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Abstract

Any ordinary permutation τ ∈ Sn of size n, written as a word τ = τ1 . . . τn, can be locally
classified according to the relative order of τj to its neighbours. This gives rise to four local
order types called peaks (or maxima), valleys (or minima), double rises and double falls. By the
correspondence between permutations and binary increasing trees the classification of permuta-
tions according to local types corresponds to a classification of binary increasing trees according
to nodes types. Moreover, by the bijection between permutations, binary increasing trees and
suitably defined path diagrams one can obtain continued fraction representations of the ordinary
generating function of local types. The aim of this work is to introduce the notion of local types
in k-Stirling permutations, to relate these local types with nodes types in (k + 1)-ary increasing
trees and to obtain a bijection with suitably defined path diagrams. Furthermore, we also present
a path diagram representation of a related tree family called plane-oriented recursive trees, and
the discuss the relation with ternary increasing trees.

Keywords: Path diagrams, Stirling permutations, Increasing trees, local types, formal power series
2000 Mathematics Subject Classification 05C05.

1 Introduction

Any ordinary permutation τ = τ1 . . . τn of size n can be locally be classified according to four local
types called peaks (maxima), valleys (minima), double rises and double falls, depending on the relative
order of τj to its neighbours. Index j is called a peak if τj−1 < τj > τj+1, a valley if τj−1 > τj < τj+1,
a double rise if τj−1 < τj < τj+1, and a double fall if τj−1 > τj > τj+1; for 1 ≤ j ≤ n, with respect
to the boundary conditions τ0 = τn+1 = −∞, see Flajolet [7], or Conrad and Flajolet [5] and the
references therein. Moreover, due to the bijection with binary increasing trees [7, 1], there exists
a correspondence to certain local node types in binary increasing trees [7, 5]. Flajolet [7], see also
Françon and Viennot [9], used a path diagrams representation of permutations or equivalently binary
increasing trees to obtain a continued fraction representation of the ordinary generating function of
local types in permutations, or equivalently of node types in binary increasing trees.
Stirling permutations were defined by Gessel and Stanley [10]. A Stirling permutation σ = σ1 . . . σ2n is
a permutation of the multiset {1, 1, 2, 2, . . . , n, n} such that for each i, 1 ≤ i ≤ n, the elements occurring
between the two occurrences of i are larger than i. The name of these combinatorial objects is due to
relations with the Stirling numbers, see [10] for details. Recently, this class of combinatorial objects
have generated some interest. Bona [2] studied the distribution of descents in Stirling permutation.

∗This work was supported by the Austrian Science Foundation FWF, grant S9608.
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Janson [14] showed the connection between Stirling permutations and plane-oriented recursive trees
and proved a joint normal limit law for the parameters considered by Bona.
A natural generalization of Stirling permutations on the multiset {1, 1, . . . , n, n} is to consider permu-
tations of a more general multiset {1k, 2k, . . . , nk}, with k ∈ N = {1, 2, . . . }. We call a permutation
of the multiset {1k, 2k, . . . , nk} a k-Stirling permutation, if for each i, 1 ≤ i ≤ n, the elements occur-
ring between two occurrences of i are at least i. Such generalized Stirling permutations have already
previously been considered by Brenti [3], [4], and also by Park [19, 20, 21], albeit under the different
name k-multipermutations. For k = 1 one obtains ordinary permutations. For k = 2 the class of
2-Stirling permutations coincides with the ordinary Stirling permutations introduced by Gessel and
Stanley. Recently, Janson et al. [15] studied several parameters in k-Stirling permutations, related to
the studies [2, 14]: they extended the results of [2, 14] concerning the distribution of descents and
related statistics. An important result of [15] is the natural bijection between k-Stirling permutations
and (k + 1)-ary increasing trees, for k ≥ 1, which was already known to Gessel (see Park [19]). The
family of (k + 1)-ary increasing trees, with integer k ∈ N, includes the well known family of binary
increasing trees k = 1, and also the family of ternary increasing trees, k = 2.
The aims of this work are threefold. First, we introduce the notion of local types in k-Stirling
permutations and also of local node types in the corresponding (k + 1)-ary increasing trees. Second,
we give a bijection between k-Stirling permutations, (k + 1)-ary increasing trees and suitably defined
path diagrams. Third, we use the relation between path diagrams and formal power series to obtain a
continued fraction type expansion of the generating function of local types in k-Stirling permutations,
or equivalently local node types in (k+ 1)-ary increasing trees. Furthermore, we also discuss a related
tree family called plane-oriented recursive trees,1 which is in bijection with 2-Stirling permutations [14],
and also with ternary increasing trees [15]. We obtain a path diagram representation of plane-oriented
recursive trees and discuss the implication of the bijection with ternary increasing trees, as given in [15].
Best to the authors knowledge these problems have not been addressed before in the literature. This
study is motivated by the work [7], partly also by [5], and by Gessel’s bijection between k-Stirling
permutations and (k + 1)-ary increasing trees [15], see also [19].

2 Increasing trees and generalized Stirling permutations

2.1 Generalized Stirling permutations

Let Qn = Qn(k) denote the set of k-Stirling permutations of size n and let Qn = Qn(k) denote the
number |Qn(k)| of them. The number |Qn(k)| is given by

Qn = |Qn| =
n−1∏
i=1

(ki+ 1) = kn Γ(n+ 1/k)
Γ(1/k)

, (1)

since the k copies of n have to form a substring, and this substring can be inserted in k(n − 1) + 1
positions, anywhere–including first or last position, in any k-Stirling permutation of size n − 1; see
for example [19, 15]. For k = 2 this number is just Qn(2) =

∏n−1
i=1 (2i + 1) = (2n − 1)!!. For

example, in the case k = 3 we have one permutation of size 1 given by 111; four permutations of
size 2 given by 111222, 112221, 122211, 222111; etc. In order to relate the k-Stirling permutations to
(k+ 1)-ary increasing trees, and to relate 2-Stirling permutations to plane-oriented recursive trees, we
will introduce a general family of increasing trees. We use a setting based on earlier considerations of
Bergeron et al. [1] and Panholzer and Prodinger [18], which also includes (k+1)-ary increasing trees an
plane-oriented recursive trees as special instances. Although the tree families and their combinatorial

1The family of plane-oriented recursive trees also appears in the literature under the names plane recursive trees [14],
heap-ordered trees [22, 23], Scale-free trees, and Barabási-Albert trees; see [11].
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description is quite well known, we collect the most important considerations of [1, 18, 15] for the
readers convenience.

