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ABSTRACT. This work is devoted to the analysis of the area under certain lattice paths. The lattice paths of in-
terest are associated to a class of 2 × 2 triangular Pólya-Eggenberger urn models with ball replacement matrix
M =

(−a 0
c −d

)
, with a, d ∈ N and c = p · a, p ∈ N0. We study the random variable counting the area under

sample paths associated to these urn models, where we obtain a precise recursive description of its integer moments.
This description allows us to derive exact formulæ for the expectation and the variance and, in principle, also for
higher moments and, most nobably, it yields asymptotic expansions of all integer moments leading to a complete
characterization of the limiting distributions appearing for the area under sample paths associated with these urn
models. As a special instance we obtain limiting distributions for the area under sample paths of the pills problem
urn model, originally proposed by Knuth and McCarthy, which corresponds to the special case a = c = d = 1.
Furthermore we also obtain limiting distributions for the well known sampling without replacement urn, a = d = 1

and c = 0, and generalizations of it to a, d ∈ N.

1. INTRODUCTION

1.1. Pólya-Eggenberger urn models. Pólya-Eggenberger urn models are defined as follows. We start with an
urn containing n white balls and m black balls. The evolution of the urn occurs in discrete time steps. At every
step a ball is drawn at random from the urn. The color of the ball is inspected and then the ball is returned to
the urn. According to the observed color of the ball there are added/removed balls due to the following rules.
If a white ball has been drawn, we put into the urn α white balls and β black balls, but if a black ball has been
drawn, we put into the urn γ white balls and δ black balls. The values α, β, γ, δ ∈ Z are fixed integer values and
the urn model is specified by the 2× 2 ball replacement matrix M =

( α β
γ δ

)
. This definition extends naturally

also to higher dimensions.

Urn models are simple, useful mathematical tools for describing many evolutionary processes in diverse
fields of application such as in the analysis of algorithms and data structures, in statistics and in genetics. Due
to their importance in applications, there is a huge literature on the stochastic behavior of urn models; see
for example Johnson and Kotz [12], Kotz and Balakrishnan [14] or Mahmoud [18]. Recently, a few different
approaches have been proposed, which yield deep and far-reaching results for very general urn models; see the
recent works of Flajolet et al. [4, 5], Janson [10, 11], or Pouyanne [19, 20] and the references therein.

Most papers in the literature impose the so-called tenability condition on the ball replacement matrix, so that
the process can be continued ad infinitum, or no balls of a given color being completely removed. However, in
some applications, there are urn models with a very different nature, which we will refer to as diminishing urn
models. Examples of such urn models are, e.g., the pills problem urn and the sampling without replacement
urn, which are considered here, but also the OK Corral urn and the Cannibal urn; see, e.g., [9] for a detailed
description. Such kind of urn models can be described as follows. We consider Pólya-Eggenberger urn models
specified by a transition matrixM =

( α β
γ δ

)
, but in addition there is a set of absorbing statesA ⊆ S contained in

a state space S ⊆ N× N. The urn contains m black balls and n white balls at the beginning, with (m,n) ∈ S.
Then the urn evolves by successive draws at discrete instances according to the transition matrix until an
absorbing state s = (j, k) ∈ A is reached, namely, until the urn contains exactly j black balls and k white
balls. Then the urn process stops. We only call an urn model “diminishing urn model” if it is guaranteed that
from any initial state (m,n) ∈ S (starting with m black balls and n white balls) we will reach an absorbing
state s ∈ A after a finite number of draws. Furthermore we always assume that the state space S is chosen in a
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suitable way, i.e., it must be guaranteed that, when starting at (m,n) ∈ S \ A and we make a draw leading to
m1 black and n1 white balls, we stay in our state space: (m1, n1) ∈ S.

1.2. Urn models and lattice paths. A (unweighted) lattice path is the drawing of a sum of vectors from Z×Z
in Z×Z, where the vectors belong to a finite fixed set V , and where a certain point s ∈ Z×Z is chosen as the
origin of the path (often the point (0, 0) ∈ Z× Z is chosen). If either all vectors are in N× Z or all vectors are
in (−N)×Z, the path is called directed (the path is going “to the right” or “to the left”). A study of lattice paths
by applying methods from analytic combinatorics has been carried our recently by Banderier and Flajolet [1].

It is well known that the urn histories of Pólya-Eggenberger urn models with ball replacement matrix M =( α β
γ δ

)
can be interpreted as weighted lattice paths in Z × Z, see, e.g., [4]. This description of the evolution

of an urn is given as follows. If the urn contains m black balls and n white balls and we select a white ball
(which happens with probability n

m+n ), then this corresponds to a step from (m,n) to (m + α, n + β), to
which the weight n

m+n is associated; and if we select a black ball (which happens with probability m
m+n ),

this corresponds to a step from (m,n) to (m + γ, n + δ) (with weight m
m+n ). The weight of a path after t

successive draws consists of the product of the weights of every step. Of course, the weight of a path P =
((m0, n0), (m1, n1), . . . , (m`, n`)

)
corresponds to the probability that the urn starts with m0 black and n0

white balls and contains after the t-th draw exactly mt black and nt white balls.

1.3. Area under lattice paths associated with urn models. The study of the area under lattice paths, mea-
sured either in a continuous way or in a discrete way as the number of lattice points below the path, has a long
history; we refer to the work of Banderier and Gittenberger [2] and the references therein. Further we want to
point to connections between the area under lattice paths and the area under a Browian excursion, see Louchard
[17]. Considering the natural description of the evolution of diminishing urns as weighted lattice paths this nat-
urally leads to the following question: For a given diminishing urn model with replacement matrix M , state
space S and absorbing states A, what can be said about the (discrete) area1 below the sample paths associated
with the diminishing urn? Such questions relate two widely studied topics in combinatorics and probability
theory, namely lattice path enumeration and Pólya-Eggenberger urn models.

The aim of this paper is to study the distributional behaviour of the area under lattice paths associated with
a whole class of triangular diminishing Pólya-Eggenberger urn models. We consider diminishing urn models
with ball replacement matrix M given by

M =
(
−a 0
c −d

)
, with a, d ∈ N and c = p · a, p ∈ N0,

2 (1)

state space S := {(d ·m, a · n)|m,n ∈ N0}, and the set of absorbing states A := {(0, a · n)|n ∈ N0}. The
steps of weighted lattice paths associated with this diminishing urn model are illustrated in Figure 1.
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(dm,an)

(dm,a(n-1))

(d(m-1),an)
dm
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an
dm+an

dm
dm+an

FIGURE 1. The steps associated with M =
(−a 0
c−d
)

for c = 0 and c = p · a > 0, respectively.

Let us consider now a weighted lattice path P =
(
(m0, n0), (m1, n1), . . . , (m`, n`)

)
, with

(m0, n0) = (dm, an) and (m`, n`) = (0, ak), associated with the urn model with ball replacement matrix M
given by (1), which starts at (dm, an) ∈ S and ends at the absorbing state (0, ak) ∈ A. We define then the

1It is natural to measure the discrete area as the number of points of the state space S ⊆ N×N, which are below a certain sample path.
2Throughout this work we use the notation N := {1, 2, 3, . . . } and N0 := {0, 1, 2, . . . }.
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discrete area under such a weighted lattice path P as the number points of the state space S (with a positive
x-coordinate), which are below the path P . To be more precise the discrete area under the lattice path P will
be defined as follows:

|{(dm̃, añ) ∈ S | 0 < m̃ ≤ m and añ < mt, for all (mt, nt) ∈ P with mt = dm̃}| .
Thus the discrete area can be interpreted as the number of rectangles with side lengths d and a, which fit below
the lattice path P . The continuous area under the lattice path P will be defined naturally as the area of the
subset of R2 enclosed by the lines x = 0, y = 0, x = dm, and the curve obtained by connecting consecutive
points of P by straight lines. These notions of area are illustrated in Figure 2.
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FIGURE 2. An example of a weighted path from (6, 2) to the absorbing state (0, 3) for the
pills problem M =

(−1 0
1−1

)
and the vertical absorbing axis A = {(0, n) : n ≥ 0}. The
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We introduce now the random variable Aan,dm, which counts the discrete area under weighted lattice paths
associated with the urn model M =

(−a 0
c −d

)
, with a, d ∈ N and c = p · a, p ∈ N0, starting with a · n

white and d ·m black balls. Moreover, we denote with Can,dm the corresponding random variable counting
the continuous area under weighted lattice paths.

This paper is now devoted to a study of the limiting distribution behaviour of the random variables Aan,dm
and Can,dm for diminishing urn models, where the urns evolve according to a ball replacement matrix M
given by (1). We will see that different limiting distributions arise according to the growth of m and n, and
we are able to give a full characterization of the limiting behaviour of the random variables considered, for
max(m,n) → ∞. It is evident that the distributions of the discrete area Aan,dm and the continuous area
Can,dm are related by the linear equation

Aan,dm =
Can,dm − mcd

2

ad
.

Hence, it is justified that we restrict our analysis solely to the discrete area, since all the obtained results can be
transferred easily to corresponding results for the continuous area.

Note that when starting with a · n + q white balls, where 1 ≤ q < a, it turn out that the urn model is no
longer well defined. It may happen that at some stage only q white balls are left, but when choosing a white
ball we are forced to remove a white balls. The same problem occurs when the parameter c is not a multiple of
the parameter a in the definition of the ball replacement matrix. Thus it is natural to restrict our considerations
to the instances given in the definition of (1).

1.4. Motivation. Besides our theoretical interest in combining studies concerning the area under lattice paths
and studies concerning diminishing urn models, our analysis of the class of diminishing urns with a ball re-
placement matrix given by (1) is motivated by two particular urn models contained in this class, namely the
pills problem urn model and the sampling without replacement urn. Our studies concerning the area of lattice
paths associated to these urn models will give more insight into the behaviour of these fundamental urns.

