
ON QUICKSELECT, PARTIAL SORTING AND MULTIPLE
QUICKSELECT.

MARKUS KUBA

Abstract. We present explicit solutions of a class of recurrences related to the Quickselect
algorithm. Thus we are immediately able to solve recurrences arising at the partial sorting
problem, which are contained in this class. We show how the partial sorting problem is
connected to the Multiple Quickselect algorithm and present a method for the calculation of
solutions for a class of recurrences related to the Multiple Quickselect algorithm. Further an
analysis of the partial sorting problem for the ranks r, . . . , r+p−1 given the array A[1, . . . , n]
is provided.

1. Introduction

Quickselect (Hoare’s FIND algorithm) solves the problem of finding the jth smallest element
in an array of n given elements A[1 . . . n] by using the so called divide and conquer strategy
(see [2], [6], [7]). We consider the task of deriving an explicit solution of a class of recurrences
related to Quickselect without using generating function. The method applied here is based
on a difference argument of Knuth. It seems to be known that many recurrences contained
in this class could be solved in an elementary way (e.g. see [10]), although in almost every
work a generating function is applied. Best to our knowledge this is the first time a general
solution is stated.
Partial Quicksort is a modification of Quickselect. It finds the p smallest elements of a given
array A[1 . . . n] containing n elements and sorts them. We will show that recurrences arising
in the analysis of Partial Quicksort are contained in the class of Quickselect type recurrences.
Further we provide a generalization of Partial Quicksort capable of sorting the subarray
A[r . . . r + p− 1] of a given array A[1 . . . n].
We also show how the partial sorting is connected to the Multiple Quickselect algorithm and
present a method for the calculation of solutions for a class of recurrences related to the
Multiple Quickselect algorithm, which is again based on a difference argument of Knuth.
We assume throughout this work that the input array A[1 . . . n] consist of n distinct elements
ordered randomly.

2. The Quickselect recursion

We denote with ξn,j and ϑn,j , respectively, the random variable, that counts the number
of passes and key comparisons of Quickselect. Further we assume the the first element is
chosen as the pivot element. Let πn,k denote the probability that the chosen pivot element
has the rank k. Under the assumption the input array A[1 . . . n] consist of n distinct elements
ordered randomly, we get the splitting probability πn,k = 1/n for the analysis. Further we
denote with P

[l]
n,j = E(ξl

n,j), C
[l]
n,j = E(ϑl

n,j) the lst factorial moment of the considered random

Key words and phrases. Analysis of algorithms, Quickselect, Multiple Quickselect, Partial Sorting.

1

2 MARKUS KUBA

variable, where xl := x(x − 1) . . . (x − l + 1). The recurrences for the expectation are well
known.

P
[1]
n,j = 1 +

1
n
·

j−1∑
k=1

P
[1]
n−k,j−k +

1
n
·

n∑
k=j+1

P
[1]
k−1,j . (1)

C
[1]
n,j = n− 1 +

1
n
·

j−1∑
k=1

C
[1]
n−k,j−k +

1
n
·

n∑
k=j+1

C
[1]
k−1,j . (2)

The solutions of (1) and (2) are also well known. They can be derived elementary or by means
of generating functions. Both of the recurrences fall into the class of so called Quickselect
type recurrences.

Xn,j = an,j +
1
n

j−1∑
k=1

Xn−k,j−k +
1
n

n∑
k=j+1

Xk−1,j . (3)

We prove the following theorem.

Theorem 1. The value Xn,j, defined by (3) with arbitrary fixed values an,j, 1 ≤ j ≤ n is
given by

Xn,j =
n∑

k=n+2−j

A(k, k − n + j) +
n+1−j∑

k=2

kak,1 − (k − 1)ak−1,1

k
+ a1,1 ,

where A(n, j) is given by

A(n, j) :=
n∑

k=j+1

kak,j − (k − 1)ak−1,j−1 − (k − 1)ak−1,j + (k − 2)ak−2,j−1

k

+
jaj,j − (j − 1)aj−1,j−1

j
.

