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ABSTRACT. It was shown in [11, 13] that harmonic numbers satisfy certain reciprocity relations,
which are in particular useful for the analysis of the quickselect algorithm. The aim of this work
is to show that a reciprocity relation from [11, 13] can be generalized to finite variants of multiple
zeta values, involving a finite variant of the shuffle identity for multiple zeta values. We present
the generalized reciprocity relation and furthermore a combinatorial proof of the shuffle identity
based on partial fraction decomposition. We also present an extension of the reciprocity relation
to weighted sums.

1. INTRODUCTION

Let Hn =
∑n

k=1 1/k denote the n-th harmonic number and H
(s)
n =

∑n
k=1 1/k

s the n-th
harmonic number of order s, with n, s ∈ N and Hn = H

(1)
n . Kirschenhofer and Prodinger [11]

analyzed the variance of the number of comparisons of the famous QUICKSELECT algorithm,
also known as FIND [10], and derived a reciprocity relation for (first order) harmonic numbers.
Subsequently, the reciprocity relation of [11] was generalized [13], where the following identity
was derived.

j∑
k=1

H
(a)
N−k

kb
+

N+1−j∑
k=1

H
(b)
N−k

ka
= − 1

jb(N + 1− j)a
+H

(b)
j H

(a)
N+1−j +R

(a,b)
N , (1)

where R(a,b)
N =

∑N
k=1

H
(a)
N−k

kb
, which can be evaluated into a finite analogue of the so-called Euler

identity for ζ(a)ζ(b) stated below,

R
(a,b)
N =

a∑
i=1

(
i+ b− 2

b− 1

)
ζN(i+ b− 1, a+ 1− i) +

b∑
i=1

(
i+ a− 2

a− 1

)
ζN(i+ a− 1, b+ 1− i),

(2)

where the multiple zeta values [2, 3, 4, 5, 6, 17], and its finite counterpart are defined as follows:

ζ(a) = ζ(a1, . . . , ar) :=
∑

n1>n2>···>nr≥1

1

na11 n
a2
2 . . . narr

,

ζN(a) = ζN(a1, . . . , ar) :=
∑

N≥n1>n2>···>nr≥1

1

na11 n
a2
2 . . . narr

.
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Note that ζN(a) = H
(a)
N . Finite multiple zeta values are also called truncated multiple zeta values.

They are also of great importance in particle physics, see for example the works [1, 16, 14], and
closely related to so-called harmonics sums. Let w =

∑r
i=1 ai denote the weight and d = r the

depth of (finite) multiple zeta values. The aim of this note is to derive a generalization of the
reciprocity relation (1), stated below in Theorem 1, by considering the more general sums

j∑
k=1

ζk−1(b2, . . . , bs)ζN−k(a1, . . . , ar)

kb1
+

N+1−j∑
k=1

ζk−1(a2, . . . , ar)ζN−k(b1, . . . , bs)

ka1
,

instead of the previously considered sums
∑j

k=1

H
(a)
N−k

kb
and

∑N+1−j
k=1

H
(b)
N−k

ka
. The generalization

involves a finite variant of the shuffle identity for multiple zeta values, see e.g. Hoffman [9] for a
general algebraic framework for shuffle products. We will give an elementary proof of the shuffle
identity using only partial fraction decomposition and the combinatorial properties of the shuffle
product in Subsections 3.1 and 3.2. Moreover, we discuss the close relation between this finite
variant of the shuffle identity and the shuffle identity for generalized polylogarithm functions; it
will turn out that the finite variant of the shuffle identity is equivalent to the shuffle identity for
generalized polylogarithm functions.

To simplify the presentation of this work we will frequently use the shorthand notations a =
(a1, . . . , ar), a2 = (a2, . . . , ar) and b = (b1, . . . , bs), b2 = (b2, . . . , bs), respectively, with r, s ∈
N and ai, bk ∈ N for 1 ≤ i ≤ r and 1 ≤ k ≤ s.

2. RESULTS

We will state the main theorem and two corollaries below, and subsequently discuss their
proofs and the precise definition of the shuffle relation for multiple zeta values.