The pills problem urn is given by (1) for the particular choice a = d = c = 1, i.e., by the ball replacement
matrix M =

(−1 0
1 −1

)
. The so-called “pills problem” was originally proposed by Knuth and McCarthy in
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[13], p. 264, and later solved by Hesterberg [8]. It can be formulated as computing the expected number of
white balls remaining in the urn when all black balls are removed starting with m black and n white balls.
The problem has been revisited by Brennan and Prodinger in [3]. Recently, a distributional analysis of the
parameter “number of white balls remaining in the urn when all black balls are removed starting with m black
and n white balls” for the pills problem urn model has been given by Hwang et al [9] using a generating
functions approach, leading to a full characterization of the limiting distributions appearing (depending on the
growth of m and n). Furthermore, a general study of the behaviour of this parameter for diminishing urn
models with a ball replacement matrix given by (1) was conducted in [15].

The sampling without replacement urn is a simple fundamental urn model corresponding to the ball replace-
ment matrix M =

(−1 0
0 −1

)
.

1.5. Notation and plan of the paper. We denote by Xn
L−→ X the weak convergence, i.e., the convergence

in distribution, of the sequence of random variables Xn to a random variable X . We use the notation X L= Y
for the equality in distribution of random variables X and Y . We denote with

[
n
k

]
the signless Stirling numbers

of the first kind and with
{
n
k

}
the Stirling numbers of the second kind. Furthermore, we use the abbreviation

x` := x(x − 1) · · · (x − ` + 1) and x` := x(x + 1) · · · (x + ` − 1) for the falling and rising factorials,
respectively. The floor function bxc of a real number x is defined as the largest integer q smaller or equal to x,
i.e., bxc := max{q ∈ Z | q ≤ x}. Moreover, we frequently use the shorthand notation e[s]n,m := E(Asan,dm).

Let P (x) =
∑n
i=0 anx

n, with an 6= 0, denote a polynomial P (x) ∈ R[x]. We use the notation degP (x) =
n for the degree of P (x), and lcP (x) = [xn]P (x) = an for the leading coefficient of P (x).

The main result of this work is a full characterization of the limiting distribution behaviour of Aan,dm
depending on the ball replacement matrix M and the initial state (dm, an), for max(m,n) → ∞, which is
given in the next section. In Section 3 we study the structure of the moments of Aan,dm and obtain a precise
recursive description of the moments.. In Sections 4-5 we provide proofs of the limiting distribution results by
using the method of moments, i.e., by applying the Theorem of Fréchet and Shohat (the second central limit
theorem), see, e.g., [16].

2. RESULTS

Theorem 1. The expectation and the variance of the random variableAan,dm, counting the discrete area under
lattice paths associated with diminishing urn models with a ball replacement matrix defined in equation (1),
are given by the following exact formulæ.

E(Aan,dm) =
nm

1 + a
d

+
cm(m− 1)
2a(1 + a

d )
,

V(Aan,dm) =
a2d

(a+ d)2(2a+ d)
mn2 +

[
ad2(2a+ 2c+ d)

(a+ d)2(2a+ d)(a+ 2d)
m2 +

ad(a2 + ad− 2cd+ d2)
(a+ d)2(2a+ d)(a+ 2d)

m

]
n

+
cd2(2a+ 2c+ d)

3(a+ d)2(2a+ d)(a+ 2d)
m3 +

cd(a2 + ac− ad− 2cd)
2(a+ d)2(2a+ d)(a+ 2d)

m2

− cd(3a2 + 3ac+ ad− 2cd+ 2d2)
6(a+ d)2(2a+ d)(a+ 2d)

m.

Theorem 2. Depending on the growth ofm and n, we obtain for arbitrary sequences (m,n), with max(m,n)→
∞, the following complete characterization of the limiting distributions appearing for the discrete areaAan,dm
under lattice paths associated with diminishing urn models with a ball replacement matrix defined in equa-
tion (1).

I. : Instance c = 0: we have do distinguish between the following three cases.
(a) For sequences (m,n), such that m ∈ N is fixed and n → ∞, the normalized random variable

Aan,dm/n converges in distribution to a random variable Xm = Xm(a, d), which is character-
ized by the (sequence of) distributional equations
Aan,dm
n

L−→ Xm, with Xm
L= Ym · (1 +Xm−1), for m ≥ 1, X0 = 0,
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where Ym
L= B

(
dm
a , 1

)
, being independent of X0, X1, . . . , with B(α, β) denoting a Beta-

distributed random variable with parameters α and β. Equivalently, Xm can be characterized as
follows:

Xm
L=

m∑
k=1

k−1∏
`=0

Ym−`,

with Ym
L= B

(
dm
a , 1

)
, and the random variables Ym being mutually independent.

(b) For sequences (m,n), such that min(m,n)→∞, the centered and normalized random variable
A∗an,dm is asymptotically Gaussian distributed:

A∗an,dm :=
Aan,dm − E(Aan,dm)√

V(Aan,dm)
L−→ N (0, 1),

where N (0, 1) denotes the standard normal distribution.
(c) For sequences (m,n), such that n is fixed andm→∞, the normalized random variableAan,dm/m

converges in distribution to a random variable Wn = Wn(a, d), which is characterized by the
(sequence of) distributional equations
Aan,dm
m

L−→Wn, with Wn
L= Wn−1Zn + n

(
1− Zn

)
, for n ≥ 1, W0 = 0,

where Zn
L= B

(
an
d , 1

)
, being independent of W0, W1, . . . , with B(α, β) denoting a Beta-

distributed random variable with parameters α and β. Equivalently, the random variable Wn =
Wn(a, d) is related to the random variable Xm = Xm(a, d) defined above due to the equation

Wn(a, d)
L= n−Xn(d, a), and consequently characterized via

Wn(a, d)
L= n−

n∑
k=1

k−1∏
`=0

Zn−`,

where the random variables Zn
L= B

(
an
d , 1

)
are mutually independent.

II. : Instance c 6= 0: we have do distinguish between the following two cases.
(a) For sequences (m,n), such thatm ∈ N is fixed and n→∞, we have the same limiting behaviour

of Aan,dm as for the case I. (a).
(b) For sequences (m,n), such that m → ∞ and arbitrary n (in particular, n might be fixed or

n = n(m) can arbitrarily grow with m), the centered and normalized random variable A∗an,dm
is asymptotically Gaussian distributed:

A∗an,dm :=
Aan,dm − E(Aan,dm)√

V(Aan,dm)
L−→ N (0, 1).

Remark 1. In all three cases we have convergence of all integer moments. In the case where m is fixed and n
is tending to infinity, and for the instance c = 0 also the case where n is fixed and m is tending to infinity, we
have alternative characterizations of the limiting distributions appearing in terms of recurrence relations for the
moments of Xm(a, d) and Wn(a, d), which are equivalent to the stated distributional equations, see Section 4.

3. A RECURSIVE APPROACH FOR THE MOMENT STRUCTURE

3.1. A recurrence for the discrete area. The starting point of our analysis is the following recursive distri-
butional equation for the random variable Aan,dm, which counts the discrete area under weighted lattice paths
associated to diminishing urn models with a ball replacement matrix defined in (1). This equation is obtained
immediately by considering the urn after the first draw when starting at state (dm, an). We obtain then that the
random variable Aan,dm satisfies the distributional equation

Aan,dm
L= In,mAa(n−1),dm + (1− In,m)(A′a(n+p),d(m−1) + n), with Aan,0 = 0, (2)

where In,m denotes the indicator variable of the event “choosing a white ball”,

P{In,m = 1} =
an

an+ dm
, P{In,m = 0} =

dm

an+ dm
,
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with In,m being independent of (Aan,dm)n,m≥0 and (A′an,dm)n,m≥0, which are independent copies of each
other.

3.2. Recurrence relations for the moments. In the next step we consider the s-th moments ofAan,dm, which
will be denoted by e[s]n,m := E(Asan,dm). Using the distributional recurrence (2) we obtain immediately the
following recurrence for these s-th moments, s ≥ 1:

e[s]n,m =
an

an+ dm
e
[s]
n−1,m +

dm

an+ dm

s∑
`=0

(
s

`

)
n`e

[s−`]
n+p,m−1, for n ≥ 0, m ≥ 1, (3)

with initial values e[0]n,m = 1, for n,m ≥ 0, and e[s]n,0 = 0, for n ≥ 0 and s ≥ 1.

Our aim is an asymptotic study of the moments e[s]n,m, which are given as solutions of recurrence (3). As pre-
liminary steps we will prove results concerning the exact solutions for e[s]n,m, considered as functions depending
on n, m and s. The following proposition states that e[s]n,m has a rather simple dependence on n, namely e[s]n,m
can be considered as a polynomial in n of degree at most s, with certain recursively computable coefficients.

Proposition 1. The moments e[s]n,m = E(Asan,dm) of the random variable Aan,dm satisfy the expansion

e[s]n,m =
s∑
`=0

ϕs,`,mn
`,

with coefficients ϕs,`,m that can be computed recursively as follows, where the initial values are given by
ϕs,`,0 = 0, for 0 ≤ ` ≤ s, s ≥ 1, and ϕ0,0,m = 1, for m ≥ 0.

• For 1 ≤ ` ≤ s and m ≥ 1 the values ϕs,`,m satisfy the following recurrence:

ϕs,`,m =
1

a`
(
m+ a`

d
m

) m∑
k=1

(
k + a`

d − 1
k

)
ψs,`,k, (4a)

with

ψs,`,m := a

s∑
k=`+1

(
k

`− 1

)
(−1)k−`−1ϕs,k,m + dm

s∑
k=`+1

(
k

`

)
pk−`ϕs,k,m−1

+ dm
∑̀
i=1

(
s

i

) s−i∑
k=`−i

(
k

`− i

)
ϕs−i,k,m−1p

k−`+i.

• For ` = 0 and m ≥ 1 the values ϕs,`,m satisfy the following recurrence:

ϕs,0,m =
m−1∑
k=0

ψs,0,k, with ψs,0,m :=
s∑
i=1

ϕs,i,mp
i. (4b)

Remark 2. If c = p · a = 0 it trivially holds e[s]0,m = 0, for s ≥ 1, which implies that ϕs,0,m = 0, for c = 0
and s ≥ 1. Of course, one also obtains this result by considering the recurrences (4) for the instance c = 0.