(4)

Proof. The proof relies heavily on the difference argument of Knuth as shown in [5] (p. 12-
15). There he solved (3) for an,j = n− 1 and an,j = 1. We use this approach for an arbitrary
toll function an,j . If j = 1 or j = n the formula is seen to be true by solving the resulting
full history recursion. Now we proceed to the case 1 < j < n. At first we set up

Fn,j =
j−1∑
k=1

Xn−k,j−k,, Gn,j =
n∑

k=j+1

Xk−1,j , (5)

to get rid of the sums in (3). Hence (3) can be expressed as

Xn,j = an,j +
1
n
· Fn,j +

1
n
·Gn,j . (6)

Note that
Fn+1,j+1 = Fn,j + Xn,j , Gn+1,j = Gn,j + Xn,j . (7)

The key part of the proof is the following equation,

nXn,j − (n− 1)Xn−1,j − (n− 1)Xn−1,j−1 + (n− 2)Xn−2,j−1

= nan,j − (n− 1)an−1,j − (n− 1)an−1,j−1 + (n− 2)an−2,j−1 + Xn−1,j−1 + Xn−1,j

− 2Xn−2,j−1,

(8)

ON QUICKSELECT, PARTIAL SORTING AND MULTIPLE QUICKSELECT. 3

which follows by using (6) and (7). We get the recursion

Xn,j −Xn−1,j−1 =
nan,j − (n− 1)an−1,j−1 − (n− 1)an−1,j + (n− 2)an−2,j−1

n
+ Xn−1,j −Xn−2,j−1.

(9)

This relation can be iterated to get

Xn,j −Xn−1,j−1 =
n∑

k=j+1

kak,j − (k − 1)ak−1,j−1 − (k − 1)ak−1,j + (k − 2)ak−2,j−1

k

+
jaj,j − (j − 1)aj−1,j−1

j
= A(n, j),

(10)

which simplifies to
Xn,j = Xn−1,j−1 + A(n, j), (11)

as claimed. In (10) we have used

Xj,j −Xj−1,j−1 =
jaj,j − (j − 1)aj−1,j−1

j
, (12)

which follows easily from (6). Iteration of (11) leads to

Xn,j =
n∑

k=n+2−j

A(k, k − n + j) + Xn−j+1,1. (13)

This simplifies to

Xn,j =
n∑

k=n+2−j

A(k, k − n + j) +
n+1−j∑

k=2

kak,1 − (k − 1)ak−1,1

k
+ a1,1. (14)

�

3. Applications of theorem 1

3.1. Higher moments for Quickselect. By introducing the probability generating func-
tions Pn,j(v) =

∑
k≥1 P(ξn,j = k)vk and Cn,j(v) =

∑
k≥1 P(ϑn,j = k)vk of ξn,j and ϑn,j we get

the following recurrences (see [10]) for Pn,j(v) and Cn,j(v).

Pn,j(v) =
v

n

(
j−1∑
k=1

Pn−k,j−k(v) + 1 +
n∑

k=j+1

Pk−1,j(v)

)
, (15)

Cn,j(v) =
vn−1

n

(
j−1∑
k=1

Cn−k,j−k(v) + 1 +
n∑

k=j+1

Ck−1,j(v)

)
. (16)

To get the lth factorial moments we differentiate l times with respect to v and evaluate at
v = 1. We get the following recurrence.

P
[l]
n,j =

l

n

(
j−1∑
k=1

P
[l−1]
n−k,j−k +

n∑
k=j+1

P
[l−1]
k−1,j + δl,1

)
+

1
n
·

j−1∑
k=1

P
[l]
n−k,j−k +

1
n
·

n∑
k=j+1

P
[l]
k−1,j , (17)

C
[l]
n,j =

l∑
m=1

(n− 1)l
(

l
m

)
n

(
j−1∑
k=1

C
[l−m]
n−k,j−k+

n∑
k=j+1

C
[l−m]
k−1,j+δm,l

)
+

1
n

j−1∑
k=1

C
[l]
n−k,j−k+

1
n

n∑
k=j+1

C
[l]
k−1,j .

(18)

4 MARKUS KUBA

Since we know P
[1]
n,j and C

[1]
n,j we can recursively find a (although involved) closed form for the

higher moments of ξn,j and ϑn,j . The variance can explicitly be calculated this way avoiding
some of the complications of the generating functions approach [4].

3.2. Partial Quicksort. Partial Quicksort was first proposed and analyzed by Mart́ınez [9].
The algorithm finds the p smallest elements of a given array A[1 . . . n] containing n elements
and sorts them. It works as follows. First we choose a pivot element. After partitioning we
compare the rank k of the pivot element with p. If k ≤ p we sort the array A[1 . . . k − 1]
and recursively call the algorithm for A[k−1 . . . n] searching for the remaining p−k smallest
elements. If k > p we recursively call the algorithm for A[1 . . . k − 1]. Let Cn,p denote
the average number of key comparisons of partial quicksort to sort the p smallest out of n
elements. We consider again πn,k = 1/n for the analysis. We get the recursion

Cn,p = n− 1 +
p∑

k=1

πn,k(Ck−1,k−1 + Cn−k,p−k) +
n∑

k=p+1

πn,kCk−1,p if n > 0 , p > 0 ,

Cn,0 = 0 ∀n ∈ N, C0,p = 0 ∀p ∈ N .

