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Abstract

We study weighted path lengths (depths) and distances for increasing tree
families. For those subclasses of increasing tree families, which can be constructed
via an insertion process, e.g., recursive trees, plane-oriented recursive trees and
binary increasing trees, we can determine the limiting distribution which can be
characterized as a generalized Dickman’s infinitely divisible distribution.
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1 Introduction

The analysis of the length of paths in tree families has received a lot of attention, see,
e.g., [4, 7, 11], often due to their importance in the analysis of algorithms. Recently
Aguech, Lasmar and Mahmoud [1] introduced weighted path lengths in binary search
trees. They have shown that different limit laws arise for weighted path lengths de-
pending on the label of the investigated nodes. In particular they have derived the limit
law for the weighted path length to the minimal label, which is Dickman’s infinitely
divisible distribution.

We extend the studies of weighted path lengths to other important labeled trees,
namely to families of increasing trees. We will also consider weighted distances in
increasing trees, where for both parameters we will encounter a generalized Dickman
distribution as the limit law. In order to obtain the limiting distribution results of the
parameters considered we will use suitable distributional decompositions of the (or-
dinary) path lengths and distances, which will be extended to corresponding decom-
positions of their weighted counterparts. Previous results concerning ordinary depths
(path lengths) and distances for increasing tree families can be found in Dobrow [5],
Dobrow and Smythe [6] and Kuba and Panholzer [16]. The distributional decomposi-
tion of the weighted parameters and an application of Curtiss’ theorem leads to limiting
distribution results for the random variables considered. The arguments used in the
present paper are related to Hwang and Tsai [8], where the limit law of the algorithm
Quickselect was obtained with a similar technique.

Increasing trees are labeled trees where the nodes of a tree of size n are labeled
by distinct integers of the set {1, . . . , n} in such a way that each sequence of labels
along any branch starting at the root is increasing. We are concerned throughout
this paper with certain combinatorial models of increasing trees, called simple families
of increasing trees. One can consider them as increasingly labeled simply generated
trees (simply generated trees have been introduced by Meir and Moon [15]). A formal
description of simple families of increasing trees is given in Subsection 2.1. A thorough
study of simple families (= varieties) of increasing trees was conducted in Bergeron
et. al. [2].

The interest in simple families of increasing trees stems from the fact that several
important tree models, as, e.g., recursive trees, plane-oriented recursive trees and bi-
nary increasing trees (also called tournament trees), are special instances of simple
families of increasing trees. These tree models are of importance in many applications
(see the survey paper of Mahmoud and Smythe [14] and also [13]), e.g., they are used
to describe the spread of epidemics, for pyramid schemes, and they are used as a sim-
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plified growth model of the world wide web: plane-oriented recursive trees are a special
instance of the so called Albert-Barabási model for scale-free networks (see e. g. [3]).

The tree families mentioned above (i.e., recursive trees, plane-oriented recursive
trees and binary increasing trees) can be described not only combinatorially, but also
in a probabilistic way via a tree evolution process. This means that for every tree T ′ of
size n with vertices v1, . . . , vn one can give probabilities pT ′(v1), . . . , pT ′(vn), such that
when starting with a random tree T ′ of size n of the tree family considered, choosing a
vertex vi in T

′ according to the probabilities pT ′(vi) and attaching node n+1 to it, one
obtains again a random tree T of size n+1 of the tree family considered. See, e.g., [14]
for such a description of recursive trees and plane-oriented recursive trees. However,
it has been shown in [17] that it is not possible to describe every simple family of
increasing trees as defined in Subsection 2.1 via a tree evolution process. Moreover, a
full characterization of those simple families of increasing trees having this additional
property has been given there. This characterization is restated in Subsection 2.2.
Throughout this paper we will choose the term grown simple families of increasing
trees for the subclass of increasing tree families, which can be generated by a tree
evolution process. We will restrict ourselves to the study of this subclass of simple
families of increasing trees.