2.2 Families of Increasing trees

Increasing trees are labeled trees, where the nodes of a tree of size n are labeled by distinct integers
of the set {1, . . . , n} in such a way that each sequence of labels along any branch starting at the
root is increasing. As the underlying (unlabeled) tree model ones uses the so-called simply generated
trees [17] but, additionally, the trees are equipped with increasing labellings. Thus, we are considering
simple families of increasing trees, which are introduced in [1].
Formally, a class T of a simple family of increasing trees can be defined in the following way. A
sequence of non-negative numbers (ϕ`)`≥0 with ϕ0 > 0 called the degree-weight sequence, we further
assume that there exists a ` ≥ 2 with ϕ` > 0, is used to define the weight w(T ) of any ordered tree
T by w(T ) :=

∏
v ϕdeg+(v), where v ranges over all vertices of T and deg+(v) is the out-degree of v.

Furthermore, L(T ) denotes the set of different increasing labellings of the tree T with distinct integers
{1, 2, . . . , |T |}, where |T | denotes the size of the tree T , and L(T ) :=

∣∣L(T )
∣∣ its cardinality. Then the

family T consists of all trees T together with their weights w(T ) and the set of increasing labellings
L(T ). The simple family of increasing trees T associated with a degree-weight generating function
ϕ(t), can be described by the formal recursive equation

T =©1 ×
(
ϕ0 · {ε} ∪̇ ϕ1 · T ∪̇ ϕ2 · T ∗ T ∪̇ ϕ3 · T ∗ T ∗ T ∪̇ · · ·

)
=©1 × ϕ(T ), (2)

where©1 denotes the node labeled by 1, × the cartesian product, ∪̇ the disjoint union, ∗ the partition
product for labeled objects, and ϕ(T ) the substituted structure; see e. g., the books [24, 8]. For a
given degree-weight sequence (ϕ`)`≥0 with a degree-weight generating function ϕ(t) :=

∑
`≥0 ϕ`t

`,
we define now the total weights by Tn :=

∑
|T |=n w(T ) · L(T ). It follows then that the exponential

generating function T (z) :=
∑

n≥1 Tn
zn

n! satisfies the autonomous first order differential equation

T ′(z) = ϕ
(
T (z)

)
, T (0) = 0. (3)

By proper choices for the degree-weight sequences (ϕ`)`≥0 we obtain the families of (k + 1)-ary in-
creasing trees and plane-oriented recursive trees.

Example 1. The family of (k+ 1)-ary increasing trees, with integer k ∈ N, is the family of increasing
trees where each node has k + 1 (labeled) positions for children, going from left to right. Thus, only
outdegrees 0, . . . , k+1 are allowed; moreover, for a node with ` children in given order, there are

(
k+1

`

)
ways to attach them, see Figure 2. The vacant positions of a node are usually denoted by external
nodes, see Figure 1 for an illustration of ternary increasing trees. Hence, the degree-weight generating
function of (k + 1)-ary increasing trees is given by ϕ(t) = (1 + t)k+1, i.e. ϕ` =

(
k+1

`

)
, 0 ≤ ` ≤ k + 1.

Consequently, the degree weight generating function ϕ(t) is given by ϕ(t) =
∑

`≥0 ϕ`t
` = (1 + t)k. By

solving the corresponding differential equation (3) one obtains the generating function T (z) = T (z, k)
and the numbers Tn = Tn(k)2 of (k + 1)-ary trees of size n

T (z) =
1

(1− kz) 1
k

− 1, Tn =
n∏

`=1

(k(`− 1) + 1) = kn Γ(n+ 1/k)
Γ(1/k)

, n ≥ 1.

Note that Tn = Qn, the number of k-Stirling permutations of size n (1). For k = 1 we obtain the
family of binary increasing trees and for k = 2 the family of ternary increasing trees.

2We usually drop the dependence of T (z) and Tn on k for the sake of simplicity
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Example 2. The family of plane-oriented recursive trees consists of rooted plane (=ordered) increas-
ing trees such that all node degrees are allowed with all trees having weight 1. Since plane-oriented re-
cursive trees are ordered trees a new vertex may be joined to an existing vertex v in exactly deg+(v)+1
positions, where deg+(v) denotes the outdegree of node v. These deg+(v) + 1 positions are sometimes
represented by external nodes, see Figure 1. Consequently, the total number of positions available to
vertex n+ 1 being attached to a tree of size n is given by

∑n
j=1(deg+(j) + 1) = 2n−1, independent of

the actual shape of the tree of size n. There is exactly one tree of size, T1 = 1. More generally, there
are Tn =

∏n−1
`=1 (2`− 1) = (2n− 3)!! different plane-oriented recursive trees of size n, for n ≥ 1. This

number may also be obtained via the formal description above. Since all trees have weight one, we
have ϕ` = 1 for ` ≥ 0, and the degree-weight generating function is given by ϕ(t) =

∑
`≥0 ϕ`t

` = 1
1−t .

Consequently, by solving the differential equation 3, we get

T (z) = 1−
√

1− 2z, and Tn =
n−1∏
`=1

(2`− 1) = (2n− 3)!!, for n ≥ 1.

Note that Tn+1 = (2n− 1)!!, which equals the number of (2-) Stirling permutations of size n and the
number of ternary trees of size n. This is no coincidence since Janson has shown that plane-oriented
recursive trees of size n + 1 are in bijection with Stirling permutation of size n, see Theorem 2.
Moreover, Janson et al. [15] have recently given a bijection between ternary increasing trees (k = 2)
of size n, as defined above, and plane-oriented recursive trees of size n+ 1.