(19)

The recurrence (19) reflects the cost for splitting the array Ck−1,p, Cn−k,p−k and the cost for
sorting Ck−1,k−1. Partial Quicksort works the same way as Quicksort when p = n. We get
Cn,n = 2(n + 1)Hn − 4n where Hn =

∑n
k=1 1/k denotes the nth harmonic number. Let an,p

denote the toll function given by

an,p = n− 1 +
p∑

k=1

πn,kCk−1,k−1 . (20)

For the calculation of an,p we need the well known formulae
n∑

k=1

kHk =
(

n + 1
2

)[
Hn+1 −

1
2

]
,

n∑
k=1

Hk = (n + 1)(Hn+1 − 1) , (21)

which can be found in [1]. We get

an,p = n− 1 +
p(p + 1)Hp + p(−5

2p + 1
2)

n
. (22)

Hence we get for the value Cn,p a recursion of the form

Xn,p = an,p +
1
n

p−1∑
k=1

Xn−k,p−k +
1
n

n∑
k=p+1

Xk−1,p . (23)

The standard approach for solving (23) would be setting up bivariate generating functions
and solving the arising differential equation. This approach was successfully carried out in
[9]. We get the following corollary much more easy by using Theorem 1 and (22).

Corollary 1. The average number of key comparisons of partial quicksort to sort the p
smallest elements out of n elements is given by

Cn,p = 2(n + 1)Hn + 2n− 6p + 6− 2(n + 3− p)Hn+1−p. (24)

Let Pn,p denote the average number of passes of Partial Quicksort to sort the p smallest
elements out of n elements. Pn,p satisfies (23) with the toll function an,p given by

an,p = 1 +
p∑

k=1

πn,kPk−1,k−1 = 1 +
p(p− 1)

2n
, (25)

ON QUICKSELECT, PARTIAL SORTING AND MULTIPLE QUICKSELECT. 5

where Pk,k = k denotes the average number of passes by quicksort to sort an array containing
k elements. We get the following result.

Corollary 2. The average number of passes of Partial Quicksort to sort the p smallest
elements out of n elements is given by

Pn,p = Hn+1−p + p− 1. (26)

Proof. We present the derivation of Corollary 1, Corollary 2 follows by a similar argument.
We split the toll function into two parts an,p = ân,p + ãn,p, with ân,p = n − 1 and ãn,p =
p(p+1)Hp+p(− 5

2
p+ 1

2
)

n . We already know the solution for ân,p from Knuth [5], p. 14, which is just
C

[1]
n,p, the average number of key comparisons of Quickselect for selecting p smallest element.

C [1]
n,p = 2(n + 1)Hn − 2(n + 3− p)Hn+1−p − 2(p + 2)Hp + 2n + 6, (27)

Now we can restrict ourselves to ãn,p. We apply Theorem 1 with ãn,p. It easy to see that

A(n, p) =
pãp,p − (j − 1)ãp−1,p−1

p
= 2Hp − 4 +

2
p
, (28)

since kãk,p− (k− 1)ãk−1,p−1− (k− 1)ãk−1,p +(k− 2)ãk−2,p−1 = 0 for k = p+1, . . . , n. Hence
n∑

k=n+2−j

A(k, k − n + j) +
n+1−j∑

k=2

kak,1 − (k − 1)ak−1,1

k
+ a1,1 =

n∑
k=n+2−j

A(k, k − n + j)

= 2(p + 1)Hp − 2p− 4p + 2Hp = 2(p + 2)Hp − 6p, (29)

where we have used (21). Combining the solutions corresponding to ân,p = n − 1 and

ãn,p = p(p+1)Hp+p(− 5
2
p+ 1

2
)

n finishes the proof. �

4. General Partial Quicksort

Now we modify the Partial Quicksort algorithm to solve the problem of sorting the elements
of the ranks r, r + 1, . . . , r + p − 1 = s with 1 ≤ r ≤ r + p − 1 ≤ n of a given array
A[1 . . . n] containing n elements. General Partial Quicksort merges Quickselect, Quicksort
and Partial Quicksort into a single algorithm providing also the possibility to search arrays of
type A[r . . . s]. General Partial Quicksort works as follows. First we choose a pivot element.
After partitioning we compare the rank k of the pivot element with the searched ranks
r, r + 1, . . . , r + p − 1. If r − 1 ≤ k ≤ r + p we call the algorithm for the left subarray
A[1 . . . k − 1] sorting the ranks r, r + 1, . . . , k − 1 and upon the right subarray A[k + 1 . . . n]
sorting the ranks k +1, k +2, . . . , r + p− 1. If 1 ≤ k < r− 1 we recursively call the algorithm
for A[k + 1 . . . n] sorting the ranks r − k, r − k + 1, . . . , r − k + p − 1. If r + p < k ≤ n we
recursively call the algorithm for A[1 . . . k − 1] sorting the ranks r, r + 1, . . . , r + p− 1.