In a rooted tree the depth of node v, also called the level of node v or path length
from v to the root, is measured by the number of edges lying on the unique path
from the root to node v. For labeled rooted trees we consider a generalization of the
depth. Let Wn,j denote the weighted depth (or weighted path length) of node j in a size
n ≥ j random grown simple increasing tree, which is the sum of the labels of the nodes
encountered on the path from j to the root labeled 1, whereW1,1 = 1 andWn,j ≥ j+1.
For instance if the nodes labeled λ1, . . . , λk, with 1 = λ1 < λ2 < · · · < λk = j, are
visited on the path from the root to j then the weighted depth equals

∑k
l=1 λk.

Further we consider the weighted distance Wn,j between node j and node n in a
size n random grown simple increasing tree which is the sum of the labels of the nodes
encountered on the path from n to the node labeled j (hence Wn,1 = Wn,n).

In the tree of Figure 1 we have, e.g, W9,1 = 1, W9,2 = 3, W9,3 = 4, W9,4 = 8,
W9,5 = 6, W9,6 = 12, W9,7 = 8, W9,8 = 20 and W9,9 = 17 and W9,4 = 24, W9,8 = 36.

We will show thatWn,j andWn,j, appropriately scaled, lead to generalized Dickman
distributions.

Related results for binary search trees are due to Aguech, Lasmar and Mahmoud [1].
Further we refer to the limit law of Quickselect, see Mahmoud, Modarres and Smythe
[12] and Hwang and Tsai [8], which is also Dickman’s infinitely divisible distribution.

We denote with X
(d)
= Y the equality in distribution of the random variables X and
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Figure 1: A size 9 recursive tree.

Y , and with Xn
(d)
−→ X the weak convergence, i.e., the convergence in distribution, of

the sequence of random variables Xn to a random variable X. For independent random
variablesX and Y we writeX⊕Y for the sum ofX and Y . For not necessarily mutually
independent random variablesX and Y we writeX+Y . We denote withHn :=

∑n
k=1

1
k

the n-th harmonic number and with H
(a)
n :=

∑n
k=1

1
ka the n-th harmonic number of

order a. We denote with I(Ak) the indicator of the event Ak.

In the next section we gather some results about increasing tree families and the
generalized Dickman distribution. In Sections 3 and 4 we state the main limiting dis-
tribution results of this work concerning the weighted depth and the weighted distance.
Section 5 is devoted to the derivation of the distribution laws of the weighted depths
and distances. The last section contains the proofs of the limiting distribution results.

2 Preliminaries

2.1 Combinatorial description of increasing tree families

Formally, a class T of a simple family of increasing trees can be defined in the following
way. We start with a sequence of non-negative numbers (ϕk)k≥0 with ϕ0 > 0. The
sequence (ϕk)k≥0 is called the degree-weight sequence. We assume that there exists
a k ≥ 2 with ϕk > 0. The degree-weight sequence is used to define the weight w(T )
of any ordered tree T by w(T ) :=

∏

v ϕd(v), where v ranges over all vertices of T and
d(v) is the out-degree of v. Furthermore, L(T ) denotes the set of different increasing
labelings of the tree T with distinct integers {1, 2, . . . , |T |}, where |T | denotes the size
of the tree T , and L(T ) :=

∣

∣L(T )
∣

∣ its cardinality. Then the family T consists of all
trees T together with their weights w(T ) and the set of increasing labelings L(T ).

For a given degree-weight sequence (ϕk)k≥0 with a degree-weight generating function
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ϕ(t) :=
∑

k≥0 ϕkt
k, we define now the total weights by Tn :=

∑

|T |=n w(T ) · L(T ). It

follows then that the exponential generating function T (z) :=
∑

n≥1 Tn
zn

n!
satisfies the

autonomous first order differential equation

T ′(z) = ϕ
(

T (z)
)

, T (0) = 0. (1)

Remark 1. The formal definition of simple families of increasing trees is similar to the
definition of simply generated trees, which are used as an underlying tree model. Note
that simply generated trees are unlabeled trees, whereas simple families of increasing
trees are increasingly labeled.

2.2 Characterization of grown simple families of increasing
trees

It turned out that a special subclass of simple families of increasing trees can be con-
structed via a tree evolution process. We will describe now the characterization of
grown simple increasing tree families via the degree-weight generating function ϕ(t) as
obtained in [17].