Proof. First we remark that due to e[0]n,m = 1, for m,n ≥ 0, Proposition 1 holds for s = 0 leading to values
ϕ0,0,m = 1, for m ≥ 0. Furthermore, due to e[s]n,0 = 0, for all s ≥ 1 and n ≥ 0, we obtain that Proposition 1

also holds for e[s]n,0, with s ≥ 1, leading to values ϕs,`,0 = 0, for 0 ≤ ` ≤ s and s ≥ 1.

In order to prove the stated expansion of e[s]n,m for s ≥ 1, m ≥ 1 and n ≥ 0 we start with the Ansatz:
e
[s]
n,m =

∑s
k=0 ϕs,k,mn

k and plug it into recurrence (3). This leads to the following equation:

(an+ dm)
s∑

k=0

ϕs,k,mn
k = an

s∑
k=0

ϕs,k,m(n− 1)k + dm

s∑
`=0

(
s

`

)
n`

s−∑̀
k=0

ϕs−`,k,m−1(n+ p)k. (5)

By comparing the coefficients of n`, for 0 ≤ ` ≤ s+1, in equation (5) we obtain the following system of s+2
equations:

ϕs,s,m = ϕs,s,m, for ` = s+ 1, (6a)
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aϕs,`−1,m + dmϕs,`,m = a

s∑
k=`−1

(−1)k−`+1ϕs,k,m

(
k

`− 1

)
+ dm

s∑
k=`

(
k

`

)
pk−`ϕs,k,m−1 (6b)

+ dm
∑̀
i=1

(
s

i

) s−i∑
k=`−i

(
k

`− i

)
pk−`+1ϕs−i,k,m−1, for 1 ≤ ` ≤ s,

ϕs,0,m =
s∑

k=0

pkϕs,k,m−1, for ` = 0, (6c)

where we already determined the initial values ϕs,i,0 = 0, for 0 ≤ i ≤ s and s ≥ 1 .
Considering (6b) it turns out that the term ϕs,`−1,m on the left hand side of (6b) cancels with the first

summand of
∑s
k=`−1(−1)k−`+1ϕs,k,m

(
k
`−1

)
on the right hand side of (6b). This allows to rewrite equations

(6b) and (6c) as follows:

ϕs,`,m =
dm

dm+ a`
ϕs,`,m−1 +

1
dm+ a`

ψs,`,m, for 1 ≤ ` ≤ s, (7a)

with ψs,`,m := a

s∑
k=`+1

(
k

`− 1

)
(−1)k−`−1ϕs,k,m + dm

s∑
k=`+1

(
k

`

)
pk−`ϕs,k,m−1

+ dm
∑̀
i=1

(
s

i

) s−i∑
k=`−i

(
k

`− i

)
ϕs−i,k,m−1p

k−`+i,

and

ϕs,0,m = ϕs,0,m−1 + ψs,0,m−1, with ψs,0,m :=
s∑
i=1

ϕs,i,mp
i. (7b)

Equations (7a) and (7b) can be considered as linear first order recurrences with respect to the parameter m,
whose solutions are given by the following explicit expressions:

ϕs,`,m =
m−1∑
k=0

(
m
k

)
ψs,`,m−k(m+ a`

d
k

)
(d(m− k) + a`)

=
m∑
k=1

m!ψs,`,k
k!d(m+ a`

d )m−k+1

=
1

a`
(
m+ a`

d
m

) m∑
k=1

(
k + a`

d − 1
k

)
ψs,`,k, for 1 ≤ ` ≤ s and m ≥ 1, (8a)

ϕs,0,m =
m−1∑
k=0

ψs,0,k, for s ≥ 1 and m ≥ 1. (8b)

When considering ψs,`,k as defined in equations (7a) and (7b) it is apparent that in order to compute the
values ϕs,`,m as given in equations (8a) and (8b) one only requires values ϕr,i,k, with 0 ≤ k ≤ m and either
0 ≤ r < s or (r = s and ` + 1 ≤ i ≤ s). Hence we obtain by a simple induction argument that the system
of recurrences (8), together with the initial values ϕ0,0,m = 1, for m ≥ 0 and ϕs,`,0 = 0, for 0 ≤ ` ≤ s and
s ≥ 1, leads to a unique solution for all values ϕs,`,m. This shows that the Ansatz e[s]n,m =

∑s
`=0 ϕs,`,mn

` is
indeed justified, and that the values ϕs,`,m, are determined recursively by (8). These recurrences are given in
Proposition 1.

�

3.3. The structure of the values ϕs,`,m. We continue now our studies on the structure of the moments e[s]n,m,
which are given as solutions of recurrence (3) and consider the values ϕs,`,m appearing in Proposition 1.

To do this we require the following two lemmas concerning the sums appearing in (4).

Lemma 1. For r ≥ 1 and ` ≥ 1 the sum

S(m) :=
1

a`
(
m+ a`

d
m

) m∑
k=1

(
k + a`

d − 1
k

)
kr
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can be written as a polynomial in m of degree r, degS(m) = r, whose constant term vanishes:

S(m) =
r∑
i=1

αim
i, with αi =

r∑
j=i

{
r
j

}[
j
i

]
(−1)j−i

dj + a`
.

The leading coefficient αr = lcS(m) is given by αr = 1
dr+a` .

Proof. Since r ≥ 1 we can write

kr =
r∑
j=1

{
r

j

}
kj ,

and consider the sums

Sj(m) :=
1

a`
(
m+ a`

d
m

) m∑
k=1

(
k + a`

d − 1
k

)
kj , for j ≥ 1.

We obtain
m∑
k=1

(
k + a`

d − 1
k

)
kj =

m∑
k=j

(
k + a`

d − 1
)k

(k − j)!
=
m−j∑
k=0

(
k + j + a`

d − 1
)k+j

k!

=
m−j∑
k=0

(
k + j + a`

d − 1
)k(

j + a`
d − 1

)j
k!

= j!
(
j + a`

d − 1
j

)m−j∑
k=0

(
k + j + a`

d − 1
k

)
,

and further

Sj(m) =
j!
(j+ a`

d −1
j

)
a`
(
m+ a`

d
m

) m−j∑
k=0

(
k + j + a`

d − 1
k

)
=
j!
(j+ a`

d −1
j

)
a`
(
m+ a`

d
m

) (m+ a`
d

j + a`
d

)
=

mj

dj + a`
.

Thus we get

S(m) =
r∑
j=1

{
r

j

}
Sj(m) =

r∑
j=1

{
r

j

}
mj

dj + a`
=

r∑
i=1

mi
r∑
j=i

{
r
j

}[
j
i

]
(−1)j−i

dj + a`
,

which proves Lemma 1, where we used

mj =
j∑
i=1

[
j

i

]
(−1)j−imi, for j ≥ 1.

The leading coefficient of S(m) is immediately obtained by evaluating the appearing expression at i = r. �

The next lemma is very well known, so we state it without proof.

Lemma 2. For r ≥ 0 the sum

S(m) :=
m−1∑
k=0

kr

can be written as a polynomial in m of degree r + 1, degS(m) = r + 1, whose constant term vanishes:

S(m) =
r+1∑
i=1

αim
i, with αi =

r+1∑
j=i

{
r

j − 1

}[
j

i

]
(−1)j−i

j
.

The leading coefficient αr+1 = lcS(m) is given by αr+1 = 1
r+1 .

We are going to describe now the values ϕs,`,m, when we consider them as functions depending on m. It
turns out that the functions ϕs,`(m) := ϕs,`,m are, for 0 ≤ ` ≤ s, polynomials in m.

Proposition 2. The functions ϕs,`(m) := ϕs,`,m are, for 0 ≤ ` ≤ s, polynomials in m. The degree of these
polynomials depends on whether c = 0 or c 6= 0:
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• The case c = 0: We have the initial values ϕ0,0(m) = 1 and ϕs,0(m) = 0, for s ≥ 1. Furthermore,
for s ≥ 1 and 1 ≤ ` ≤ s, the function ϕs,`(m) is a polynomial in m of degree ≤ s whose constant
term vanishes:

ϕs,`(m) =
s∑
j=1

ϑs,`,jm
j ,

where the coefficients ϑs,`,j are certain computable constants satisfying a system of recurrences. In
particular, the leading coefficients ϑs,`,s satisfy, for 1 ≤ ` ≤ s, the following recurrence relation:

ϑs,`,s =
sϑs−1,`−1,s−1

s+ a`
d

+
a

d

s∑
k=`+1

(
k

`− 1

)
(−1)k−`−1 ϑs,k,s

s+ a`
d

, for 2 ≤ ` ≤ s− 1,

ϑs,1,s =
a

d

s∑
k=2

(−1)k
ϑs,k,s
s+ a

d

, ϑs,s,s =
1

(1 + a
d )
s
.

• The case c 6= 0: We have the initial value ϕ0,0(m) = 1. Furthermore, for s ≥ 1 and 0 ≤ ` ≤ s, the
function ϕs,`(m) is a polynomial in m of degree ≤ 2s− ` whose constant term vanishes:

ϕs,`(m) =
2s−`∑
j=1

ϑs,`,jm
j ,

where the coefficients ϑs,`,j are certain computable constants satisfying a system of recurrences. In
particular, the leading coefficients ϑs,`,2s−` satisfy, for 0 ≤ ` ≤ s and s ≥ 1, the following recurrence
relation:

ϑs,`,2s−` =
p(`+ 1)ϑs,`+1,2s−`−1 + sϑs−1,`−1,2s−`−1

2s− `+ a`
d

, for 1 ≤ ` ≤ s− 1,

ϑs,0,2s =
pϑs,1,2s−1

2s
, ϑs,s,s =

1
(1 + a

d )
s
.

Proof. We distinguish between the cases c = 0 and c 6= 0.
• The case c = 0. The initial values ϕ0,0(m) = ϕ0,0,m = 1 and ϕs,0(m) = ϕs,0,m = 0, for s ≥ 1, have
already been computed.