4.1. Analysis of general partial quicksort. Let Cn,r,p denote the average number of key
comparisons of General Partial Quicksort to sort the elements of the ranks r, r+1, . . . , r+p−1
out of n elements. We get the recursion

Cn,r,p = n− 1 +
1
n

r−2∑
k=1

Cn−k,r−k,p +
1
n

n∑
k=r+p+1

Ck−1,r,p

+
1
n

r+p∑
k=r−1

(Ck−1,r,k−r + Cn−k,1,r+p−k−1).

(30)

6 MARKUS KUBA

General Partial Quicksort works the same way as partial quicksort when r + p − 1 = n or
r = 1. In the first case we get Cn,r,p = 2(n + 1)Hn − 4n + 2 − 6r − 2(r + 2)Hr and in the
second case we get Cn,1,p = 2(n+1)Hn +2n− 6p+6− 2(n+3− p)Hn+1−p. Let an,r,p denote
the toll function given by

an,r,p = n− 1 +
1
n

r+p∑
k=r−1

(Ck−1,r,k−r + Cn−k,1,r+p−k−1). (31)

The explicit formula for an,r,p is quite complicated, it can be easily obtained by using (21).
We get the recursion

Cn,r,p = an,r,p +
1
n

r−2∑
k=1

(Cn−k,r−k,p) +
1
n

n∑
k=r+p+1

Ck−1,r,p. (32)

Again, we do not use generating functions to solve the recurrence above. Instead, we stick
to Knuth’s difference method. We get the following theorem.

Theorem 2. The value Cn,r,p, defined by (30), with with arbitrary fixed values an,r,p, is given
by is given by

Cn,r,p =
n∑

k=n+2−r

Mk,k+r−n,p +
n+1−r∑
k=p+2

kak,1,p − (k − 1)ak−1,1,p

k
+ ap+1,r,p ,

where Mn,r,p is given by

Mn,r,p :=
n∑

k=r+p+1

kak,r,p − (k − 1)ak−1,r,p − (k − 1)ak−1,r−1,p + (k − 2)ak−2,r−1,p

k

+
(r + p)ar+p,r,p − (r + p− 1)ar+p−1,r−1,p

r + p
.

(33)

Proof. The proof is a straightforward extension of the previous proof of Theorem 1. �

This leads to the following result.

Corollary 3. The average number of key comparisons of general partial quicksort to sort the
elements of the ranks r, r + 1, . . . , r + p− 1 out of n elements is given by

Cn,r,p = 2(n + 1)Hn + 2n− 6p + 12− 2(r + 2)Hr − 2(n + 4− r − p)Hn+2−r−p . (34)

5. Partial sorting and multiple quickselect

The results appearing in (24) and (34) are not surprising when considering the Multiple Quick-
select algorithm. Multiple Quickselect is an extension of Hoare’s FIND algorithm (Quickse-
lect) for finding p ranks j1, j2, . . . , jp, with 1 ≤ j1 < · · · < jp ≤ n, simultaneously in a given
array A[1 . . . n] containing n elements. Hence Multiple Quickselect also solves the partial
sorting problem. The algorithm works as follows. First we choose a pivot element. After
partitioning we compare the rank k of the pivot element with the searched ranks j1, . . . , jp.
If k equals a searched rank ji we recursively search for the ranks j1, . . . , ji−1 in the left sub-
array A[1 . . . k − 1] and for the ranks ji+1 − k, . . . , jp − k in the right subarray A[k + 1 . . . n].
Otherwise we recursively search for the ranks on one subarray or both of them, according to
in which interval [ji, ji+1] the rank k lies. A nice description of the algorithm can be found
in [11]. The algorithm was analyzed by elementary means in [12] and by using generating

ON QUICKSELECT, PARTIAL SORTING AND MULTIPLE QUICKSELECT. 7

functions in [11] under the condition that only key comparisons were counted (the extra index
comparisons are neglected).
The average number of key comparisons C(n; j1, . . . , jp) for finding the elements of the ranks
1 ≤ j1 < j2 < · · · < jp ≤ n out of n elements was given by Prodinger in [12]. Now (24) and
(34) can easily be obtained from