Lemma 1 ([17]). A simple family of increasing trees T can be constructed via a tree
evolution process and is thus a grown simple family of increasing trees iff the degree-
weight generating function ϕ(t) =

∑

k≥0 ϕkt
k is given by one of the following three

formulæ (with constants c1, c2 ∈ R).

Case A (recursive trees):

ϕ(t) = ϕ0e
c1t

ϕ0 , for ϕ0 > 0, c1 > 0, (defining c2 := 0),

Case B (d-ary trees):

ϕ(t) = ϕ0

(

1 +
c2t

ϕ0

)d

, for ϕ0 > 0, c2 > 0, d :=
c1
c2

+ 1 ∈ {2, 3, 4, . . . },

Case C (generalized plane-oriented recursive trees):

ϕ(t) =
ϕ0

(1 + c2t
ϕ0
)
−

c1
c2
−1
, for ϕ0 > 0, 0 < −c2 < c1.

The tree evolution process which generates random trees of arbitrary size n is for
grown simple families of increasing trees given as follows:

• Step 1: The process starts with the root labeled by 1.
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• Step i+1: At step i+1 the node with label i+1 is attached to any previous node
v (with out-degree d(v)) of the already grown tree of size i with probabilities p(v)
given by:

p(v) =



























1

i
, for Case A,

d− d(v)

(d− 1)i+ 1
, for Case B,

d(v) + α

(α + 1)i− 1
, with α := −1−

c1
c2
> 0, for Case C.

The constants c1, c2 appearing in Lemma 1 come from an equivalent characterization
of grown simple families of increasing trees. The total weights Tn of trees of size n of
T satisfy for all n ∈ N the equation

Tn+1

Tn
= c1n+ c2. (2)

For grown simple increasing tree families the constants c1 and c2 describe the growth
of the total weights from a tree of size n to a tree of size n+ 1.

Tn = ϕ0

n−1
∏

k=1

(c1k + c2) = ϕ0c
n−1
1 (n− 1)!

(

n− 1 + c2
c2

n− 1

)

. (3)

For recursive trees we set c2 = 0 and for d-ary increasing trees d = c1
c2
+ 1.

Since grown simple increasing trees with degree-weight generating function ϕ(t) are
a subclass of simple families of increasing trees, the generating function T (z) of the
total weights also satisfies the differential equation (1).

Solving either the differential equation (1) or using (2) one obtains the following
explicit formulæ for the exponential generating function T (z):

T (z) =























ϕ0

c1
log
(

1
1−c1z

)

, Case A,

ϕ0

c2

(

1

(1−(d−1)c2z)
1

d−1
− 1

)

, Case B,

ϕ0

c2

(

1

(1−c1z)
c2
c1

− 1
)

, Case C.
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2.3 The Dickman distribution and generalizations

The Dickman function ρ(u), which appears in analytic number theory, is defined as the
continuous solution of the differential-difference equation

uρ′(u) + ρ(u− 1) = 0 (u > 1),

with initial condition ρ(u) = 1 for 0 ≤ u ≤ 1 and with ρ(u) differentiable on (1,∞). It
is known that the Dickman function is positive and decreasing over the entire interval
(1,∞). Note that

∫ ∞

0

ρ(v)dv = eγ ,

where γ denotes Euler’s constant. For simplicity of reference, we call the distribution
with the density function e−γρ(v) the Dickman distribution.

Penrose and Wade introduced in [18] the generalized Dickman distribution. Given
θ > 0, a random variable X has a generalized Dickman distribution with shape param-
eter θ, or

X
(d)
= GD(θ), (4)

if it satisfies the distributional fixed-point identity

X
(d)
= U1/θ(1 +X),

where U is uniform on (0, 1] and is independent of the X on the right. Some other
known properties of the generalized Dickman distribution stated in [18] are listed as
follows.

• If X
(d)
= GD(θ), then the Laplace transform of X is given by

ψ(t) = E(e−tX) = exp
(

θ

∫ t

0

e−s − 1

s
ds
)

, t ∈ R.