Next we consider the functions ϕs,s(m) = ϕs,s,m, for s ≥ 1, where recurrence (4a) leads to

ϕs,s(m) =
1

as
(
m+ as

d
m

) m∑
k=1

(
k + as

d − 1
k

)
ψs,s(k), (9)

with

ψs,s(m) = dm

s∑
i=1

(
s

i

)
ϕs−i,s−i(m− 1). (10)

To show that ϕs,s(m) is, for s ≥ 0, a polynomial in m of degree ≤ s, i.e., degϕs,s(m) ≤ s, one can use an
easy induction argument: for s = 0 this trivially holds. We assume now, for s ≥ 1, that we have shown this
statement for all j, with 0 ≤ j < s. Then ϕs−i,s−i(k−1) is a polynomial in k−1, and thus also in k, of degree
≤ s − i, for 1 ≤ i ≤ s. This implies that ψs,s(m) is a polynomial in m of degree ≤ s, which has a vanishing
constant term: [m0]ψs,s(m) = 0, due to the factor m in (10). With Lemma 1 we obtain then that ϕs,s(m) is a
polynomial in m of degree ≤ s whose constant term vanishes.

Considering (10) it is easily seen that the leading coefficient of ψs,s(m) is, for s ≥ 1, given as follows:

[ms]ψs,s(m) = dsϑs−1,s−1,s−1,

which leads due to Lemma 1 to the following recurrence for [ms]ϕs,s(m) = ϑs,s,s:

ϑs,s,s =
dsϑs−1,s−1,s−1

ds+ as
, s ≥ 1, ϑ0,0,0 = 1.

This immediately gives

ϑs,s,s =
1(

1 + a
d

)s ,
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which is stated in Proposition (2).
To show that ϕs,`(m) = ϕs,`,m is, for 1 ≤ ` < s, a polynomial in m of degree ≤ s we again use induction;

we assume now that Proposition 2 holds for all ϕt,j(m), with 0 ≤ j ≤ t < s or (t = s and ` < j ≤ s.
Due to c = pa = 0 the recurrence (4a) leads to

ϕs,`(m) =
1

a`
(
m+ a`

d
m

) m∑
k=1

(
k + a`

d − 1
k

)
ψs,`(k), (11)

with

ψs,`(m) = a

s∑
k=`+1

(
k

`− 1

)
(−1)k−`−1ϕs,k(m) + dm

∑̀
i=1

(
s

i

)
ϕs−i,`−i(m− 1). (12)

Using this induction hypothesis we obtain that ψs,`(m) as given by (12) is a polynomial in m of degree ≤ s
whose constant term vanishes. With Lemma 1 this also shows that ϕs,`(m) is a polynomial in m of degree ≤ s
whose constant term vanishes. When considering the leading coefficient of ψs,`(m), which is given as follows:

[ms]ψs,`(m) = dsϑs−1,`−1,s−1 + a

s∑
k=`+1

(
k

`− 1

)
(−1)k−`−1ϑs,k,s, for ` ≥ 2,

[ms]ψs,1(m) = a

s∑
k=2

(−1)kϑs,k,s,

we obtain by applying Lemma 1 the recurrences for the leading coefficient ϑs,`,s as given in Proposition 2 and
the proof of this proposition for the instance c = 0 is completed.

• The case c 6= 0. The initial values ϕ0,0(m) = ϕ0,0,m = 1 have already been computed.
The first part of the proposition concerning the functions ϕs,s(m), s ≥ 1, and the leading coefficients ϑs,s,s

follows from the corresponding statements for c = 0, which has been proven above, since in the proof we do
not require the assumption c = 0 and thus it also holds for c 6= 0.

To show that ϕs,`(m) = ϕs,`,m is, for 0 ≤ ` < s, a polynomial in m of degree ≤ 2s− ` we use induction;
we assume now that Proposition 2 holds for all ϕt,j(m), with 0 ≤ j ≤ t < s or (t = s and ` < j ≤ s.

Since ϕs,`(m) satisfies different recurrences for the instances ` > 0 and ` = 0 we have to consider both
cases separately. For 0 < ` < s recurrence (4a) gives

ϕs,`(m) =
1

a`
(
m+ a`

d
m

) m∑
k=1

(
k + a`

d − 1
k

)
ψs,`(k), (13)

with

ψs,`(m) := a

s∑
k=`+1

(
k

`− 1

)
(−1)k−`−1ϕs,k(m) + dm

s∑
k=`+1

(
k

`

)
pk−`ϕs,k(m− 1)

+ dm
∑̀
i=1

(
s

i

) s−i∑
k=`−i

(
k

`− i

)
ϕs−i,k(m− 1)pk−`+i. (14)

Using the induction hypothesis we easily get that the first term of ψs,`(m) as given by (14) is a polynomial in
m of degree ≤ 2s− `− 1, whereas the second and third term are polynomials in m of degree ≤ 2s− `. Thus
ψs,`(m) is a polynomial in m of degree ≤ 2s − ` and, again by using the induction hypothesis and equation
(14), that the constant term of ψs,`(m) vanishes. Thus by applying Lemma 1 we get that also ϕs,`(m) is, for
1 ≤ ` < s a polynomial in m of degree ≤ 2s− ` whose constant term vanishes.

Considering (14) we obtain easily that the leading coefficient [m2s−`]ψs,`(m) ofψs,`(m) is given as follows:

[m2s−`]ψs,`(m) = d(`+ 1)pϑs,`+1,2s−`−1 + dsϑs−1,`−1,2s−`−1,

which shows, by applying Lemma 1, the corresponding recurrences for the leading coefficient ϑs,`,2s−`, 1 ≤
` ≤ s− 1, as given in Proposition 2.
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It remains to consider the case ` = 0. Due to (4b) the functions ϕs,0(m) satisfy the recurrence

ϕs,0(m) =
m−1∑
k=0

ψs,0(k), with ψs,0(m) =
s∑
i=1

ϕs,i(m)pi. (15)

Using the induction hypothesis we obtain that ψs,0(m) is a polynomial in m of degree ≤ 2s − 1. Applying
Lemma 2 we get then that ϕs,0(m) is, for s ≥ 1, a polynomial in m of degree ≤ 2s whose constant term
vanishes.

Furthermore, we easily obtain that the leading coefficient [m2s−1]ψs,0(m) ofψs,0(m) is given by pϑs,1,2s−1,
which also shows, by applying Lemma 2, the corresponding recurrence for the leading coefficient ϑs,0,2s,
s ≥ 1, as given in Proposition 2. This completes the proof of Proposition 2.

�

3.4. The structure of the s-th moments of Aan,dm. We summarize now our findings of the previous subsec-
tions concerning the explicit structure of e[s]n,m, i.e., the s-th moments of Aan,dm.

Proposition 3. The s-th moments e[s]n,m = E(Asan,dm) of the discrete area Aan,dm under lattice paths associ-
ated with diminishing urn models with a ball replacement matrix defined in (1) are polynomials in n and m,
where the degree depends on whether c = 0 or c 6= 0.

The functions ϕs,`(m) := ϕs,`,m are, for 0 ≤ ` ≤ s, polynomials in m. The degree of these polynomials
depends on whether c = 0 or c 6= 0:

• The case c = 0: We have

e[0]n,m = 1, e[s]n,m =
s∑
`=1

s∑
j=1

ϑs,`,jn
`mj ,

where the coefficients ϑs,`,j are certain computable constants satisfying a system of recurrences. The
recurrence for the leading coefficients ϑs,`,s, with 1 ≤ ` ≤ s, is given in Proposition 2.

• The case c 6= 0: We have

e[0]n,m = 1, e[s]n,m =
s∑
`=0

2s−`∑
j=1

ϑs,`,jn
`mj , for s ≥ 1,

where the coefficients ϑs,`,j are certain computable constants satisfying a system of recurrences. The
recurrence for the leading coefficients ϑs,`,2s−`, with 0 ≤ ` ≤ s and s ≥ 1, is given in Proposition 2.

Finally, the exact values for the expectation and the variance, as given in Theorem 1, are obtained by straight-
forward computations, which are omitted here.

4. PROOFS OF THE LIMITING DISTRIBUTIONS OBTAINED WITHOUT CENTERING

In this section we give the proof of those limiting distribution results in Theorem 2 for the discrete area
Aan,dm under lattice paths associated with diminishing urn models with a ball replacement matrix defined in
(1), which can be obtained without centering.

4.1. The case n tending to infinity, with m fixed and arbitrary c. In the case of arbitrary but fixed m ∈ N
and n→∞ we proceed by applying Proposition 1. As a consequence of this proposition the moments satisfy
the asymptotic expansion

E(Asan,dm) = e[s]n,m =
s∑
`=0

ϕs,`,mn
` = nsϕs,s,m

(
1 +O(n−1)

)
,

with values ϕs,s,m given recursively by

ϕs,s,m =
1

as
(
m+ as

d
m

) m∑
k=1

(
k + as

d − 1
k

)[
dk

s∑
i=1

(
s

i

)
ϕs−i,s−i,k−1

]
, for s ≥ 1, ϕ0,0,m = 1. (16)
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Furthermore, we obtain after normalization the expansion

E
((Aan,dm

n

)s) =
e
[s]
n,m

ns
= ϕs,s,m

(
1 +O(n−1)

)
.

Hence the s-th moments of the scaled random variable Aan,dm/n converge, for m fixed and n → ∞, to the
values ϕs,s,m as given by (16). Due to obvious geometric reasons Aan,dm is bounded by n+ (n+ p) + (n+
2p) + · · ·+ (n+ (m− 1)p) = nm+ pm(m− 1)/2. Thus Aan,dm ≤ 2mn, for m fixed and n large enough,
which shows

ϕs,s,m = lim
n→∞

E
((Aan,dm

n

)s) ≤ (2m)s.

Thus it follows by an application of Carlemans criterion that the sequence of moments (ϕs,s,m)s≥1 as given by
(16) uniquely describes a random variable Xm. Therefore we can apply the Theorem of Fréchet and Shohat,
which proves that Aan,dm/n converges weakly to a random variable Xm characterized by its moments:

Aan,dm
n

L−→ Xm, with E(Xs
m) = ϕs,s,m.