Theorem 1. The finite multiple zeta values ζN(a) = ζN(a1, . . . , ar), ζN(b) = ζN(b1, . . . , bs)
satisfy the following reciprocity relation.

j∑
k=1

ζk−1(b2, . . . , bs)ζN−k(a1, . . . , ar)

kb1
+

N+1−j∑
k=1

ζk−1(a2, . . . , ar)ζN−k(b1, . . . , bs)

ka1

= ζN+1−j(a)ζj(b)−
ζj−1(b2)ζN−j(a2)

jb1(N + 1− j)a1
+RN(a;b).

The quantity RN(a;b) =
∑N

k=1
ζN−k(b)ζk−1(a2,...,ar)

ka1
= RN(b; a) can be written as a sum of finite

multiple zeta values, all of them having weight w =
∑r

i=1 ar +
∑s

i=1 bi and depth d = r + s.

Remark 1. The quantity RN(a;b) satisfies a shuffle identity resembling the ordinary shuffle
identity for multiple zeta values ζ(a)ζ(b) = ζ(attb); see Subsection 3.1, 3.2 and Proposition 1
for details.
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Corollary 1. We obtain the complementary identity

j−1∑
k=1

ζk(b)ζN−k−1(a2)

(N − k)a1
+

N−j∑
k=1

ζk(a)ζN−k−1(b2)

(N − k)b1
=
ζj−1(b)ζN−j(a2)

(N + 1− j)a1
+
ζN−j(a)ζj−1(b2)

jb1

− ζN+1−j(a)ζj(b) +
ζj−1(b2)ζn−j(a2)

jb1(N + 1− j)a1
+RN(a;b).

Next we state an immediate asymptotic implication of the previous result.

Corollary 2. For N = 2n + 1, j = n + 1, with a1, b1 ∈ N \ {1} and n → ∞ we obtain the
following result.

lim
n→∞

( j∑
k=1

ζk−1(b2)ζN−k(a)

kb1
+

N+1−j∑
k=1

ζk−1(a2)ζN−k(b)

ka1

)
= 2ζ(a)ζ(b).

3. THE PROOF OF THE RECIPROCITY RELATION

In order to prove Theorem 1 we proceed as follows (using the beforehand introduced shorthand
notations).

j∑
k=1

ζk−1(b2)ζN−k(a)

kb1
=

j∑
k=1

ζk−1(b2)

kb1

(
ζN−j(a) +

N−k∑
`=N+1−j

ζ`−1(a2)

`a1

)

= ζN−j(a)ζj(b) +

j∑
k=1

ζk−1(b2)

kb1

N−k∑
`=N+1−j

ζ`−1(a2)

`a1
.

After changing summations we obtain

j∑
k=1

ζk−1(b2)ζN−k(a)

kb1
= ζN−j(a)ζj(b) +

N−1∑
`=N+1−j

ζ`−1(a2)

`a1

N−∑̀
k=1

ζk−1(b2)

kb1

= ζN−j(a)ζj(b) +
N−1∑

`=N+1−j

ζ`−1(a2)ζN−`(b)

`a1
.

Using

ζN−j(a)ζj(b) +
ζN−j(a2)ζj−1(b)

(N + 1− j)a1
= ζN−j(a)ζj(b) +

ζN−j(a2)

(N + 1− j)a1
(
ζj(b)−

ζj−1(b2)

jb1

)
= ζN+1−j(a)ζj(b)−

ζN−j(a2)ζj−1(b2)

(N + 1− j)a1jb1
,

and the fact that ζ0(b) = 0 gives the intermediate result

j∑
k=1

ζk−1(b2)ζN−k(a)

kb1
= ζN+1−j(a)ζj(b)−

ζN−j(a2)ζj−1(b2)

(N + 1− j)a1jb1
+

N∑
`=N+2−j

ζ`−1(a2)ζN−`(b)

`a1
.
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We add the sum
∑N+1−j

k=1
ζk−1(a2)ζN−k(b)

ka1
to both sides of the equation above. This proves the first

part of Theorem 1 and

RN(a;b) =
N∑
k=1

ζN−k(b)ζk−1(a2, . . . , ar)

ka1
.

For the evaluation of RN(a;b) we note that R0(a;b) = 0, and further

RN(a;b) =
N∑
k=1

(
Rk(a;b)−Rk−1(a;b)

)
. (3)

Since ζ0(b) = 0 we have

RN(a;b)−RN−1(a;b) =
N∑
k=1

ζN−k(b)ζk−1(a2, . . . , ar)

ka1
−

N−1∑
k=1

ζN−1−k(b)ζk−1(a2, . . . , ar)

ka1

=
N−1∑
k=1

(
ζN−k(b)− ζN−1−k(b

)
ζk−1(a2, . . . , ar)

ka1

=
N−1∑
k=1

ζN−1−k(b2, . . . , bs)ζk−1(a2, . . . , ar)

(N − k)b1ka1
.