• The GD(θ) distribution is infinitely divisible.

• If X
(d)
= GD(θ), then the moments E(Xk) satisfy E(X0) = 1 and for integer k ≥ 1

E(Xk) =
θ

k

k−1
∑

j=0

(

k

j

)

E(Xj).

For θ = 1 the GD(θ) distribution is just the ordinary Dickman distribution. For more
properties of the GD(θ) distribution see Penrose and Wade [18].

Now we state the main results of this paper, the limit laws of the weighted depths
and distances.
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3 Results for weighted depths

3.1 Limit distribution results

Theorem 1. The limiting distribution of the random variable
Wn,j−j

j
is a generalized

Dickman distribution with parameter θ = 1 + c2
c1
> 0.

lim
j→∞

Wn,j − j

j

(d)
= GD(1 +

c2
c1
), (5)

or equivalently let ψj(t) := E(e−t(Wn,j−j)), then

lim
j→∞

ψj(
t

j
) = exp

(

(

1 +
c2
c1

)

∫ t

0

e−v − 1

v
dv
)

, (6)

for constants c1, c2 as in (2).

Remark 2. Note that the random variable Wn,j is independent of n and only depends

on j: Wn,j
(d)
= Wj,j. Therefore we consider the limit j →∞.

For the readers convenience we separately present the limit laws for the most im-
portant subfamilies of grown simple increasing trees.

Corollary 1. For the three most prominent tree families we obtain the following result.

• Recursive Trees (c1 = 1, c2 = 0): The limit distribution of
Wn,j−j

j
is Dickman,

GD(1).

lim
j→∞

P{
Wn,j − j

j
≤ x} = e−γ

∫ x

0

ρ(v)dv, x > 0. (7)

• Binary Increasing trees (c1 = c2 = 1) : The limit distribution of
Wn,j−j

j
is the

convolution of two Dickman distributions, GD(2).

lim
j→∞

P{
Wn,j − j

j
≤ x} = e−2γ

∫ x

0

ρ(v)ρ(x− v)dv, x > 0. (8)

• Plane oriented recursive trees (c1 = 2, c2 = −1): The limit distribution of
Wn,j−j

j

a generalized Dickman distribution GD(θ) with parameter θ = 1
2
.

Next we are going to state the main results for weighted distances.
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4 Results for weighted distances

4.1 Limit distribution results

Theorem 2. For fixed j and n→∞ the limiting distribution of the weighted distance
Wn,j between node j and node n in a size n grown simple increasing tree is a generalized
Dickman distribution with parameter θ = 1 + c2

c1
> 0.

lim
n→∞

Wn,j − n

n

(d)
= GD(1 +

c2
c1
), (9)

or equivalently E(e−t(Wn,j−n)) = ψn(t).

lim
j→∞

ψn(
t

n
) = exp

(

(

1 +
c2
c1

)

∫ t

0

e−v − 1

v
dv
)

, (10)

for constants c1, c2 as in (2).

Theorem 3. The limiting distribution of the weighted distance Wn,j between node j
and node n in a grown simple families of increasing tree satisfying c1 = −2c2 depends
on the growth of j.

• The region j = o(n): The limiting distribution is a generalized Dickman distri-
bution with parameter θ = 1/2. Let E(e−t(Wn,j−n−j)) = ψn(t), then

lim
n→∞

ψn(
t

n
) = exp

(1

2

∫ t

0

e−v − 1

v
dv
)

, (11)

• The region j = µn, with 0 < µ < 1. The limiting distribution can be characterized
via its Laplace transform. Let E(e−t(Wn,j−n−j)) = ψn(t).

lim
n→∞

ψn(
t

n
) = exp

(1

2

∫ µt

0

e−v − 1

v
dv +

∫ t

µt

e−v − 1

v
dv
)

, (12)

• The region n− j = o(n): The limiting distribution is a Dickman distribution.

lim
n→∞

P{
Wn,j − j − n

n
≤ x} = e−γ

∫ x

0

ρ(v)dv, x > 0. (13)
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Remark 3. Basically Theorem 2 just tells that for fixed j the random variable Wn,j

behaves as the weighted depth Wn,1.