C(n; j1, . . . , jp) = 2n + jp − j1 + 2(n + 1)Hn − 2(j1 + 2)Hj1 + 8p− 2

− 2(n + 3− jp)Hn+1−jp − 2
p∑

l=2

(jl + 4− jl−1)Hjl+1−jl−1

(35)

by simply setting jk = k for 1 ≤ k ≤ p for partial quicksort. To get the result for General
Partial Quicksort we set jk = r+k−1 for 1 ≤ k ≤ p. We can also obtain the average number
of passes from the formula

P (n; j1, . . . , jp) = Hj1 + Hn+1−jp + 2
p∑

l=2

Hjl+1−jl−1
− 2p + 1, (36)

also given by Prodinger in [12]. The formulas (35) and (36) where found by Prodinger
”through extensive computer experiments with the computer algebra system Maple”. We
present a way to actually find solutions like (35) and (36) by hand.
The general Multiple Quickselect recurrence is stated below.

X(n; j1, . . . , jp) = an +
1
n
·

p∑
i=1

(∑
ji−1≤k<ji

X(n− k; ji − k, . . . , jp − k)
)

+
1
n
·

p∑
i=1

(∑
ji<k≤ji+1

X(k − 1; j1, . . . , ji)
)

,

with j0 := 1 and jp+1 := n. If we apply Knuth’s difference method we can express
X(n; j1, . . . , jp) by a full history recursion only involving values of the type X(n; s1, . . . , sm),
with 1 ≤ m ≤ p− 1, therefore reducing the number of searched elements by one.
Hence for a given toll function an one can find formulas like (35) and (36) by proceeding as
follows.

(1) Use Theorem 1 to solve the case p = 1.
(2) Apply Knuth’s difference method for recursive calculation of case p = 2, p = 3, . . .

until an explicit formula can be guessed.
(3) Prove the formula using induction.

It is possible to formalize step (2), we omit the lengthy formula.
For example for an = Hn

n one can verify the following formula.

X(n; j1, . . . , jp) = (n + 1)H(2)
n − j1H

(2)
j1

− (n− jp + 1)H(2)
n−jp+1

−
p∑

t=2

[
(jt − jt−1)H

(2)
jt−jt−1+1 −

Hjt−jt−1+1

jt − jt−1 + 1

]
+ p.

(37)

6. Conclusion

Using this theorem it is possible to build up a repertoire of solutions of the Multiple Quickse-
lect recursion for various toll functions an. The author is working on a more detailed analysis
of the Multiple Quickselect recursion.

8 MARKUS KUBA

References

[1] D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms.
Birkhäuser, Boston, 2nd edition, 1982.

[2] C. A. R. Hoare, Find (Algorithm 65).
Comm. ACM, 4:321322, 1961.

[3] C. A. R. Hoare, Quicksort.
Computer Journal, 5:1015, 1962.

[4] P Kirschenhofer and H Prodinger, Comparisons in Hoare’s FIND Algorithm.
Combinatorics, Probability and Computing, 7, 111-120, 1998.

[5] D. E. Knuth, Selected Papers on Analysis of Algorithms.
CLSI Publications, 2000.

[6] D. E. Knuth, The Art of Computer Programming: Fundamental Algorithms, volume 1.
Addison-Wesley, Reading, Mass., 3rd edition, 1997.

[7] D. E. Knuth, The Art of Computer Programming: Sorting and Searching, volume 3.
Addison-Wesley, Reading, Mass., 2nd edition, 1998.

[8] M. Kuba, Multiple Quickselect und die Steinerdistanz in binären Suchbäumen.
Diploma thesis, Technische Universität Wien, 2004.

[9] C. Mart́ınez, Partial Quicksort.
Partial quicksort.Proc. of the 6th ACM-SIAM Workshop on Algorithm Engineering and Experiments and
the 1st ACM-SIAM Workshop on Analytic Algorithmics and Combinatorics, 224-228, 2004.

[10] A. Panholzer and H. Prodinger, Binary search tree recursions with harmonic toll funktions. Journal of
Computational and Applied Mathematics, 142, 211-225, 2002.

[11] A. Panholzer and H. Prodinger, A Generating Function Approach for the Analysis of Grand Averages for
Multiple QUICKSELECT. Random Struct. Alg., 13, 189-209, 1998.

[12] H. Prodinger, Multiple Quickselect, Hoare’s Find algorithm for several elements.
Information Processing Letters 56, 123-129, 1995.

Markus Kuba, Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien,
Wiedner Hauptstr. 8-10/104, 1040 Wien, Austria

E-mail address: markus.kuba@tuwien.ac.at