Now we use the following partial fraction decomposition1, which appears already in [15],

1

ka(N − k)b
=

a∑
i=1

(
i+b−2
b−1

)
N i+b−1ka+1−i +

b∑
i=1

(
i+a−2
a−1

)
N i+a−1(N − k)b+1−i , (4)

and obtain
N−1∑
k=1

ζk−1(a2, . . . , ar)ζN−1−k(b2, . . . , bs)

(N − k)b1ka1
=

a1∑
i=1

N−1∑
k=1

(
i+b1−2
b1−1

)
ζk−1(a2, . . . , ar)ζN−1−k(b2, . . . , bs)

N i+b1−1ka1+1−i

+

b1∑
i=1

N−1∑
k=1

(
i+a1−2
a1−1

)
ζk−1(a2, . . . , ar)ζN−1−k(b2, . . . , bs)

N i+a1−1(N − k)b1+1−i .

Consequently, by summing up according to (3) we get the following recurrence relation for
RN(a;b).

RN(a;b) =

a1∑
i=1

N∑
n1=1

(
i+b1−2
b1−1

)
ni+b1−11

Rn1−1(a1 + 1− i, a2, . . . , ar; b2, . . . , bs)

+

b1∑
i=1

N∑
n1=1

(
i+a1−2
a1−1

)
ni+a1−11

Rn1−1(a2, . . . , ar; b1 + 1− i, b2, . . . , bs).

(5)

This recurrence relation suggests that there exists an evaluation of RN(a;b) into sums of finite
multiple zeta values, all of them having weight w =

∑r
i=1 ar +

∑s
i=1 bi and depth d = r + s. In

1This identity has been rediscovered many times. For a fascinating historic account, see [12].
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order to specify this evaluation we need to introduce the shuffle product for words over a non-
commutative alphabet, and to study the arising shuffle algebra, and its relation to (finite) multiple
zeta values and RN(a;b). For a general algebraic framework for the shuffle product we refer the
reader to the work of Hoffman [9]. We remark that the recurrence relation above for RN(a;b)
was already derived in the context of particle physics [16, 14]. Furthermore, weighted extensions
including alternating sign versions have been treated there. An important algorithmic treatment
of such sums is implemented in the package Summer for the computer algebra system Form.

3.1. The shuffle algebra. LetA denote a finite non-commutative alphabet consisting of a set of
letters. A word w on the alphabet A consists of a sequence of letters from A. Let A∗ denote the
set of all words on the alphabet A. A polynomial on A over Q is a rational linear combination
of words on A. The set of all such polynomials is denoted by Q〈A〉. Let the shuffle product of
two words w,v ∈ A∗, with w = x1 . . . xn, v = xn+1 . . . xn+m, xi ∈ A for 1 ≤ i ≤ n +m, be
defined as follows.

wttv :=
∑

xσ(1)xσ(2) . . . xσ(n+m), (6)

where the sum runs over all
(
n+m
n

)
permutations σ ∈ Sn+m which satisfy σ−1(j) < σ−1(k) for

all 1 ≤ j < k ≤ n and n + 1 ≤ j < k ≤ n + m. Note that the sum runs over all words of
length n +m, counting multiplicities, in which the relative orders of the letters x1, . . . , xn and
xn+1, . . . , xn+m are preserved. Equivalently, the shuffle product of two words w,v ∈ A∗ can be
defined in a recursive way:

∀w ∈ A∗, εttw = wttε = w,

∀x, y ∈ A, w,v ∈ A∗, xwttyv = x(wttyv) + y(xwttv). (7)

The shuffle product extends to Q〈A〉 by linearity. Note that the set Q〈A〉, provided with the
shuffle product tt, becomes a commutative and associative algebra. We remark that the term
“shuffle” is used because such permutations arise in riffle shuffling a deck of n + m cards cut
into one pile of n cards and a second pile of m cards [5].