Unfortunately we are not able to describe the limiting distribution for the full range
of j for the all grown simple families of increasing trees. E. g. up to now we are not
able to determine the weighted distance between nodes n − 1 and n for all grown
simple families of increasing trees. We can only obtain the limit law for the subfamily
admitting c1 = −2c2 (containing plane oriented recursive trees), due to the specific
decomposition of the underlying ordinary distance for this subfamily.

5 Deriving the distribution law

We will derive distributional decompositions for the weighted depths and distances by
using the underlying decompositions of the ordinary depths and distances.

5.1 Weighted Depth

Dobrow and Smythe [6] already provided a characterization of the ordinary depth,
which can be adapted for describing the weighted depth in grown simple families of
increasing trees (see also [17] and [16]).

Lemma 2 (Dobrow & Smythe). The ordinary depth of node j in a size n ≥ j
random grown simple increasing tree Dn,j admits the following distribution law.

Dn,j
(d)
= Dj,j

(d)
=

j−1
⊕

k=1

Bk,

where Bk
(d)
= Be(pk) with pk =

1+
c2
c1

k+
c2
c1

for 1 ≤ k ≤ j−1. Note that Bk
(d)
= Be(pk)

(d)
= I(Ak),

where Ak denotes the event that node k is on the path from the root to node j. Further
the Bk’s are independent.

As an immediate consequence of Lemma 2 we obtain the distribution law of the
weighted depth Wn,j , by simply multiplying all the indicators I(Ak) with k. This
corresponds to counting the labels of all nodes on the unique path from j to the root.

Proposition 1. The weighted depth of node j in a size n ≥ j random grown simple
increasing tree Wn,j admits the following distribution law.

Wn,j
(d)
= Wj,j

(d)
= j ⊕

j−1
⊕

k=1

Bk, (14)
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where Bk = Bk(c1, c2) are a sequence of of independent random variables such that

P(Bk = k) =
1 + c2

c1

k + c2
c1

and P(Bk = 0) = 1−
1 + c2

c1

k + c2
c1

. (15)

Note that Bk
(d)
= k · I(Ak), where again Ak denotes the event that node k is on the path

from the root to node j. Further the Bk’s are independent.

We also get as a byproduct the expectation and variance of Wn,j

Corollary 2. The expectation and the variance of the random variable Wn,j are given
as follows.

E(Wn,j) = (1 +
c2
c1
)(j − 1)−

c2
c1
(1 +

c2
c1
)(Hj−1+

c2
c1

−H c2
c1

),

V(Wn,j) =
1 + c2

c1

2
j(j − 1)− (1 +

c2
c1
)(1 + 2

c2
c1
)(j − 1) (16)

+ (1 +
c2
c1
)
c2
c1
(2 + 3

c2
c1
)(Hj−1+

c2
c1

−H c2
c1

)−
c22
c21
(1 +

c2
c1
)2(H

(2)

j−1+
c2
c1

−H
(2)
c2
c1

).

5.2 Weighted Distance

We will use the description for the ordinary distance ∆n,j between n and j to derive
the distribution for the weighted distance Wn,j. Dobrow and Smythe provided the
distribution law of the (ordinary) distance in [6].

Lemma 3 (Dobrow & Smythe). The distance of between node j and node n in a
random grown simple increasing tree ∆n,j admits the following distribution law.

∆n,j
(d)
= ∆j+1,j ⊕

n−1
⊕

k=j+1

Bk, (17)

where Bk
(d)
= Be(pk) with pk =

1+
c2
c1

k+
c2
c1

for j + 1 ≤ k ≤ n− 1.

Remark 4. The Bernoulli random variables Bk, appearing in Lemma 3, which charac-
terize the distribution law of ∆n,j in grown simple families of increasing trees, can be

written as indicators Bk
(d)
= I(Ak), where Ak denotes the event that node k is on the

path from the node n to node j, which was shown in [16].
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By using the decomposition of ∆n,j in Lemma 3 we can simply multiply for j+1 ≤
k ≤ n− 1 the indicators I(Ak) with k in order to obtain the following result .