Remark 1. Both, the family of (k+1)-ary increasing trees and the family of plane-oriented recursive
trees introduced before can be generated according to tree evolution processes; we refer the interested
reader to the work of Panholzer and Prodinger [18] for a comprehensive discussion of the processes;
see also Figure 1.
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Figure 1: Ternary increasing trees of size one and two and plane-oriented increasing trees of size one,
two and three, respectively. The positions where new nodes can be attached are denoted by external
nodes.

2.3 Bijections of Gessel and Janson

Theorem 1 (Gessel [19]; see also [15]). Let k ∈ N. The family An = An(k + 1) of (k + 1)-ary
increasing trees of size n is in a natural bijection with k-Stirling permutations, An(k + 1) ∼= Qn(k).

As shown in [15], the bijection behind Theorem 1 allows to study parameters in k-Stirling permutations
via the corresponding parameters in (k + 1)-ary increasing trees. The bijection is stated explicitly
below.
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Bijection 1. The depth-first walk of a rooted (plane) tree starts at the root, goes first to the leftmost
child of the root, explores that branch (recursively, using the same rules), returns to the root, and
continues with the next child of the root, until there are no more children left. We think of (k+1)-ary
increasing trees, where the empty places are represented by “external nodes”. Hence, at any time,
any (interior) node has k + 1 children, some of which may be external nodes. Between these k + 1
edges going out from a node labeled v, we place k integers v. (External nodes have no children and no
labels.) Now we perform the depth-first walk and code the (k+ 1)-ary increasing tree by the sequence
of the labels visited as we go around the tree (one may think of actually going around the tree like
drawing the contour). In other words, we add label v to the code the k first times we return to node
v, but not the first time we arrive there or the last time we return. A (k + 1)-ary increasing tree of
size 1 is encoded by 1k. A (k+ 1)-ary increasing tree of size n is encoded by a string of k · n integers,
where each of the labels 1, . . . , n appears exactly k times. In other words, the code is a permutation
of the multiset {1k, 2k, . . . , nk}. Note that for each i, 1 ≤ i ≤ n, the elements occurring between the
two occurrences of i are larger than i, since we can only visit nodes with higher labels. Hence the code
is a k-Stirling permutation. Moreover, adding a new node n + 1 at one of the kn + 1 free positions
(i.e., the positions occupied by external nodes) corresponds to inserting the k-tuple (n + 1)k in the
code at one of kn+ 1 gaps; note (e.g., by induction) that there is a bijection between external nodes
in the tree and gaps in the code. This shows that the code determines the (k+ 1)-ary increasing tree
uniquely and that the coding is a bijection.
The inverse, starting with a k-Stirling permutation σ of size n and constructing the corresponding
(k + 1)-ary increasing tree can be described as follows. We proceed recursively starting at step one
by decomposing the permutation as σ = σ11σ21 . . . σk1σk+1, where (after a proper relabelling) the
σi’s are again k-Stirling permutations. Now the smallest label in each σi is attached to the root node
labeled 1. We recursively apply this procedure to each σi to obtain the tree representation.

A similar bijection of Janson relates 2-Stirling permutation with plane-oriented recursive trees.

Theorem 2 (Janson [14]). The family of plane-oriented increasing trees of size n+ 1 is in a natural
bijection with 2-Stirling permutations of size n.

Theorems 1, 2 imply that there exists a bijection between plane-oriented increasing trees of size n+ 1
and ternary increasing tree of size n. As mentioned earlier, a bijection between these tree families was
given in [15].

3 Local types in generalized Stirling permutations

It is well known, see Flajolet [7], or Conrad and Flajolet [5], that any ordinary permutation τ = τ1 . . . τn
of size n can be classified according to four local order types called peaks (maxima), valleys (minima),
double rises and double falls. The classification depends on the relative order of τj , with 1 ≤ j ≤ n,
to its neighbours, with respect to the border conditions τ0 = −∞, τn+1 = −∞; note that sometimes
the border condition τn+1 = +∞ is used [5], however the condition τn+1 = −∞ is more consistent
with respect to the relation to binary increasing trees. Moreover, due to the bijection with binary
increasing trees, there exists a correspondence to certain node types. Below we recall the classification
of local types in permutations and node types in binary increasing trees [7], specified according to the
index j, with 1 ≤ j ≤ n.

Local type Peak Valley Double rise Double Fall
Condition τj−1 < τj > τj+1 τj−1 > τj < τj+1 τj−1 < τj < τj+1 τj−1 > τj > τj+1

Node type Leaf Double node Right-branching node Left-branching node.
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A natural question is to extend the notion of local order types to k-Stirling permutations. It turns
out that a variation of the previous definition of local order types in permutations naturally extends
to the general case of k-Stirling permutations. We introduce a slighty different notion of local order
types in permutations in the following way.

Definition 1. Given an ordinary permutation τ = τ1 . . . τn ∈ Sn and entry i, with 1 ≤ i ≤ n, let ji
denote the index such that τji

= i, with 1 ≤ ji ≤ n. The local order type Li(τ) = `i,1`i,2 of entry i in
τ , with 1 ≤ i ≤ n, is a string of length 2, with `i,1, `i,2 ∈ {0, 1}, defined by the relative order of τji

to
its neighbours τji−1, τji+1, assuming to the border conditions τ0 = τn+1 = −∞, in the following way.
The local type Li(τ) of entry i is given by Li(τ) = 00 if τji

is a peak τji−1 < τji
> τji+1, Li(τ) = 11 a

if τji is a valley τj−1 > τji < τj+1, Li(τ) = 01 if τji is a double rise τji−1 < τji < τji+1, and Li(τ) = 10
if τji is double fall τji−1 > τji > τji+1.

Example 3. The ordinary permutation τ = 2534716 of size seven has the following local types
L1(τ) = 11, L2(τ) = 01, L3(τ) = 11, L4(τ) = 01, L5(τ) = 00, L6(τ) = 00, and L7(τ) = 00.

This new definition readily extends to the general case of k-Stirling permutation, with k ≥ 1.