In the following we will restrict ourselves to the non-commutative alphabetA = {ω0, ω1} and
the arising shuffle algebra (Q〈A〉, tt). Hoang and Petitot [7] derived a shuffle identity for words
A = ωa−10 ω1, B = ωb−10 ω1, which is stated below.

Lemma 1. For a, b ∈ N let A = ωa−10 ω1 and B = ωb−10 ω1 be words on the non-commutative
alphabet A = {ω0, ω1}.

AttB =
a−1∑
i=0

(
b− 1 + i

b− 1

)
ωb−1+i0 ω1ω

a−1−i
0 ω1 +

b1−1∑
i=0

(
a− 1 + i

a− 1

)
ωa−1+i0 ω1ω

b−1−i
0 ω1.

We will use a slight extension of this identity, which easily follows from the recursive defini-
tion of the shuffle product.

Lemma 2. For r, s ≥ 1 and ai, bj ∈ N, 1 ≤ i ≤ r, 1 ≤ j ≤ s let A := ωa1−10 ω1 . . . ω
ar−1
0 ω1 and

B := ωb1−10 ω1 . . . ω
bs−1
0 ω1 be words on the non-commutative alphabet A = {ω0, ω1}.

AttB =

a1∑
i=1

(
i+ b1 − 2

b1 − 1

)
ωi+b1−20 ω1(A

′
ittB2) +

b1∑
i=1

(
i+ a1 − 2

a1 − 1

)
ωi+a1−20 ω1(A2ttB

′
i),
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with A′i := ωa1−i0 ω1ω
a2−1
0 ω1 . . . ω

ar−1
0 ω1, B′i := ωb1−i0 ω1ω

b2−1
0 ω1 . . . ω

bs−1
0 ω1 and further A2 :=

ωa20 ω1 . . . ω
ar−1
0 ω1, B2 := ωb2−10 ω1 . . . ω

bs−1
0 ω1.

Note that the partial fraction decomposition (4) of 1
ka(N−k)b somewhat mimics the shuffle iden-

tity for words A = ωa−10 ω1, B = ωb−10 ω1, derived by Hoang and Petitot [7].

3.2. The shuffle algebra and finite multiple zeta values. Let a denote an arbitrary r-tuple
of positive integers a = (a1, . . . , ar) with ai ∈ N for 1 ≤ i ≤ r and r ≥ 1. To any a we
will associate a unique word A = A(a) over the non-commutative alphabet A = {ω0, ω1} as
follows: A = A(a) such that A := ωa1−10 ω1ω

a2−1
0 ω1 . . . ω

ar−1
0 ω1. Let A∗ denote the set of

all words over the alphabet A. Let (ZN)N≥1 denote a family of linear maps from the algebra
Q〈A〉 to the rational numbers, ZN : Q〈A〉 → Q, mapping words over the non-commutative
alphabet A = {ω0, ω1} to finite multiple zeta values in the following way. For words A :=
ωa1−10 ω1ω

a2−1
0 ω1 . . . ω

ar−1
0 ω1 ∈ A∗, with r,N ≥ 1, we define

ZN(A) = ZN

(
ωa1−10 ω1ω

a2−1
0 ω1 . . . ω

ar−1
0 ω1

)
= ζN(a1, . . . , ar) = ζN(a). (8)

Moreover, we additionally define Z0(A) = ζ0(a) = 0 for all A ∈ A∗, and ZN(ε) = 1 for all
N ≥ 1. The family of maps (ZN)N≥1 linearly extend to Q〈A〉. By the recursive definition of
the finite multiple zeta values we can express the images of the maps ZN in a recursive way. Let
A := ωa1−10 ω1ω

a2−1
0 ω1 . . . ω

ar−1
0 ω1 ∈ A∗, with r ≥ 1 and a1, . . . , ar ≥ 1.

ZN(A) = ζN(a) =
N∑

n1=1

1

na11
ζn1−1(a2, . . . , ar) =

N∑
n1=1

1

na11
Zn1−1(ω

a2−1
0 ω1 . . . ω

ar−1
0 ω1).

We need the following result.