In order to show the characterization of Xm via the distributional equation given in Theorem 2 one simply
checks by straightforward calculations that the resulting recurrences for the sequence of the s-th moments of
Xm as defined in this theorem match with recurrence (16), which proves the distributional equation

Xm
L= Ym · (1 +Xm−1), for m ≥ 1, X0 = 0,

where Ym
L= B

(
dm
a , 1

)
being independent of X0, X1, . . . , and where B(α, β) denotes a Beta-distributed

random variable with parameters α and β. By unwinding this equation we obtain the explicit form stated
in Theorem 2. Note that on the level of the moments this correponds to the unwinding of the recurrence
relation (16) for the s-th moment ϕs,s,m of Xm.

Remark 3. In the following we also give a (non-rigorous) probabilistic argument for the distributional equation
of Xm as proven before. To do this we rewrite the distribution equation of Aan,dm as given in (2) in the
following form:

Aan,dm
L= Aa(Yn,m+p),d(m−1) + Yn,m, with Aan,0 = 0,

where

P{Yn,m = k} =

(k−1+ dm
a

k

)(
n+ dm

a
n

) , for 0 ≤ k ≤ n.

Note that the random variable Yn,m counts the contribution to Aan,dm stemming from the m-th column of the
grid N2. It can be checked easily that, for m fixed and n tending to infinity, the normalized random variable
Yn,m/n converges to a Beta distributed random variable with parameters dm/a and 1. Since we already know
that Aan,dm/n converges weakly to a random variable Xm, we expect that, by formally taking the limits in
equation

Aan,dm
n

L=
Aa(Yn,m+p),d(m−1)

Yn,m + p
· Yn,m + p

n
+
Yn,m
n

,

the random variable Xm satisfies the recursive distributional equation stated in Theorem 2. We expect that this
formal argument can be made rigorous, but we do not pursue this direction, since above we have already proven
the distributional equation using the recursive description of the moments.

4.2. The case m tending to infinity, with n fixed and c = 0. For urns with c = 0 we use, for the case n fixed
and m→∞, Proposition 3:

E(Asan,dm) = e[s]n,m =
s∑
`=1

n`
s∑
j=1

ϑs,`,jm
j ,

which gives

E
((Aan,dm

m

)s) =
s∑
`=0

n`ϑs,`,s +O
( 1
m

)
.

Hence the s-th moments of the normalized random variable Aan,dm/m converge, for n fixed and m → ∞, to∑s
`=0 n

`ϑs,`,s, where the values ϑs,`,s are certain computable constants satisfying some recurrence equations;
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see Proposition 2. For c = 0 we trivially obtain Aan,dm ≤ mn and thus the estimates E((Aan,dm/m)s) ≤ ns,
for s ≥ 1, that allows to apply Carlemans criterion to show that Aan,dm/m converges weakly to a random
variable Wn, which is characterized by the sequence of its s-th moments:

Aan,dm
m

L−→Wn, E(W s
n) =

s∑
`=0

n`ϑs,`,s.

In order to show the characterization of Wn via the distributional equation given in Theorem 2 one simply
checks again that the resulting recurrences for the sequence of the s-th moments of Wn as defined in this
theorem match with the recurrence relation for the moments ϑs,`,s stated in Proposition 2, which proves the
stated result.

Remark 4. An alternative approach to characterize the limiting distribution ofWn by using more combinatorial
arguments and a certain symmetry relation can be given also. We use there that, for the instance c = 0, any
path starting at state (dm, an) and ending at an absorbing state partitions the m · n rectangles (with length a
and d, respectively) filling the area (0, 0) ≤ (x, y) ≤ (dm, an) into two parts: one part counts of the number
of rectangles below the path (corresponding to Aan,dm), and another part counts the number of rectangles to
the left of the path (corresponding to a new random variable Fdm,an). In terms of the random variables Aan,dm
and Fdm,an we have the relation

Aan,dm + Fdm,an
L= mn or equivalently Aan,dm

L= mn− Fdm,an. (17)

Note that by a symmetry argument the random variable Fdm,an also counts the discrete area below sample
paths, starting at state (an, dm) and ending at an absorbing state, of urns associated with a ball replacement
matrix

(−d 0
0 −a

)
. Hence, for n fixed and m → ∞, we can use our earlier results (stated for m fixed and

n→∞) obtained in Subsection 4.1 and get, as a consequence, the stated distribution law

Aan,dm
m

L−→Wm(a, d), with Wm(a, d) L= n−Xn(d, a).

Remark 5. As before, we also give a (non-rigorous) probabilistic argument for the distributional equation of
Wn given in Theorem 2. We rewrite the distribution equation of Aan,dm given in (2) in the following form:

Aan,dm
L= Aa(n−1),d(m−Zn,m) + nZn,m, with Aan,0 = 0,

where

P{Zn,m = m− k} =

(k−1+ an
d

k

)(
m+ an

d
m

) , for 0 ≤ k ≤ m.

Note that the random variable Zn,m counts the contribution to Aan,dm stemming from the m-th row of the grid
N2. It can be checked easily that, for n fixed and m → ∞, the normalized random variable (m − Zn,m)/m
converges to a Beta distributed random variable with parameters an/d and 1. Hence, by formally taking the
limits of the equation below,

Aan,dm
m

L=
Aa(n−1),d(m−Zn,m)

m− Zn,m
· m− Zn,m

m
+
nZn,m
m

,

we expect the recursive distributional equation for Wn as given in Theorem 2. It should be possible to make
this formal argument rigorous but again, we do not pursue this direction, since we have already proven the
distributional equation using the recursive description of the moments.

5. PROOF OF THE NORMAL LIMIT LAWS

Here we give the proof of the Gaussian limiting distribution results for the discrete area Aan,dm stated in
Theorem 2. Again we will apply the method of moments to show these results, but in order to handle the
massive cancellations for the centered moments of Aan,dm appearing in the instance c 6= 0 and m → ∞ and
the instance c = 0 and m,n → ∞ we have to study them in detail. Thus we introduce the centered random
variable

Âan,dm := Aan,dm − E(Aan,dm) = Aan,dm −
nm

1 + a
d

− cm(m− 1)
2a(1 + a

d )
, (18)
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where we used the explicit formula for E(Aan,dm) stated in Theorem 1, and their s-th moments (i.e., the s-th
centered moments of the discrete area Aan,dm):

ê[s]n,m := E(Âsan,dm) = E
((
Aan,dm − E(Aan,dm)

)s)
. (19)

In Subsection 5.1 we give a recursive description for ên,m, which is used to show the explicit structure of
ên,m stated in Subsection 5.2-5.3. Of course, due to Proposition 3 it is obvious that the centered moments
ên,m of Aan,dm, when considering them as functions depending on m and n, are polynomials in m and n,
but it is of great importance for the approach used to show suitable bounds on the degree of the polynomials.
Furthermore we obtain a recurrence for the leading coefficients, which is studied in Subsection 5.4 leading to
an explicit formula for these leading coefficients. In Subsection 5.5-5.6 we determine asymptotic results for
the s-th centered moments of Aan,dm, which leads, after applying the Theorem of Fréchet and Shohat, to the
Gaussian limiting distribution results stated in Theorem 2.

5.1. A recurrence for the centered moments of Aan,dm. We start with the distributional equation (2) for the
discrete area Aan,dm under lattice paths associated with diminishing urns and get by using the explicit formula
for the expectation as given in Theorem 1 the following distributional equation for the centered random variable
Âan,dm := Aan,dm − E(Aan,dm):

Âan,dm
L= In,m

(
Âa(n−1),m −

md

a+ d

)
+ (1− In,m)

(
Â′an,d(m−1) +

na

a+ d

)
, (20)

where In,m denotes the indicator variable of the event “choosing a white ball”,

P{In,m = 1} =
an

an+ dm
, P{In,m = 0} =

dm

an+ dm
,

with In,m being independent of (Âan,dm)n,m≥0 and (Â′an,dm)n,m≥0, which are independent copies of each
other.

The distributional equation (20) immediately leads to the following recurrences for the s-th moments ê[s]n,m :=
E
(
Âsan,dm

)
:

ê[s]n,m =
an

an+ dm

s∑
`=0

(
s

`

)
ê
[s−`]
n−1,m

(−m)`d`

(a+ d)`
+

dm

an+ dm

s∑
`=0

(
s

`

)
ê
[s−`]
n+p,m−1

n`a`

(a+ d)`
, (21)

with initial conditions ê[s]n,0 = 0, for n ≥ 0 and s ≥ 1, and ê[0]n,m = 1, for m,n ∈ N0.

5.2. The structure of the centered moments of Aan,dm: a crude analysis. We start here to study the s-th
centered moments ê[s]n,m of Aan,dm, which are given recursively via equation (21). The following lemma states
that, when considering ê[s]n,m as a function depending on n and m, ê[s]n,m is a polynomial in n of degree at most
s, with certain recursively computable coefficients. Of course, in principle this also follows directly from the
corresponding result, i.e., Proposition (1), for the ordinary s-th moments of Aan,dm, but it will be important to
have a suitable description of the coefficients appearing and this is provided also in this lemma.

Lemma 3. The centered moments ê[s]n,m = E
(
(Aan,dm − E(Aan,dm)s

)
of the random variable Aan,dm satisfy

the expansion

ê[s]n,m =
s∑
`=0

ϕ̂s,`,mn
`,

with coefficients ϕ̂s,`,m that can be computed recursively as follows, where the initial values are given by
ϕ̂s,`,0 = 0, for 0 ≤ ` ≤ s, s ≥ 1, and ϕ̂0,0,m = 1, for m ≥ 0.

• For 1 ≤ ` ≤ s and m ≥ 1 the values ϕ̂s,`,m satisfy the following recurrence:

ϕ̂s,`,m =
1

a`
(
m+ a`

d
m

) m∑
k=1

(
k + a`

d − 1
k

)
ψ̂s,`,k, (22a)

with

ψ̂s,`,m := a

s∑
k=`+1

(
k

`− 1

)
(−1)k−`+1ϕ̂s,k,m
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+ a

s−1∑
i=`−1

i∑
k=`−1

(
s

i

)(
k

`− 1

)
(−m)s−ids−i

(a+ d)s−i
(−1)k−`+1ϕ̂i,k,m

+ dm

s−1∑
i=s−`

i∑
k=i+`−s

(
s

i

)(
k

i+ `− s

)
as−i

(a+ d)s−i
(
c

a
)s−`+k−iϕ̂i,k,m−1

+ dm

s∑
k=`+1

(
k

`

)
(
c

a
)k−`ϕ̂s,k,m−1.