Definition 2. Given a k-Stirling permutation σ = σ1σ2 . . . σkn of size n, with border conditions
σ0 = σnk+1 = −∞, let 1 ≤ ji,1 < · · · < ji,k ≤ kn be the indices such that σji,h

= i. The local type
Li(τ) = `i,1 . . . `i,k+1 of the numbers i with 1 ≤ i ≤ n is a string of length k+ 1, with `i,1, . . . , `i,k+1 ∈
{0, 1}, generated according to relative orders of the σji,h

, with 1 ≤ h ≤ k + 1, to their neighbors by
the following rules.

`i,1 =

{
0 if σji,1−1 < σji,1 ,

1 if σji,1−1 > σji,1 ;
`i,k+1 =

{
0 if σji,k

> σji,k+1,

1 if σji,k
< σji,k+1;

and

`i,h =

{
0 if σji,h−1 = σji,h

,

1 if σji,h−1 6= σji,h
;

for h ≤ 2 ≤ k.

Example 4. The 3-Stirling permutation σ = 112233321445554666 of size six has the following local
types L1(σ) = 0011, L2(σ) = 0010, L3(σ) = 0000, L4(σ) = 0010, L5(σ) = 0000, L6(σ) = 0000.

Since there are exactly 2k+1 different possible local types, we obtain the following result.

Proposition 1. A k-Stirling permutation σ = σ1σ2 . . . σkn of size n of the multiset {1k, 2k, . . . , nk}
can be classified according to 2k+1 different local types, with respect to the local rules in Definition 2.

Next we want to relate the local types in k-Stirling permutations to node types in (k+1)-ary increasing
trees. By definition of (k + 1)-ary increasing trees, every node has exactly k + 1 (labeled) positions
for children. Some of the k + 1 positions may be occupied by (internal) nodes, some other may be
vacant (occupied by external nodes). We propose the following definition.

Definition 3. The node labeled i, with 1 ≤ i ≤ n, in a (k+1)-ary increasing trees T of size n may be
specified according to the structure of its children, i.e. a sequence Gi(T ) = gi,1 . . . , gi,k+1 ∈ {0, 1}k+1

of length k + 1, where gi,h ∈ {0, 1} specifies whether the h-th position from node i, going from left
to right, is occupied by a node, gi,h = 1, or not, gi,h = 0, in the (k + 1)-ary increasing tree of size n,
1 ≤ h ≤ k + 1.

In other words, gi,h encodes whether node i has an internal children via its h-th edge, going from left
to right, or not.

Example 5. In the case k = 1, binary increasing trees, we have 4 = 22 different types of nodes. We
already observed that sequence 11 corresponds to a double node, the sequence 10 to a left-branching
node, the sequence 01 to a right-branching node, and the sequence 00 to a leaf.
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Figure 2: The eight different node types in ternary increasing trees, assuming that j, h, k > i ≥ 1.

Example 6. In the case k = 2, ternary increasing trees, we have 8 = 23 different types of nodes. The
sequence 111 corresponds to a triple node, 101 to a (left,right)-branching node, 110 to a (left,center)-
branching node, 011 to a (center,right)-branching node, 100 to a left-branching node, 010 to a center-
branching node, 001 to a right-branching node, and 000 to a leaf, respectively. See Figure 2 for an
illustration.

Theorem 3. By Bijection 1 the local types Li(σ) in a k-Stirling permutation σ = σ1 . . . σkn of size
n coincide with the node types Gi(T ) of the corresponding (k + 1)-ary increasing trees T of size n,
Li(σ) = Gi(T ), 1 ≤ i ≤ n.

Proof. We use Theorem 1 and the bijection between k-Stirling permutations and (k+1)-ary increasing
trees, which is based on a depth-first walk as described in Bijection 1. We start the depth first walk
at the root of a given (k + 1)-ary increasing tree T of size n with node types G1(T ), . . . , Gn(T ),
and construct the corresponding k-Stirling permutation σ = σ(T ) of size n by traversing the tree T
according to Bijection 1. We show that the local order type Li(σ) = `i,1 . . . `i,k+1 equals the node type
Gi(T ) = gi,1 . . . gi,k+1 of the node labeled i, for all 1 ≤ i ≤ n. Assume first that the first of the k + 1
positions of the node labeled i is vacant, the node degree type gi,1 = 0. By Bijection 1 we observe
that gi,1 = 0 implies that i = σji,1 > σji,1−1 = m and consequently `i,1 = `i,1(σ) = 0; here ji,1 denotes
the index of the first occurrence of i in the corresponding k-Stirling permutation σ = σ1 . . . σkn, since
a smaller number m < i must have been observed earlier according to the depth-first walk and the
property that the tree is increasingly labeled.

i
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ii mi
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m<i r>i r=i i<ri=i i>m

Figure 3: A schematic representation of the correspondence between local order types in 2-Stirling
permutations and local node types in ternary increasing trees according to Bijection 1: the tree is
traversed according to a depth-first walk, assuming that r > i and m < i.

Assume now that the converse is true gi,1 = 1. By the depth-first walk and the definition of increasing
trees we have i = σji,1 < σji,1−1. More generally let 1 ≤ ji,1 < · · · < ji,k ≤ kn denote the k indices
of the occurrences of i in the corresponding k-Stirling permutation σ, σji,h

= i for 1 ≤ h ≤ k. For
2 ≤ h ≤ k we note that gi,h = 0 implies that the indices ji,h and ji,h+1 satisfy ji,h + 1 = ji,h+1 and
consequently σji,h

= σji,h+1 = i and further `i,h = 0; the converse is also true. Finally, if gi,k+1 = 0
the σji,k+1 > σji,k+1+1 and consequently `i,k+1 = 0. The converse is easily be seen to be true.
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3.1 Local types and path diagrams

It is well known by a theorem of Françon and Viennot [9] (see also Flajolet [7]) that the description
of ordinary permutations via local types is closely related to path diagrams. In the following we give
a bijection between k-Stirling permutations ((k + 1)-ary increasing trees) and path diagrams with
k + 2 different step-vectors. First we recall some definitions of [7] concerning lattice paths. We have
k + 2 step vectors, consisting of k different rise vectors a1, . . . , ak, with a` = (1, `) for 1 ≤ ` ≤ k,
a fall vector b = (1,−1), and a level vector c = (1, 0). To each word u = u1 . . . un on the alphabet
A = {a1, . . . , ak, b, c} there exists an associated sequence of points M0M1 . . .Mn, with M0 = (0, 0)
such that Mj = Mj−1 + uj , for all 1 ≤ j ≤ n. We only consider paths that are positive and ending
at (0, 0), corresponding to sequences where that all the points have a non-negative y-coordinate, and
Mn = M0 = (0, 0).