Lemma 3. For r, s ≥ 1 and ai, bj ∈ N, 1 ≤ i ≤ r, 1 ≤ j ≤ s let A := ωa1−10 ω1 . . . ω
ar−1
0 ω1 and

B := ωb1−10 ω1 . . . ω
bs−1
0 ω1 be words on the non-commutative alphabet A = {ω0, ω1}. Then,

ZN
(
AttB

)
=

a1∑
i=1

N∑
n1=1

(
i+b1−2
b1−1

)
ni+b1−11

Zn1−1
(
A′ittB2

)
+

b1∑
i=1

N∑
n1=1

(
i+a1−2
a1−1

)
ni+a1−11

Zn1−1
(
A2ttB

′
i

)
.

The depths d = r + s and the weights w =
∑r

i=1 ai +
∑s

k=1 bk of the arising finite multiple zeta
values are all the same.

Proof. By linearity of the maps ZN and Lemma 2 we get first

ZN
(
AttB

)
=

a1∑
i=1

(
i+ b1 − 2

b1 − 1

)
ZN
(
ωi+b1−20 ω1(A

′
ittB2)

)
+

b1∑
i=1

(
i+ a1 − 2

a1 − 1

)
ZN
(
ωi+a1−20 ω1(A2ttB

′
i)
)
,

using the notations of Lemma 2 for A′i, B
′
i, A2, B2. By definition of the shuffle product A′ittB2 ∈

Q〈A〉 and A2ttB
′
i ∈ Q〈A〉 are rational linear combinations of words over A. Let {A′ittB2} and
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{A2ttB
′
i} denote the sets of different words generated by the shuffles A′ittB2 and A2ttB′i. Using

the set notation we write

A′ittB2 =
∑

w∈{A′ittB2}

qww, A2ttB
′
i =

∑
w∈{A2ttB′i}

qww,

with qw ∈ Q and w ∈ A∗, which helps to obtain a simple presentation of the subsequent
calculations. We have

ZN
(
AttB

)
=

a1∑
i=1

(
i+ b1 − 2

b1 − 1

)
ZN
(
ωi+b1−20 ω1

∑
w∈{A′ittB2}

qww
)

+

b1∑
i=1

(
i+ a1 − 2

a1 − 1

)
ZN
(
ωi+a1−20 ω1

∑
w∈{A2ttB′i}

qww
)
.

Using the linearity of the maps ZN and the fact that we can recursively describe their images we
get further

ZN
(
AttB

)
=

a1∑
i=1

(
i+ b1 − 2

b1 − 1

) ∑
w∈{A′ittB2}

qw

N∑
n1=1

1

ni+b1−11

Zn1−1
(
w
)

+

b1∑
i=1

(
i+ a1 − 2

a1 − 1

) ∑
w∈{A2ttB′i}

qw

N∑
n1=1

1

ni+a1−11

Zn1−1
(
w
)
.

Interchanging the latter summations gives the stated result.

ZN
(
AttB

)
=

a1∑
i=1

(
i+ b1 − 2

b1 − 1

) N∑
n1=1

1

ni+b1−11

∑
w∈{A′ittB2}

qwZn1−1
(
w
)

+

b1∑
i=1

(
i+ a1 − 2

a1 − 1

) N∑
n1=1

1

ni+a1−11

∑
w∈{A2ttB′i}

qwZn1−1
(
w
)

=

a1∑
i=1

N∑
n1=1

(
i+b1−2
b1−1

)
ni+b1−11

Zn1−1
(
A′ittB2

)
+

b1∑
i=1

N∑
n1=1

(
i+a1−2
a1−1

)
ni+a1−11

Zn1−1
(
A2ttB

′
i

)
.

It can easily be checked that the finite multiple zeta values all have the same depth and weight.
�

Now we are ready to provide the evaluation of RN(a;b).

Proposition 1. For arbitrary r, s ≥ 1 let a and b be given by a = (a1, . . . , ar) and b =
(b1, . . . , bs), with ai, bj ∈ N for 1 ≤ i ≤ r, 1 ≤ j ≤ s. Let A = A(a) and B = A(b) denote the
words associated to a and b by A := ωa1−10 ω1 . . . ω

ar−1
0 ω1 and B := ωb1−10 ω1 . . . ω

bs−1
0 ω1. Then,

for arbitrary N ≥ 1,
RN(a;b) = ZN(AttB). (9)
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Proof. We use induction with respect to d = r + s, corresponding to the depths of the arising
finite multiple zeta values. The result clearly holds for depth d = 2, see identity (2), as shown
in [13]. Now assume that d ≥ 3. Using the recurrence relation (5) for RN(a;b) we get

RN(a;b) =

a1∑
i=1

N∑
n1=1

(
i+b1−2
b1−1

)
ni+b1−11

Rn1−1(a1 + 1− i, a2, . . . , ar; b2, . . . , bs)

+

b1∑
i=1

N∑
n1=1

(
i+a1−2
a1−1

)
ni+a1−11

Rn1−1(a2, . . . , ar; b1 + 1− i, b2, . . . , bs).