• For ` = 0 and m ≥ 1 the values ϕ̂s,`,m satisfy the following recurrence:

ϕ̂s,0,m =
m−1∑
k=0

ψ̂s,0,k, with ψ̂s,0,m :=
s∑
i=1

( c
a

)i
ϕ̂s,i,m. (22b)

Proof. The proof of this lemma is completely analogous to the proof of Proposition 1 and thus we will only
sketch the computations.

In order to prove the stated expansion of ê[s]n,m for s ≥ 1, m ≥ 1 and n ≥ 0 one can use again the Ansatz:
ê
[s]
n,m =

∑s
k=0 ϕ̂s,k,mn

k and plug it into recurrence (21). This leads to the following equation:

(an+ dm)
s∑

k=0

ϕ̂s,k,mn
k = an

s∑
`=0

(
s

`

)(
− d

a+ d
m
)` s−∑̀
k=0

ϕ̂s−`,k,m(n− 1)k

+ dm

s∑
`=0

(
s

`

)( a

a+ d
n
)` s−∑̀
k=0

ϕ̂s−`,k,m−1(n+ p)k. (23)

By comparing the coefficients of n`, for 0 ≤ ` ≤ s + 1, in equation (23) we eventually obtain by simple
manipulations and using c = pa a system of s+ 1 equations (the equation obtained for ` = s+ 1 cancels out)
for ϕ̂s,`,m, m ≥ 1:

(dm+ a`)ϕ̂s,`,m = dmϕ̂s,`,m−1 + ψ̂s,`,m, for 1 ≤ ` ≤ s,

with ψ̂s,`,m := a

s∑
k=`+1

(
k

`− 1

)
(−1)k−`+1ϕ̂s,k,m

+ a

s−1∑
i=`−1

i∑
k=`−1

(
s

i

)(
k

`− 1

)
(−m)s−ids−i

(a+ d)s−i
(−1)k−`+1ϕ̂i,k,m

+ dm

s−1∑
i=s−`

i∑
k=i+`−s

(
s

i

)(
k

i+ `− s

)
as−i

(a+ d)s−i
(
c

a
)s−`+k−iϕ̂i,k,m−1

+ dm

s∑
k=`+1

(
k

`

)
(
c

a
)k−`ϕ̂s,k,m−1,

ϕ̂s,0,m = ϕ̂s,0,m−1 + ψ̂s,0,m−1, with ψ̂s,0,m =
s∑
i=1

( c
a

)i
ϕ̂s,i,m.

These recurrences can be considered as linear first order recurrences for the parameterm. Solving them justifies
the Ansatz ê[s]n,m =

∑s
k=0 ϕ̂s,k,mn

k and leads to the results stated in Lemma 3. �

We remark that, as a consequence of ê[1]n,m = 0, one obtains the values ϕ̂1,1,m = ϕ̂1,0,m = 0.

5.3. The structure of the centered moments of Aan,dm: a refined analysis. Next we are going to describe
the values ϕ̂s,`,m appearing in Lemma 3, when we consider them as functions depending on m.
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Lemma 4. The functions ϕ̂s,`(m) := ϕ̂s,`,m are, for 0 ≤ ` ≤ s, polynomials in m. We have ϕ̂0,0(m) = 1,
whereas for s ≥ 1 the constant term of ϕ̂s,`(m) vanishes. Furthermore, for all 0 ≤ ` ≤ s, the degree of the
polynomials ϕ̂s,`(m) is bounded as follows:

deg ϕ̂s,`(m) ≤
⌊3s

2
⌋
− `. (24)

Moreover, for s even, let us denote by

γs,` := lc ϕ̂s,`(m) = [m
3s
2 −`]ϕ̂s,`(m)

the leading coefficient of the polynomial ϕ̂s,`(m). Then these leading coefficients γs,` satisfy, for 0 ≤ ` ≤ s
and s ≥ 2 even, the recurrence

γs,` =
1

3ds
2 + (a− d)`

(
cd(`+ 1)

a
γs,`+1 + a

(
s

2

)( a

a+ d

)2
γs−2,`−1 + d

(
s

2

)( a

a+ d

)2
γs−2,`−2

)
, (25)

with initial value γ0,0 = 1, and γs,` = 0, for ` < 0 or ` > s.

Proof. The first part of the lemma, which states that the functions ϕ̂s,`(m) are polynomials with respect to
the parameter m, whose constant term vanish, for all s ≥ 1, is an immediate consequence of the polynomial
structure of the ordinary moments e[s]n,m = E(Asan,dm) given in Proposition 3. Of course, one could show this
result also by considering recurrence (22) for ϕ̂s,`(m) and using induction in a way analogous to the proof of
Proposition 2.

It remains to prove the degree bound for the polynomials ϕ̂s,`(m), 0 ≤ ` ≤ s, stated in Lemma 4. Since
ϕ̂0,0(m) = ϕ̂0,0,m = 1 the lemma is true for s = 0. To show that the degree bound for ϕs,`(m) also holds for
s ≥ 1 we use induction on s and `; we assume now that Lemma 4 holds for all ϕt,j(m), with 0 ≤ j ≤ t < s
or (t = s and ` < j ≤ s.

We distinguish now between the cases s odd and s even and further between 1 ≤ ` ≤ s and ` = 0.
(i) The case s odd and 1 ≤ ` ≤ s.

We use the induction hypothesis and consider the functions ψ̂s,`(m) := ψ̂s,`,m defined in Lemma (3):

ψ̂s,`(m) := a

s∑
k=`+1

(
k

`− 1

)
(−1)k−`+1ϕ̂s,k(m) (26)

+ a

s−1∑
i=`−1

i∑
k=`−1

(
s

i

)(
k

`− 1

)
(−m)s−ids−i

(a+ d)s−i
(−1)k−`+1ϕ̂i,k(m)

+ dm

s−1∑
i=s−`

i∑
k=i+`−s

(
s

i

)(
k

i+ `− s

)
as−i

(a+ d)s−i
(
c

a
)s−`+k−iϕ̂i,k(m− 1)

+ dm

s∑
k=`+1

(
k

`

)
(
c

a
)k−`ϕ̂s,k(m− 1).

We obtain then the following degree bounds on the summands of the four sums appearing in equation (26):

• deg ϕ̂s,k(m) ≤ b 3s2 c − k = 3s−1
2 − k ≤ 3s−3

2 − `, in the range `+ 1 ≤ k ≤ s, (1. sum)
• deg(ms−iϕ̂i,k,m) ≤ b 3i2 c − k + s− i ≤ 3s+1

2 − i, in the range `− 1 ≤ i ≤ s− 1 and `− 1 ≤ k ≤ i,
(2. sum)

• deg(mϕ̂i,k,m−1) ≤ b 3i2 c − k + 1 = b i2c + 1 + i − k ≤ s−1
2 + 1 + s − ` ≤ 3s+1

2 − `, in the range
s− ` ≤ i ≤ s− 1 and i+ `− s ≤ k ≤ i, (3. sum)
• deg(mϕ̂s,k,m−1) ≤ b 3s2 c − k + 1 = 3s+1

2 − k ≤ 3s−1
2 − `, in the range `+ 1 ≤ k ≤ s. (4. sum)

We will take now a closer look on the main contributions of ψ̂s,`(m) stemming from the 2. sum and the 3. sum,
i.e., the summands in the 2. sum and 3. sum with i = s−1 and k = `−1. When combining these contributions
we obtain:

− ads

a+ d
mϕ̂s−1,`−1(m) +

ads

a+ d
mϕ̂s−1,`−1(m− 1) =

ads

a+ d
m
(
ϕ̂s−1,i−1(m)− ϕ̂s−1,i−1(m− 1)

)
. (27)
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Hence, the dominant terms in (27) cancel out and we obtain the degree bound

deg
( ads

a+ d
m
(
ϕ̂s−1,`−1(m)− ϕ̂s−1,`−1(m− 1)

))
≤ 1 +

⌊3(s− 1)
2

⌋
− `+ 1− 1 =

3s− 1
2
− `.

It can be checked easily that all the remaining terms of the 2. sum and 3. sum satisfy the degree bound 3s−1
2 −

`. This, together with the degree bounds on the terms of the 1. sum and 4. sum, implies the degree bound
ψ̂s,`(m) ≤ 3s−1

2 − ` for the polynomial ψ̂s,`(m). Finally applying Lemma 1 to the sum

ϕ̂s,`(m) =
1

a`
(
m+ a`

d
m

) m∑
k=1

(
k + a`

d − 1
k

)
ψ̂s,`(k), (28)

shows that the polynomial ϕ̂s,`(m) also satisfies the degree bound ϕ̂s,`(m) ≤ 3s−1
2 − ` = b 3s2 c − `.

(ii) The case s odd and ` = 0.

Again we use the induction hypothesis and consider the functions ψ̂s,0(m) := ψ̂s,0,m defined in Lemma (3):

ψ̂s,0(m) =
s∑
i=1

( c
a

)i
ϕ̂s,i(m). (29)

We obtain then the following degree bound on the summands of ψ̂s,0(m):

deg ϕ̂s,i(m) ≤ b3s
2
c − i =

3s− 1
2
− i ≤ 3s− 3

2
, in the range 1 ≤ i ≤ s.

This implies the degree bound ψ̂s,0(m) ≤ 3s−3
2 for the polynomial ψ̂s,0(m). Applying Lemma 2 to the sum

ϕ̂s,0(m) =
m−1∑
k=0

ψ̂s,0(k) (30)

shows then that the polynomial ϕ̂s,`(m) satisfies the degree bound ϕ̂s,0(m) ≤ 3s−1
2 = b 3s2 c.