In a labeled path each step is indexed with the height of the point from which it starts. For a positive
path associated to the word u = u1 . . . un with corresponding sequence of points M0M1 . . .Mn with
Mi = (xi, yi), the labeling λ(u) is a word of length n over the infinite alphabet X,

X = {b0, b1, b2 . . . } ∪ {c0, c1, c2 . . . } ∪
k⋃

`=1

{a0,`, a1,`, a2,` . . . },

by λ(u) = v1 . . . vn via the following rules

(i) if uj = a`, then vj = ayj−1,`,

(ii) if uj = b, then vj = byj−1 ,

(iii) if uj = c, then vj = cyj−1 .

Next we recall the definition of path diagrams (see i.e. [9], [7] and the references therein). A system
of path diagrams on a given set of (labeled) paths is defined as follows. A path diagram is a couple
(λ(u), s), where u = u1 . . . un is a path, and s is a sequence of integers s = s1 . . . sn such that for all
j : 0 ≤ s < pos(vj), where pos =: X → N is called a possibility function.
Now we are ready to state the connection between path diagrams, k-Stirling permutations and (k+1)-
ary increasing trees.

Theorem 4. The class of k-Stirling permutations of size n+ 1 (the family of (k + 1)-ary increasing
trees of size n+ 1) is in bijection with path diagrams of length n, with possibility function pos(.) given
by

pos(aj,`) =
(
k + 1
`+ 1

)
(j + 1), 1 ≤ ` ≤ k, pos(bj) = j + 1, pos(cj) = (k + 1)(j + 1),

with respect to the labeled paths induced by the family of k + 2 step vectors a1, . . . , ak, b, c, with rise
vectors a` = (1, `) for 1 ≤ ` ≤ k, fall vector b = (1,−1), and level vector c = (1, 0).

Remark 2. For k = 1 this reduces to the classical correspondence of Françon and Viennot [9]. Note
that one may interpret c as a rise vector, corresponding to the case ` = 0, which would simplify the
presentation. However, due to the importance of the case k = 1 we opted not to do so, in order to be
coherent with the presentations of [9], [7].

Proof. Following [7] we shall set a` =
∑(k+1

`+1)
i=1 a

(i)
` , with pos(a(i)

j,`) = j + 1, for 1 ≤ i ≤
(
k+1
`+1

)
and

1 ≤ ` ≤ k; moreover we also set c =
∑k+1

i=1 c
(i), with pos(c(i)j ) = j + 1 for 1 ≤ i ≤ k + 1. We readily

observe that the new refined path diagrams are in bijection with the previously defined path diagrams,
with possibility function given by

pos(aj,`) =
(
k + 1
`+ 1

)
(j + 1), 1 ≤ ` ≤ k, pos(bj) = j + 1, pos(cj) = (k + 1)(j + 1).
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We recursively construct a (k + 1)-ary increasing tree, starting from a path diagram (λ(u), s), with
λ(u) = v1 . . . vn as follows. At step zero we start with the empty tree and one position to insert
a node. At step j, 1 ≤ j ≤ n, we insert node j to one of the vacant positions, where the number
hj of vacant positions at step j is given by the height of the path at position j plus one. If letter
vj = a

(i)
hj−1,`, with 1 ≤ i ≤

(
k+1
`+1

)
and 1 ≤ ` ≤ k, then node j is assumed to have outdegree ` + 1.

The specific outdegree structure of node j, the distribution of the ` + 1 children to k + 1 possible
places, is, according to Definition 3, determined by an arbitrary but fixed bijection from the set
{h = h1 . . . hk+1 ∈ {0, 1}k+1 |

∑k+1
i=1 hi = `+ 1} to the set {a(i)

` | 1 ≤ i ≤
(
k+1
`+1

)
}. If the number in the

possibility sequence is sj , we assign node j at the 1 + sj vacant position starting from the left. The
construction is terminated by putting node (n + 1) as a leaf in the last vacant position after stage
n.

Example 7. Consider the case k = 2, corresponding to ternary increasing trees, or equivalently
Stirling permutations. Below we illustrate the procedure stated above on the path diagram v =
a0,2a

(2)
2,1b3b2c

(3)
1 b1 and s = 0030011, assuming the local outdegree structure correspondence determined

by a
(1)
1 ∼ 110, a(2)

1 ∼ 101, a(3)
1 ∼ 011, c(1) ∼ 100, c(2) ∼ 010, c(3) ∼ 001. By using for k = 2 the

1

2

1

2

1

3

2

1

3

4

2

1

3

4

5 2

1

3

4

5

6

2

1

3

4

5

67

Figure 4: An illustration of the recursive construction of a ternary increasing trees, with respect to
the path diagram (λ(u), s) with λ(u) = v = a0,2a

(2)
2,1b3b2c

(3)
1 b1 and s = 0030011

bijection between (k + 1)-ary increasing trees and k-Stirling permutations, see [15], we immediately
obtain the corresponding Stirling permutation σ of size seven, σ = 44227715566133. Note that we can
also directly construct the Stirling permutation, since the local types of the outdegree of the nodes
in the ternary increasing tree correspond to the local types of the numbers in the permutation. One
may think of this procedure as some kind of “flattening of the tree to a line”, see below and compare
with the sequence of trees in Figure 4.