The induction hypothesis states that RN(a;b) = ZN(AttB) for arbitrary r, s ≥ 1 such that
r+ s < d and arbitrary N ≥ 1. By the recurrence relation for RN(a;b) we can reduce RN(a;b)
to values of the types Rn1−1(a1 + 1 − i, a2, . . . , ar; b2, . . . , bs) and Rn1−1(a2, . . . , ar; b1 + 1 −
i, b2, . . . , bs), which are of depth smaller than d = r + s. Hence, we get by the induction
hypothesis

RN(a;b) =

a1∑
i=1

N∑
n1=1

(
i+b1−2
b1−1

)
ni+b1−11

Zn1−1
(
A′ittB2

)
+

b1∑
i=1

N∑
n1=1

(
i+a1−2
a1−1

)
ni+a1−11

Zn1−1
(
A2ttB

′
i

)
.

By Lemma 3, using the notations for A′i, B
′
i, A2, B2 of Lemma 2, we get

a1∑
i=1

N∑
n1=1

(
i+b1−2
b1−1

)
ni+b1−11

Zn1−1
(
A′ittB2

)
+

b1∑
i=1

N∑
n1=1

(
i+a1−2
a1−1

)
ni+a1−11

Zn1−1
(
A2ttB

′
i

)
= ZN

(
AttB

)
.

Consequently,
RN(a;b) = ZN(AttB). (10)

This proves the stated result for RN(a;b) and the corresponding statement of Theorem 1. �

Corollary 1 can easily be deduced by noting that the sum of the left hand sides of Corollary 1
and Theorem 1 adds up toRN(a;b) plus the additional two extra terms. The proof of Corollary 2
will be given in the next section, which consists of several remarks.

4. REMARKS ON POLYLOGARITHMS AND THE FINITE SHUFFLE IDENTITY

For given a = (a1, . . . , ar) and b = (b1, . . . , bs) one may define the shuffle product ζN(attb)
in terms of the images of the maps ZN using the words A = A(a) and B = A(b) associated to
a and b by A := ωa1−10 ω1 . . . ω

ar−1
0 ω1 and B := ωb1−10 ω1 . . . ω

bs−1
0 ω1,

ζN(attb) := ZN(AttB).

It turns out that this definition coincides with the usual definition of the shuffle product for multi-
ple zeta values; for an excellent overview concerning the shuffle product for multiple zeta values
we refer the reader to [3, 7, 8].

Let Lia(z) denote the (multiple) polylogarithm function with parameters a1, . . . , ar, defined
by

Lia(z) = Lia1,...,ar(z) =
∑

n1>n2>···>nr≥1

zn1

na11 n
a2
2 . . . narr

. (11)
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The value RN(a;b) can be obtained by coefficient extraction in the following way.

RN(a;b) =
N∑
k=1

ζk−1(a2, . . . , ar)ζN−k(b1, . . . , bs)

ka1
= [zN ]

Lia(z) Lib(z)

1− z
.

On the other hand, by the finite shuffle identity (9) for RN(a;b) one can show the following
representation.

RN(a;b) = [zN ]
Liattb(z)

1− z
.

Here the shuffle product for polylogarithm functions Liattb(z) is defined in the usual way. We do
not want to go into the proof details concerning the equation above since we would have to state
and use the precise definition of the shuffle product for multiple zeta values and polylogarithm
functions; avoiding repetition we skip the details and only refer the interested reader to [8], and
Theorem 2. We want to remark that the result of Proposition 1 for RN(a;b) implies that the
shuffle identity for polylogarithm functions, and consequently also for multiple zeta values, can
be developed entirely from finite sums using only basic partial fraction decomposition and the
combinatorics behind the shuffle product and the shuffle algebra; see Hoffman [9] for an impor-
tant discussion of the shuffle product. Note that by evaluating at z = 1 the shuffle identity for
polylogarithm functions implies the shuffle identity for multiple zeta values. The identity above
is well known, see for example the article [3]. The shuffle identity for polylogarithm functions is
due to the iterated Drinfeld integral representation of polylogarithm functions and multiple zeta
values due to Kontsevich [17]. As remarked in [3] the shuffle identity for polylogarithm func-
tions can be deduced from the fact that the product of two simplex integrals consists of a sum of
simplex integrals over all possible interlacings of the respective variables of integration.

