implies

that the random vector (
Wn,1

n , . . . ,
Wn,k+1

n ) converges almost surely to a limiting random vector; moreover,
using Stirling’s formula for the Gamma function (7), one can easily characterize the limiting distribution by its
mixed moments. Furthermore, it is not difficult to obtain even a local limit law using the explicit formula for
the probability mass function given in Proposition 1.

The remaining cases of the limiting distribution results given in Theorem 16 can be proven easily either by
the method of moments or directly by asymptotic considerations for the probability mass function; we skip
here these computations. �

7. THE NUMBER OF INVERSIONS

The number of inversions in ordinary permutations is a classical parameter of interest. It has been studied by
many authors, e.g., by Sachkov [37], Bender [3], Margolius [30], and Louchard and Prodinger [26]. Park [33]
has studied the random variable In, which counts the number of inversions in a random k-Stirling permutation
of order n, from a combinatorial point of view. Here we can add some probabilistic considerations. Park
already derived the probability generating function of the total number of inversions In using combinatorial
methods. Using simple probabilistic arguments we rederive his result, but furthermore we show a central limit
theorem for In. We first collect the results concerning In in the following theorem.

Theorem 17. The random variable In can be decomposed into a sum of mutually independent random vari-
ables Ui, where Ui denotes the discrete uniform distribution on the set {mk | 0 ≤ m ≤ ik}:

In =

n−1⊕
i=0

Ui, with P{Ui = km} =
1

ik + 1
0 ≤ m ≤ ik.

The expectation and the variance of In are given by

E(In) =
k2

2

(
n

2

)
∼ k2n2

4
, V(In) =

k3
(
n
2

)
6

(k(2n− 1)

6
+ 1
)
∼ k4n3

36
.
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The centered and normalized random variable I∗n converges in distribution to a standard normal distributed
random variable, where the speed of convergence is of order O

(
1/
√
n
)

with respect to the d1-metric:

I∗n =
In − E(In)√

V(In)

(d)−−→ N (0, 1), d1
(
L(I∗n),N (0, 1)

)
≤ κ(k)√

n
,

where κ(k) is a constant, which depends only on k, but is independent of n.

Remark 5. It is well known that convergence with respect to the d1-metric of random variables implies the
weak convergence, i.e., the convergence in distribution, see [1, 2]. The speed of convergence is given with
respect to the metric d1, see Barbour, Karoński and Ruciński [2]: for two probability measures P and Q their
d1-distance is defined as d1(P,Q) := sup‖h‖≤1 |E(h(X))−E(h(Y ))|, where ‖h‖ = K ·(‖h‖∞+‖h′‖∞), for
bounded functions h with bounded derivative and some constant K, with X and Y denoting random variables
with distribution P and Q, respectively. We refer the reader to [1] and [2] for a precise definition.

Proof. First we derive the decomposition of the random variable In into a sum of independent random vari-
ables. To do this we use the description of random k-Stirling permutations via the simple insertion process: at
step n the sequence nk is inserted into a k-Stirling permutation of order n−1 at one of the k(n−1)+1 places.
If nk is inserted at the m-th place, taken from right to left, this induces exactly km additional inversions. Since
the insertion is independent of the structure of the actual k-Stirling permutation, we obtain the stated result.

The expectation and the variance of In are obtained using the independence of the random variables Ui;
e.g., the expectation is easily derived as follows:

E(Ui) =

ik∑
m=0

km

ik + 1
=
ik2

2
, E(Sn) =

n−1∑
i=0

E(Ui) =
k2

2

(
n

2

)
.

The central limit theorem for In can be established via various methods. E.g., one could use directly the
method of moments, which also proves the moment convergence, or one can check that Lyapunov’s condition in
the corresponding theorem for sums of independent random variables is satisfied, or one could use the approach
of [26] based on saddle point methods.

However, in order to obtain the stated result concerning the speed of convergence of the centered and nor-
malized r.v. I∗n to N (0, 1) with respect to the d1-metric, we used Stein’s method [1, 2], which, in the present
case, can be applied easily due to the independence of the random variables involved. In the following we will
use the notations

Ûi = Ui − E(Ui), Vi =
Ûi√
V(In)

.

Since Ui takes values in {k` | 0 ≤ ` ≤ ki}, the random variable Ûi is uniformly distributed on the set
{ ik

2

2 − k` | 0 ≤ ` ≤ ki}. By definition the random variables Vi are mutually independent and satisfy
E(Vi) = 0 and V(⊕n−1i=0 Vi) = 1; furthermore it holds

⊕n−1
i=0 Vi = I∗n. To proceed we use the following

consequence of [2]:

d1(L(I∗n),N (0, 1)) ≤ 2

n−1∑
i=0

(
E(|V 3

i |) + E(|V 2
i |)E(|Vi|)

)
=

2

(V(In))
3
2

n−1∑
i=0

(
E(|Ûi

3
|) + E(|Ûi

2
|)E(|Ûi|)

)
.

It is easy to show that
n−1∑
i=0

(
E(|Ûi

3
|) + E(|Ûi

2
|)E(|Ûi|)

)
=

n−1∑
i=0

(
κ1(k)i3 + κ2(k)i2κ3(k)i

)
+O(n3) = κ4(k)n4 +O(n3),

where the κj = κj(k) appearing are constants depending only on k, which are not important to our purpose.
We get thus

d1
(
L(I∗n),N (0, 1)

)
≤ κ(k)√

n
,
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by using the asymptotic expansion of the variance of In. This proves the stated result. �
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