◦ → ◦1 ◦ 1◦ → ◦22 ◦ 1 ◦ 1◦ → ◦22 ◦ 1 ◦ 133→ 4422 ◦ 1 ◦ 133→ 4422 ◦ 155 ◦ 133
→ 442277155 ◦ 133→ 44227715566133.
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3.2 A continued fraction type representation of local types

Flajolet [7] used the correspondence between path diagrams and formal power series to obtain contin-
ued fraction representations of the generating functions of many parameters in ordinary permutations.
More precisely, in the context of permutations and binary increasing trees he derived, amongst many
other results, a continued fraction representation of generating function of local types in permuta-
tions, or equivalently of node types in binary increasing trees. We will use the methods of [7] and
the beforehand proven path diagram representation of k-Stirling permutations and (k + 1)-ary in-
creasing trees to obtain a continued fraction type representation of the generating function of the
local types, and consequently also of node types. First we have to recall some more definitions of the
work [7] concerning formal power series. Let C〈〈X〉〉 denote the monoid algebra of formal power series
s =

∑
u∈X∗ su · u on the set of non-commutative variables (alphabet) X with coefficients in the field

of complex numbers, with sums and Cauchy products are defined in the usual way

s+ t =
∑

u∈X∗

(su + tu) · u, s · t =
∑

u∈X∗

( ∑
vw=u

svtw

)
· u.

In order to define the convergence of a series, one introduces the valuation of a series val(s), defined
by

val(s) = min{|u| : su 6= 0},

where |u| denotes the length of the word u ∈ X∗. A sequence of elements (sn)n∈N, sn ∈ C〈〈X〉〉,
converges to a limit s ∈ C〈〈X〉〉 if

lim
n→∞

val(s− sn) =∞.

Multiplicative inverses exist for series having a constant term different from zero; for example (1 −
u)−1 =

∑
`≥0 u

`, where (1 − u)−1 is known as the quasiinverse of u. Note that we will subsequently
use the notation (u|v)/w = uw−1v. The characteristic series char(S) of S ⊂ X∗ is defined as

char(S) =
∑
u∈S

u.

Finally, following [7] we use for subsets E,F of X∗ the alternative notations E + F for the union
E ∪ F , E · F for the extension to sets of the catenation operation on words, and let E∗ = ε+E +E ·
E + E · E · E + . . . , with ε denoting the empty word. Moreover, we will use a Lemma (Lemma 1 of
Flajolet [7]), which allows to translate operations on sets of words into corresponding operations on
series, provided certain non ambiguity conditions are satisfied.

Lemma 1. Let E, F be subsets of X∗. Then

1. char(E + F ) = char(E) + char(F ) provided E ∩ F = ∅,

2. char(E · F ) = char(E) · char(F ) provided that E · F has the unique factorization property,
∀u, u′ ∈ E ∀v, v′ ∈ F uv = u′v′ implies u = u′ and v = v′,

3. char(E∗) = (1 − char(E))−1 provided the following two condition hold: Ej ∩ Ek = ∅ ∀j, k with
j 6= k, each Ek has the unique factorization property.

With the help of Lemma 1 one can translate operations on sets of words into corresponding operations
on series provided certain non-ambiguity conditions are satisfied.

Let C [h]
i = C

[h]
i (k) be defined as the characteristic series of all labeled paths with step vectors given by

a1, . . . , ak, b, c starting and ending at the level i, with i ≥ 0, never going below level i and above level
i + h, with h ≥ 0. We assume that formal convention C

[h]
i = 0 if h < 0. Moreover, let C [h] = C

[h]
0 .

10



We introduce the notation
〈
C

[h]
i

〉
1

:= (ai,1|bi+1)C [h−1]
i+1 ,

〈
C

[h]
i

〉
2

:= ((ai,2|bi+2) · C [h−2]
i+2 |bi+1) · C [h−1]

i+1 ,

and in general for integer 1 ≤ ` ≤ k let
〈
C

[h]
i

〉
`

be defined by〈
C

[h]
i

〉
`

= (. . . ((ai,`|bi+`)C
[h−`]
i+` |bi+`−1)C [h−(`−1)]

i+`−1 . . . |bi+1)C [h−1]
i+1 .

Proposition 2. The characteristic series C [h]
i = C

[h]
i (k) of all labeled paths with step vectors given

by a1, . . . , ak, b, c starting and ending at the level i, with i ≥ 0, never going below level i and above
level i+ h, with h ≥ 0, satisfies

C
[h]
i =

1

1− ci −
∑k

`=1

〈
C

[h]
i

〉
`

.

The double sequence (C [h]
i )i,h≥0 converges for h→∞. Its limit (Ci)i≥0 given as follows.

Ci =
1

1− ci −
∑k

`=1

〈
Ci

〉
`

.

In particular, C = C0 equals the characteristic sequence of all labeled paths P, starting and ending at
the x-axis, never going below the y-axis, with step vectors given by a1, . . . , ak, b, c.

Remark 3. The case k = 1, treated by Flajolet [7], corresponds to binary increasing trees and
ordinary permutation.

Proof. For the sake of simplicity we only present the proof of the special case k = 2, corresponding to
Stirling permutations and ternary increasing trees. We prove that

C
[h]
0 =

1

1− c0 −
∑2

`=1

〈
C

[h]
0

〉
`

=
1

1− c0 − (a0,1|b1)C [h−1]
1 − ((a0,2|b2)C [h−2]

2 |b1)C [h−1]
1

equals the characteristic series of the set P [h] of all labeled paths with step vectors a1, a2, b, c, starting
and ending at level zero with height bounded by h. More generally, for i ≥ 0

C
[h]
i =

1

1− ci −
∑2

`=1

〈
C

[h]
i

〉
`

=
1

1− ci − (ai,1|bi+1)C [h−1]
i+1 − ((ai,2|bi+2)C [h−2]

i+2 |bi+1)C [h−1]
i+1

equals the characteristic series of all labeled paths starting and ending at level i with height bounded
by h. Note that by our previous notation (u|v)/w = uw−1v and (1 − u)−1 =

∑
`≥0 u

` regarding
quasiinverse series, we have for instance

(ai,1|bi+1)C [h−1]
i+1 = ai,1

(
C

[h−1]
i+1

)−1
bi+1

= ai,1

∑
`≥0

(
ci+1 + (ai+1,1|bi+2)C [h−2]

i+2 + ((ai+1,2|bi+3)C [h−3]
i+3 |bi+2)C [h−2]

i+2 bi+2

)`

bi+1.