Finally, we turn to the proof of Corollary 2. For N = 2n + 1 and j = n + 1 and n → ∞ we
have

lim
n→∞

ζj(a)ζN+1−j(b) = lim
n→∞

ζn+1(a)ζn+1(b) = ζ(a)ζ(b),

lim
n→∞

ζn(b2, . . . , bs)ζn(a2, . . . , ar)

(n+ 1)a1+b1
= 0,

lim
n→∞

RN(a;b) = lim
n→∞

ζ2n+1(attb) = ζ(a)ζ(b),

and the stated result follows.

5. THE RECIPROCITY RELATION FOR WEIGHTED MULTIPLE ZETA VALUES

Results similar to Theorem 1 and Corollary 2 can be obtained for products of weighted finite
multiple zeta values, ζN(a1, a2, . . . , ar;σ1, . . . , σr), σi ∈ R \ {0} for 1 ≤ i ≤ r, defined as
follows:

ζN(a,σ) = ζN(a1, a2, . . . , ar;σ1, . . . , σr) =
∑

N≥n1>n2>···>nr≥1

1∏r
i=1 n

ai
i σ

ni
i

.

Of particular interest are the cases σi ∈ {±1} corresponding to a mixture of alternating and non-
alternating signs, which are of particular importance in particle physics. We only state the result
generalizing Theorem 1, with respect to the notations a2 = (a2, . . . , ar), σ2 = (σ2, . . . , σr) and
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the corresponding notations for b2 and τ 2, and leave the generalizations of Corollaries 1,2 to the
reader.

Theorem 2. The multiple zeta values ζN(a,σ) and ζN(b, τ ) with weights σ and τ satisfy the
following reciprocity relation.

j∑
k=1

ζk−1(b2, τ 2)ζN−k(a,σ)

kb1τ k1
+

N+1−j∑
k=1

ζk−1(a2,σ2)ζN−k(b, τ )

ka1σk1

= ζN+1−j(a,σ)ζj(b, τ )−
ζj−1(b2, τ 2)ζN−j(a2,σ2)

τ j1 j
b1σN+1−j

1 (N + 1− j)a1
+RN(a,σ;b, τ ).

Here RN(a,σ;b, τ ) =
∑N

k=1
ζN−k(b,τ )ζk−1(a2,σ2)

σk
1k

a1
= RN(b, τ ; a,σ) satisfies an analogue of the

shuffle identity with respect to the weights σ and τ .

The proof of Theorem 1 can easily be adapted to the weighted case. Hence, we only elaborate
on the main new difficulty, namely the evaluation of the quantity

RN(a,σ;b, τ ) =
N∑
k=1

ζN−k(b, τ )ζk−1(a2;σ2)

σk1k
a1

.

Proceeding as before, i.e., taking differences and using partial fraction decomposition, we obtain
the recurrence relation

RN(a,σ;b, τ ) =

a1∑
i=1

N∑
n1=1

(
i+b1−2
b1−1

)
ni+b1−11 τn1

1

Rn1−1(a1 + 1− i, a2,
τ1
σ1
,σ2;b2, τ 2)

+

b1∑
i=1

N∑
n1=1

(
i+a1−2
a1−1

)
ni+a1−11 σn1

1

Rn1−1(a2,σ2; b1 + 1− i,b2,
σ1
τ1
, τ 2).

Consequently, the value RN(a,σ;b, τ ) can be evaluated into sums of weighted finite multiple
zeta values according to a shuffle identity with respect to the weights σ and τ . We omit the
precise definition of this generalization and leave the details to the interested reader.

CONCLUSION

We presented a reciprocity relation for finite multiple zeta values, extending the previous re-
sults of [11, 13]. The reciprocity relation involves a shuffle product identity for (finite) multiple
zeta values, for which we gave a proof using only partial fraction decomposition and the com-
binatorial properties of the shuffle product. Moreover, we also presented the reciprocity relation
for weighted finite multiple zeta values.
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