(iii) The case s even and 1 ≤ ` ≤ s.
Using the induction hypothesis and considering the functions ψ̂s,`(m) := ψ̂s,`,m we obtain the following

degree bounds on the summands of the four sums appearing in equation (26):

• deg ϕ̂s,k(m) ≤ b 3s2 c − k = 3s
2 − k ≤

3s−2
2 − `, in the range `+ 1 ≤ k ≤ s, (1. sum)

• deg(ms−iϕ̂i,k(m) ≤ b 3i2 c−k+s− i ≤ b i2c+s−k, in the range `−1 ≤ i ≤ s−1 and `−1 ≤ k ≤ i,
(2. sum)
• deg(mϕ̂i,k(m−1) ≤ b 3i2 c−k+1 = b i2c+1+i−k, in the range s−` ≤ i ≤ s−1 and i+`−s ≤ k ≤ i,

(3. sum)
• deg(mϕ̂s,k(m− 1) ≤ b 3s2 c − k + 1 = 3s

2 − k + 1, in the range `+ 1 ≤ k ≤ s. (4. sum)

It can be checked easily that all the terms of the 1. sum, 2. sum, 3. sum and 4. sum satisfy the degree bound
3s
2 − `. This implies the degree bound ψ̂s,`(m) ≤ 3s

2 − ` for the polynomial ψ̂s,`(m). Applying Lemma 1 to
(28) shows that the polynomial ϕ̂s,`(m) also satisfies the degree bound ϕ̂s,`(m) ≤ 3s

2 − ` = b 3s2 c − `.

Furthermore we will obtain a recursive description of the leading coefficients γs,` = lc ϕ̂s,` = [m
3s
2 −`]ϕ̂s,`(m)

when determining the leading coefficient lc ψ̂s,`(m) = [m
3s
2 −`]ψ̂s,`(m) of ψ̂s,`(m), which we are carrying out

now. We first remark that as in the case of s odd the dominant terms in the 2. sum and 3. sum with i = s − 1
and k = `− 1 cancel out and do not contribute to the leading coefficient of ψ̂s,`(m), since we obtain for these
summands the degree bound

deg
( ads

a+ d
m
(
ϕ̂s−1,`−1(m)− ϕ̂s−1,`−1(m− 1)

))
≤ 3s− 2

2
− `.

When considering the remaining summands of ψ̂s,`(m) we obtain that only the following three summands
contribute to the leading coefficient of ψ̂s,`(m), whereas the degree of all other terms is bounded by 3s−2

2 − `:
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• (2. sum) The term i = s− 2 and k = i− 1 contributes as follows:

lc
(
a

(
s

s− 2

)(
`− 1
`− 1

)
(−m)s−(s−2)ds−(s−2)

(a+ d)s−(s−2)
(−1)`−1−`+1ϕ̂s−2,`−1(m)

)
= a

(
s

2

)
d2

(a+ d)2
γs−2,`−1.

• (3. sum) The term i = s− 2 and k = i− 2 contributes as follows:

lc
(
dm

(
s

s− 2

)(
`− 1
`− 1

)
as−(s−2)

(a+ d)s−(s−2)
(
c

a
)s−`+`−2−s+2ϕ̂s−2,`−2(m− 1)

)
= d

(
s

2

)
a2

(a+ d)2
γs−2,`−2.

• (4. sum) The term k = `+ 1 contributes as follows:

lc
(
dm

(
`+ 1
`

)
(
c

a
)`+1−`ϕ̂s,`+1(m− 1)

)
= d(`+ 1)

c

a
lc(ϕ̂s,`+1(m− 1) =

cd(`+ 1)
a

γs,`+1.

Collecting all these contributions gives

lc ψ̂s,`(m) =
cd(`+ 1)

a
γs,`+1 + a

(
s

2

)
d2

(a+ d)2
γs−2,`−1 + d

(
s

2

)
a2

(a+ d)2
γs−2,`−2.

Applying Lemma 1 shows then, for 1 ≤ ` ≤ s, the recurrence for γs,` stated in Lemma 4.
(iv) The case s even and ` = 0.

Using the induction hypothesis and considering the functions ψ̂s,0(m) := ψ̂s,0,m we obtain the following
degree bound on the summands of ψ̂s,0(m) as given in equation (29):

deg ϕ̂s,i(m) ≤ b3s
2
c − i =

3s
2
− i, in the range 1 ≤ i ≤ s.

This implies the degree bound ψ̂s,0(m) ≤ 3s
2 − 1 for the polynomial ψ̂s,0(m). Applying Lemma 2 to the

sum (30) shows then that the polynomial ϕ̂s,`(m) satisfies the degree bound ϕ̂s,0(m) ≤ 3s
2 = b 3s2 c.

When considering the summands of ψ̂s,0(m) it is easily seen that only the term i = 1 contributes to the
leading coefficient lc ψ̂s,0(m) = [m

3s
2 −1]ψ̂s,0(m) of ψ̂s,0(m) and we get

lc ψ̂s,0(m) = lc
( c
a
ϕ̂s,1(m)

)
=
c

a
γs,1.

Applying Lemma 2 shows then also the instance ` = 0 of the recurrence for γs,` stated in Lemma 4. �

5.4. Computing the leading coefficients. We are going to study now, for s even, the recurrence (25) for the
leading coefficients γs,` := lc ϕ̂s,`(m) of the polynomials ϕs,`(m), which will be an important step in our
characterization of the limiting distribution of Aan,dm. To do this it is advantageous to introduce the numbers

γ̃s,` := γs,s−`

and study the corresponding recurrence for γ̃s,` (which follows immediately from (25)) that holds for 0 ≤ ` ≤ s
and s ≥ 2 even:

γ̃s,` =
1

3ds
2 + (a− d)(s− `)

(31)

×
(
cd(s− `+ 1)

a
γ̃s,`−1 + a

(
s

2

)( a

a+ d

)2
γ̃s−2,`−1 + d

(
s

2

)( a

a+ d

)2
γ̃s−2,`

)
,

with initial value γ̃0,0 = 1, and γ̃s,` = 0, for ` < 0 or ` > s, and γ̃s,` = 0, for s odd.
We introduce now via

C(z, w) :=
∑
s≥0

∑
`≥0

γ̃s,`
zs

s!
w` =

∑
s≥0

∑
`≥0

γs,s−`
zs

s!
w`
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a suitable bivariate generating function of the sequence γ̃s,`. When multiplying recurrence (31) by zs

s! w
` and

summing up, for the values 0 ≤ ` ≤ s and s ≥ 2 even, we obtain (after straightforward computations that are
omitted here) the following linear first order partial differential equation for the generating function C(z, w):

z(a+
d

2
− cd

a
w)Cz(z, w) + w(

cd

a
w − a+ d)Cw(z, w)− adz2

2(a+ d)2
(a+ dw)C(z, w) = 0, (32)

with initial condition C(0, w) = 1.
This differential equation has a rather simple explicit solution, which is given in the following lemma.

Lemma 5. The bivariate generating function C(z, w) =
∑
s≥0

∑
`≥0 γ̃s,`

zs

s! w
` of the sequence γ̃s,k is given

by

C(z, w) = exp
(z2

2
(
γ2,2 + wγ2,1 + w2γ2,0

))
, (33)

where the values γ2,2, γ2,1 and γ2,0 are given as follows:

γ2,2 =
a2d

(a+ d)2(2a+ d)
, γ2,1 =

ad2(2a+ 2c+ d)
(a+ d)2(2a+ d)(a+ 2d)

γ2,0 =
cd2(2a+ 2c+ d)

3(a+ d)2(2a+ d)(a+ 2d)
.

Proof. We will solve the partial differential equation (32), where we apply the so-called method of character-
istics, see, e.g., [21] for a description of this method.

We do this by studying first the corresponding reduced partial differential equation

z(a+
d

2
− cd

a
w)Cz(z, w) + w(

cd

a
w − a+ d)Cw(z, w) = 0. (34)

Let us thus consider the following system of ordinary differential equations, the so-called system of character-
istic differential equations:

ż = z(a+
d

2
− cd

a
w), ẇ = w(

cd

a
w − a+ d), (35)

where we regard here z and w as dependent variables of t, namely, z = z(t), w = w(t), and ż = dz(t)
dt , etc. We

are searching now for first integrals of the system of characteristic differential equations (35), i.e., for functions
ξ(z, w), which are constant along any solution curve (a so called characteristic curve) of (35).

From the characteristic differential equations (35) we obtain the differential equation

z′(w) =
dz

dw
=
z(w)(a+ d

2 −
cd
a w)

w( cda w − a+ d)
, (36)

where we regard now z = z(w) as a function dependent on w. Equation (36) can be solved easily and one
obtains that the general solution of (36) is given as follows:

z =
K

w
2a+d

2(a−d) (cdw − a2 + da)
3d

2(d−a)

,

with an arbitrary constant K. As a consequence we obtain the following first integral of the system of charac-
teristic differential equations (35):

ξ(z, w) = zw
2a+d

2(a−d) (cdw − a2 + da)
3d

2(d−a) = K = const.

In order to study the inhomogeneous partial differential equation (32) we use the following transformation
from (z, w)-coordinates to (ξ, η)-coordinates:

ξ = zw
2a+d

2(a−d) (cdw − a2 + da)
3d

2(d−a) and η = w,

or equivalently

z = z(ξ, η) = ξη
2a+d

2(d−a) (cdη − a2 + da)
3d

2(a−d) and w = w(ξ, η) = η,

which leads to the following ordinary differential equation for C̃(ξ, η) := C
(
z(ξ, η), w(ξ, η)

)
:

η(
cd

a
η − a+ d)C̃η(ξ, η)−

adξ2η
2a+d
d−a (cdη − a2 + da)

3d
a−d

2(a+ d)2
(a+ dη)C̃(ξ, η) = 0. (37)
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By separating variables we obtain the general solution of (37), which leads, after applying the inverse transfor-
mation to (z, w)-coordinates, the general solution of (32), where F (x) is an arbitrary differentiable function:

C(z, w) = F
(
zw

2a+d
2(a−d) (cdw − a2 + da)

3d
2(d−a)

)
· exp

(z2

2
(γ2,2 + wγ2,1 + w2γ2,0)

)
.