For the first few values of h = 1, 2, 3 we obtain

P [0] = (c0)∗

P [1] = (c0 + a0,1c
∗
1b1)∗

P [2] = (c0 + a0,1(c1 + a1,1c
∗
2b2)∗b1 + a0,2c

∗
2b2(c1 + a1,1c

∗
2b2)∗b1)∗

P [3] =
(
c0 + a0,1

(
c1 + a1,1(c2 + a2,1c

∗
3b3)∗b2 + a1,2c

∗
3b3(c2 + a2,1c

∗
3b3)∗b2

)∗
b1

+ a0,2(c2 + a2,1c
∗
3b3)∗b2

(
c1 + a1,1(c2 + a2,1c

∗
3b3)∗b2 + a1,2c

∗
3b3(c2 + a2,1c

∗
3b3)∗b2

)∗
b1

)∗
.
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In order to simplify the recursive description of P [h] we introduce the refined sets P [h]
i consisting of

the paths starting and ending at level i with height bounded by h, where P [h]
0 = P [h]. Note that P [h]

i

can easily be obtained from P [h]
0 = P [h] by shifting the first index encoding the level by i; we have

P [0]
i = (ci)∗, P [1]

i = (ci + ai,1c
∗
i+1bi)

∗. We can write P [h] in the following way.

P [0] = (c0)∗

P [1] = (c0 + a0,1P[0],1b1)∗

P [2] = (c0 + a0,1P[1],1b1 + a0,2P[0],2b2P[1],1b1)∗

P [3] =
(
c0 + a0,1P[2],1b1 + a0,2P[1],2b2P[2],1b1

)∗
.

By induction one can prove that the following unambiguous description of P [h].

P [h] =
(
c0 + a0,1P[h−1],1b1 + a0,2P[h−2],2b2P[h−1],1b1

)∗
.

More generally, we have

P [h]
i =

(
ci + ai,1P [h−1]

i+1 bi+1 + ai,2P [h−2]
i+2 bi+2P [h−1]

i+1 bi+1

)∗
.

Since P [h]
i is obtained from P [h]

0 = P [h] by an index shift, we recursively obtain the stated description
of C [h]

0 by replacing the operations +, ·, ∗ on the sets of words by the series operations +, |, and
quasi-inverse. Moreover, the characteristic series of the refined sets P [h]

i is simply given by C [h]
i . One

observes the inclusion
P [0] ⊂ P [1] ⊂ P [2] ⊂ · · · ⊂ P,

or more generally
P [0]

i ⊂ P
[1]
i ⊂ P

[2]
i ⊂ · · · ⊂ Pi i ≥ 0.

Since paths of height h have at least length greater or equal dh
k e, with k = 2 in the presented case

corresponding to ternary increasing trees and Stirling permutations, we have

val(Ci − C [h−1]
i ) ≥ dh

k
e,

and consequently
lim

h→∞
C

[h]
i = Ci.

The proof of the general case k > 2 is similar but more involved.

Subsequently, we will enumerate k-Stirling permutations according to the 2k+1 different local types.
Let Pm0,...,mk+1 denote the number of k-Stirling permutations σ ∈ Q, where the 2k+1 local types
are specified according to mi = (mi,1, . . . ,mi,(k+1

i )), 0 ≤ i ≤ k + 1. The generating function

P (z0, . . . , zk+1, t) of k-Stirling permutations with respect to the 2k+1 local types, or equivalently
(k + 1)-ary increasing trees with respect to the 2k+1 different node types, is defined by

P (z0, . . . , zk+1, t) =
∑

m0,...,mk+1

Pm0,...,mk+1z0
m0 . . . zk+1

mk+1t
∑k+1

i=0
∑(k+1

i )
`=1 mi,` ..

Now we can state the main result of this section, namely the continued fraction representation of the
generating function of local types in k-Stirling permutations and node types in (k+ 1)-ary increasing
trees.
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Theorem 5. The generating function P (z0, . . . , zk+1) of k-Stirling permutations, or equivalently (k+
1)-ary increasing trees, with respect to the 2k+1 local types,

P (z0, . . . , zk+1, t) =
∑

m0,...,mk+1

Pm0,...,mk+1z0
m0 . . . zk+1

mk+1t
∑k+1

i=0
∑(k+1

i )
`=1 mi,`

is given by

P (z0, . . . , zk+1, t) =
1

1− 1
∑k+1

`=1 tz1,` −
1·2

∑(k+1
2 )

`=1 z2,`t2z0,`

1−2
∑k+1

`=1 tz1,`−
2·3

∑(k+1
2 )

`=1 t2z2,`z0,`
... −...

− . . .
.

Corollary 1. An expansion of the generating function
∑

n≥0 k
n+1 Γ(n+1+ 1

k )

Γ( 1
k )

tn is obtained from the
generating function P (z0, . . . , zk+1, t) by setting z` = (1, . . . , 1), 0 ≤ ` ≤ k + 1. In particular, we
obtain for k = 2 the identity∑

n≥0

(2n+ 1)!! tn =
1

1− 1 ·
(

3
1

)
t− 1·2·(3

2)t2

1−2·(3
1)t−

2·3·(3
2)t2

1−3·(3
1)t...

−
2·1·2·3·(3

3)t3

1−4·(3
1)t...

− 1·2·3·(3
3)t3(

1−3·(3
1)t...

)(
1−2·(3

1)t...
)

= 1 + 3t+ 15t2 + 105t3 + 945t4 + . . .

Remark 4. Below each fraction bar in the continued fraction type representation of the formal
power series there are k + 1 terms, starting with 1. As mentioned earlier the case k = 1 is a result of
Flajolet [7].

Proof. We combine our earlier results. Theorem 3 shows that we can use the same representation
for local types of in k-Stirling permutations and node types in (k + 1)-ary increasing trees. An
application of Theorem 4 and Proposition 2, together with the morphism µ : C〈〈X〉〉 → C [[ z ]] with
µ(a(i)

j,`) = (j + 1)tz`+1,i, 1 ≤ ` ≤ k and 1 ≤ i ≤
(
k+1
`+1

)
, µ(c(i)j ) = (j + 1)tz1,i, 1 ≤ i ≤ k + 1 and

µ(bj) = (j + 1)tz0, proves the result stated in Theorem 5. The result of Corollary 1 follows by setting
z` = (1, . . . , 1) for 0 ≤ ` ≤ k + 1.