In order to characterize the unknown function F (x), such that C(z, w) also satisfies the initial condition, we
use the fact that the function C(z, w) is analytic around z = w = 0 for arbitrary choice of a and d (in particular
for a = d). Moreover, according to the initial condition C(0, w) = 1, we have F (0) = 1. Hence, it must hold
that F (x) = 1, which completes the proof of Lemma 5. �

When extracting coefficients from C(z, w) we obtain via γs,` = s![zsws−`]C(z, w) the following explicit
formula for the numbers γs,`:

Corollary 1. For 0 ≤ ` ≤ s and s even, the values γs,` are given as follows:

γs,` =
s!

2
s
2 ( s2 )!

∑
s1+s2+s3=

s
2

s2+2s3=s−`

( s
2

s1, s2, s3

)
γs12,2γ

s2
2,1γ

s3
2,0,

with γ2,2, γ2,1 and γ2,0 as given in Lemma 5. Moreover, for the instance c = 0, we have γs,` = 0, for
0 ≤ ` < s/2 and s ≥ 2.

We summarize now our findings concerning the explicit structure of ê[s]n,m, i.e., the s-th centered moments
of Aan,dm.

Proposition 4. The s-th centered moments ê[s]n,m = E
((
Aan,dm − E(Aan,dm)

)s)
of the discrete area Aan,dm

under lattice paths associated with diminishing urn models with a ball replacement matrix defined in (1) are
polynomials in n and m. These polynomials have the representation

ê[0]n,m = 1, ê[s]n,m =
s∑
`=0

b 3s
2 c−`∑
j=1

ϑ̂s,`,jn
`mj , for s ≥ 1,

with certain coefficients ϑ̂s,`,j .

Furthermore, for s even, an explicit formula for the leading coefficients γs,` = ϑ̂s,`, 3s
2 −`

of the lead-

ing terms of ê[s]n,m is given in Corollary 1, and an explicit formula for the generating function C(z, w) =∑
s≥0

∑
`≥0 γs,s−`

zs

s! w
s−` is given in Lemma 5.

5.5. The proof of the normal limit law for the instance c 6= 0 and m → ∞. The Gaussian limit law, i.e.,
Aan,dm−E(Aan,dm)√

V(Aan,dm)

L−→ N (0, 1), follows for the instance c 6= 0 and m → ∞ immediately from the following

lemma and applying the Theorem of Fréchet and Shohat.

Lemma 6. For the instance c 6= 0, with m → ∞ and arbitrary n = n(m), the centered and normalized
moments of Aan,dm satisfy the following asymptotic expansions:

E

((Aan,dm − E(Aan,dm)√
V(Aan,dm)

)s)
=

E(Âsan,dm)

(V(Âan,dm))
s
2

=
ê
[s]
n,m(

ê
[2]
n,m

) s
2

=


s2

2
s
2 ( s

2 )!

(
1 +O( 1

m )
)
, for s even,

O
(

1√
m

)
, for s odd.

Proof. We use the explicit structure of the s-th centered moments ê[s]n,m of Aan,dm given in Proposition 4 and
consider, for s even, the polynomial fs(m,n) consisting of the leading terms of ê[s]n,m:

fs(m,n) :=
s∑
`=0

γs,`n
`m

3s
2 −`. (38)

Note that
f2(m,n) = γ2,2mn

2 + γ2,1m
2n+ γ2,0m

3,

with values γ2,2, γ2,1 and γ2,0 given in Lemma 5.
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The functions fs(m,n) can be obtained easily from the generating function
C(z, w) =

∑
s≥0

∑
`≥0 γs,s−`

zs

s! w
s−` via

fs(m,n) =
s∑
`=0

γs,`n
`m

3s
2 −` = s!nsm

s
2 [zs]C

(
z,
m

n

)
.

Using the exact formula for C(z, w) as given in Lemma 5 we further obtain the following simple relation
between fs(m,n) and f2(m,n):

fs(m,n) = s!nsm
s
2 [zs] exp

(z2

2
(γ2,2 +

m

n
γ2,1 +

m2

n2
γ2,0)

)
=

s2

2
s
2 ( s2 )!

(γ2,2mn
2 + γ2,1m

2n+ γ2,0m
3)

s
2 =

s2

2
s
2 ( s2 )!

(f2(m,n))
s
2 . (39)

By simple asymptotic considerations we obtain, for the instance c 6= 0 and s even, the following asymptotic
expansion:

ê
[s]
n,m(

ê
[2]
n,m

) s
2

=
fs(m,n)(1 +O( 1

m ))
(f2(m,n)(1 +O( 1

m )))
s
2

=
fs(m,n)

(f2(m,n))
s
2

(
1 +O(

1
m

)
)

=
s2

2
s
2 ( s2 )!

(
1 +O(

1
m

)
)
.

Moreover, for the instance c 6= 0 and s odd, we have due to Proposition 4 the bound

ê[s]n,m = O(
s∑
`=0

n`m
3s−1

2 −`),

which leads ot the following asymptotic expansion:

(ê[s]n,m)2(
ê
[2]
n,m

)s =
(O(

∑s
`=0 n

`m
3s−1

2 −`))2

(f2(m,n))s(1 +O( 1
m ))

=
O(
∑2s
`=0 n

`m3s−1−`)
(f2(m,n))s(1 +O( 1

m ))
= O

( 1
m

∑2s
`=0 n

`m3s−`

m2sns( nm + m
n + 1)s

)
= O

( 1
m

∑2s
`=0 n

`m3s−`

m2sns
∑s
`=−s

m`

n`

)
= O

( 1
m

∑2s
`=0 n

`m3s−`∑2s
`=0 n

`m3s−`

)
= O(

1
m

).

This proves Lemma 6. �

5.6. The proof of the normal limit law for the instance case c = 0 and m,n→∞. For the instance c = 0
we have to proceed slightly different in order to prove the normal limit law, i.e., Aan,dm−E(Aan,dm)√

V(Aan,dm)

L−→ N (0, 1),

since due to Corollary 1 many leading terms γs,` vanish. Therefore we will distinguish between the cases
m ≤ n and m > n. For m,n → ∞ and m ≤ n we can proceed analogeous to the instance c 6= 0 and show
asymptotic equivalents of the moments ê[s]n,m, which are stated in Lemma 7. Applying the Theorem of Fréchet
and Shohat shows the Gaussian limit law for this instance. To prove the normal limit law also for m,n → ∞
and m > n we use the symmetry relation described in Remark 4.

Lemma 7. For the case c = 0 and m,n→∞, with m ≤ n, the centered and normalized moments of Aan,dm
satisfy the following asymptotic expansions:

E

((Aan,dm − E(Aan,dm)√
V(Aan,dm)

)s)
=

E(Âsan,dm)

(V(Âan,dm))
s
2

=
ê
[s]
n,m(

ê
[2]
n,m

) s
2

=


s2

2
s
2 ( s

2 )!

(
1 +O( 1

m )
)
, for s even,

O
(

1√
m

)
, for s odd.

Proof. Again we use the explicit structure of the s-th centered moments ê[s]n,m of Aan,dm given in Proposition 4
and denote, for s even, by fs(m,n) the polynomial fs(m,n) =

∑s
`=0 γs,`n

`m
3s
2 −` consisting of the leading

terms of ê[s]n,m. When we assume that m ≤ n we easily obtain the following asymptotic expansions:

ê[s]n,m =
s∑
`=0

3s
2 −`∑
j=1

ϑ̂s,`,jm
jn` =

s∑
`=0

(γs,`m
3s
2 −` +O(m

3s
2 −`−1))n` = fs(m,n)

(
1 +O(

1
m

)
)
,

for s ≥ 2 even,
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ê[s]n,m =
s∑
`=0

3s−1
2 −`∑
j=1

ϑ̂s,`,jm
jn` =

s∑
`=0

O
(
m

3s−1
2 −`n`

)
= O

(
m

3s
2 −sns

1√
m

)
, for s odd.

Due to equation (39), which relates fs(m,n) with f2(m,n), we obtain thus for the instance s even the following
asymptotic expansion:

ê
[s]
n,m(

ê
[2]
n,m

) s
2

=
fs(m,n)

(f2(m,n))
s
2

(
1 +O(

1
m

)
)

=
s2

2
s
2 ( s2 )!

(
1 +O(

1
m

)
)
.

On the other hand for the instance s odd we obtain the asymptotic expansion

(ê[s]n,m)2(
ê
[2]
n,m

)s =
O
(
m3s−2sn2s 1

m

)
(f2(m,n))s

=
O
(
msn2s 1

m

)
O(msn2s)

= O
( 1
m

)
,

which finishes the proof of Lemma 7. �

Now we turn to the casem,n→∞, withm > n. Here we use the symmetry relation described in Remark 4
and consider the random variable Fdm,an, which counts the discrete area under sample paths, starting at state
(an, dm) and ending at an absorbing state, associated to urns with a ball replacement matrix

(−d 0
0 −a

)
. Due to

equation (17) the random variables Aan,dm and Fdm,an are related via Aan,dm
L= mn−Fdm,an. Since m > n

(note that the rôle ofm and n has been changed), we can apply Lemma 7 to Fdm,an and obtain, form,n→∞,
a Gaussian limit law:

Fdm,an − E(Fdm,an)√
V(Fdm,an)

L−→ N (0, 1).

Due to the distributional equality

Fdm,an − E(Fdm,an)√
V(Fdm,an)

L= −Aan,dm − E(Aan,dm)√
V(Aan,dm)

,

which follows from (17), we obtain further

Aan,dm − E(Aan,dm)√
V(Aan,dm)

L−→ −N (0, 1) L= N (0, 1),

which proves the Gaussian limit law also in the remaining case m,n→∞, with m > n.

OUTLOOK AND CONCLUSION

We have studied the area under lattice paths associated with a certain class of diminishing urn models.
Our study aims at combining the fields of lattice path enumeration and (diminishing) Pólya-Eggenberger urn
models. Best to the authors knowledge such questions have not been considered before in the literature. Several
extensions of this approach, e.g., to certain classes of higher dimensional urn models, seems to be possible and
are certainly also of interest. Moreover, it seems interesting to study the distribution of the area under lattice
paths associated to urn models with different ball replacement matrices, such as the famous OK Corral urn
model with a ball replacement matrix given by M =

(
0 −1
−1 0

)
.
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