3.3 Path diagrams and plane-oriented increasing trees

In the special case k = 2 Janson [14] showed that the class of 2-Stirling permutations of size n
is in bijection with the class of plane-oriented increasing trees of size n + 1. A bijection between
ternary increasing tree of size n and plane-oriented increasing trees of size n + 1 was given in [15].
We will provide a bijection between path diagrams with an infinite number of rise vectors, plane-
oriented increasing trees and Stirling permutations. For the path diagram description we proceed as
in Subsection 3.1: First we introduce a family of step vectors; then we state the bijection between
plane-oriented increasing trees and path diagrams with suitably defined possibility function. The
family of step vectors consists of an infinite number of rise vectors a = (a`)`∈N, with a` = (1, `) for
` ∈ N, a fall vector b = (1,−1), and a level vector c = (1, 0). To each word u = u1 . . . un on the
alphabet A = {a, b, c} there exists an associated sequence of points M0M1 . . .Mn, with M0 = (0, 0)
such that Mj = Mj−1 + uj , for all 1 ≤ j ≤ n. As before, we only consider paths that are positive
and ending at (0, 0), Mn = M0. Moreover, we label the paths according to their vertical positions.
Note that the path diagram representation of plane-oriented increasing trees encodes the tree via their
outdegree distribution.
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Theorem 6. The class of plane-oriented increasing tree of size n+1 is in bijection with path diagrams
of length n, with possibility function pos given by

pos(aj,`) = j + 1, ` ∈ N, pos(bj) = j + 1, pos(cj) = j + 1,

with respect to the infinite family of step vectors defined previously.

Proof. We use again a recursive construction to obtain, starting from a path diagram (λ(u), s) with
λ(u) = v1 . . . vn of length n, the corresponding plane-oriented increasing tree of size n. At step zero
we start with the empty tree and one position to insert a node. At step j, 1 ≤ j ≤ n, we insert node
j to one of the vacant positions, where the number hj of vacant positions at step j is given by the
height of the path at position j plus one. If letter vj = ahj−1,`, with ` ∈ N, then node j is assumed
to have outdegree ` + 1. In the case of vj = bhj−1 or vj = chj−1 , then node j is assumed to have
outdegree zero or one, respectively. If the number in the possibility sequence is sj , we assign node j
at the 1 + sj vacant position starting from the left. The construction is terminated by putting node
(n+ 1) as a leaf in the last vacant position after stage n.

Let Xn,j denote the number of nodes of outdegree j in a random plane-oriented increasing tree of size
n. We relate the distribution of outdegrees to suitably defined statistics in ternary increasing tree and
Stirling permutations. Any ternary increasing tree can be decomposed by deleting all center edges
into trees having only left or right edges. The original tree is reobtained by connecting the arising
left-right trees using center edges. Let X [LR]

n,j denote the number of size j left-right trees in a random
ternary increasing tree of size n.

Concerning Stirling permutations σ = σ1 . . . σ2n we introduce the parameter sub-block structures of
size j as follows. A block in a Stirling permutation σ is a substring σp · · ·σq with σp = σq that is
maximal, i.e. not contained in any larger such substring [15]. There is obviously at most one block
for every i = 1, . . . , n, extending from the first occurrence of i to the last; we say that i forms a
block when this substring really is a block, i.e. when it is not contained in a string ` · · · ` for some
` < i. Assume that σ can be decomposed into ` blocks, σ = [B1][B2] . . . [B`]. Remove in each of the
blocks the left and rightmost number. We are left with subblocks, possibly empty, which are after
an order preserving relabeling again (sub-)Stirling permutations. We recursively determine again the
(sub)-block structure in the new Stirling permutations. Let X [B]

n,j = X
[B]
n,j (σ) denotes the number of

(sub-)blocks equal to j in a size n Stirling permutation σ, considering all (sub)-blocks obtained by the
recursive process described before.

Example 8. The Stirling permutation σ = 221553367788614499 of size nine has block decomposition
σ = [22][155336778861][44][99]. After removal of the left and rightmost entries in the blocks the only
non-empty subblock or (sub-)Stirling permutation is given by 5533677886. After an order preserving
relabeling we get σ′ = 2211344553. We have σ′ = [22][11][344553]; consequently we obtain the (sub-
)Stirling permutation σ′′ = 1122, which has block decomposition σ′′ = [11][22]. Hence, X [B]

9,4 (σ) = 1,

X
[B]
9,3 (σ) = 1 and X

[B]
9,2 (σ) = 1.

Theorem 7. For j > 2 the number of nodes Xn+1,j of outdegree j in a random plane increasing tree
of size n + 1 coincides with X

[LR]
n,j−1, counting the number of size j − 1 left-right trees in a random

ternary increasing tree of size n, and with X [B]
n,j counting the number of sub-Stirling permutations with

number of blocks equal to j, starting with a random Stirling permutation of size n,

Xn+1,j = X
[LR]
n,j−1 = X

[B]
n,j .

Moreover, the nodes of outdegree two in plane increasing tree of size n+ 1 correspond to the number
of nodes in ternary increasing trees of size n having exactly one children, connected by a center edge,
where this child is a leaf node.
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The proof of the the result consists of a simple application of the bijection stated in [15], and is
therefore omitted.
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Figure 5: A plane-oriented increasing tree of size 10, the corresponding size 9 ternary increasing trees
together with its left-right tree decomposition.

Example 9. The Stirling permutation σ of size nine corresponding to the trees in Figure 5, obtained
either using the bijection with plane increasing tree [14] or with ternary increasing trees [15], is
given by σ = 221553367788614499. As observed before we have X

[B]
9,4 (σ) = 1, X [B]

9,3 (σ) = 1 and

X
[B]
9,2 (σ) = 1, corresponding to the number of nodes with outdegrees given by four, three and two in

the corresponding plane increasing trees, and with the sizes of the left-right trees in ternary increasing
trees.
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