Proposition 2. The weighted distance Wn,j between node j and node n in a size n ≥ j
random grown simple increasing tree admits the following distribution law.

Wn,j
(d)
=
(

(Wj+1,j − (j + 1)
)

⊕
n−1
⊕

k=j+1

Bk ⊕ n,

where the random variables Bk
(d)
= k · I(Ak) and Ak denotes the event that node k is on

the path from node n to node j. Further the Bk’s and Wj+1,j are independent.

Remark 5. Note that by directly translating Lemma 3 the weight of node j + 1 is
counted one time too many. This leads to the correcting term j + 1.

We have not specified the the distribution law of Wj+1,j yet. It turned out in
[16] that in most cases there is no simple description of ∆j+1,j , which can be used to
determine the distribution of the weighted counterpart Wj+1,j . For plane oriented
trees we state the following result.

Proposition 3. For grown simple families of increasing trees with c1 = −2c2, the
distribution law of Wj+1,j is given by

Wj+1,j
(d)
= (2j + 1)⊕

j−1
⊕

k=1

Ck
(d)
= (2j + 1)⊕

j−1
⊕

k=1

k · I(Ak), (18)

where Ck are a sequence of independent random variables such that

P(Ck = k) =
2

2k + 1
and P(Ck = 0) = 1−

2

2k + 1
. (19)

We denote with Ak the event that node k is on the path from node j+1 to node j. The
indicator variables I(Ak)’s are mutually independent.

Note that a decomposition of ∆j+1,j of the form

∆j+1,j
(d)
= 1⊕

j−1
∑

k=1

I(Ak) (20)
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is possible for arbitrary grown simple families of increasing trees, but only in the case
c1 = −2c2 the indicator variables are mutually independent. E.g. for recursive trees we
get

P{Aj−1} = P{Aj−1|∆j,j−1 = 1}P{∆j,j−1 = 1}+ P{Aj−1|∆j,j−1 > 1}P{∆j,j−1 > 1}

=
j − 1

(j − 1)j
+

j − 2

(j − 1)j
=

2j − 3

j(j − 1)
.

Assuming that the Ak’s are mutually independent we get further P{Ak} = 2k−1
k(k+1)

.

But it can easily be seen that P{Aj−1}P{Aj−2} 6= P{Aj−1Aj−2}, which leads to a
contradiction. Hence for grown simple families of increasing trees with c1 6= −2c2 we
cannot specify the distribution of the weighted distance Wj+1,j . However it is obvious
that for fixed j and n → ∞ the contribution of Wj+1,j can be neglected, due to the
fact that

Wj+1,j ≤ 2j + 1 +

j−1
∑

k=1

k =
j(j + 3)

2
+ 1.

For grown simple families of increasing trees admitting c1 = −2c2 we multiply the
indicator functions I(Ak) with k, which gives Proposition 3.

6 Deriving the limiting distribution

6.1 Weighted Depth

First we present an extension of a result of Hwang and Tsai [8], p. 4, concerning the
generalized Dickman distribution.

Lemma 4. The limiting distribution of the random variable

Xj =

j
⊕

k=1

Bk(c1, c2), (21)

where the Bk’s are defined as in Proposition 1, is for j →∞ asymptotically generalized
Dickman GD(θ) with parameter θ = 1 + c2

c1
. For c1 = 1 and c2 = 0 this just tells that

the limiting distribution of Xj is asymptotically Dickman:

lim
j→∞

P{
Xj

j
< x} = e−γ

∫ x

0

ρ(v)dv, (x > 0).
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The proof of Lemma 4 is completely analogous to the result of Hwang and Tsai
(c1 = 1, c2 = 0) in [8].

We will follow the proof of Lemma 4 in [8] in order to prove Theorem 1. Let
ψj(t) := E(e−t(Wn,j−j)) denote the Laplace transform of the shifted random variable
Wn,j − j. We have

φj(t) = E(e−t(Wn,j−j)) =
∏

1≤k≤j−1

k − 1 + e−tk(1 + c2
c1
)

k + c2
c1

=
∏

1≤k≤j−1

(

1+
(e−tk − 1)(1 + c2

c1
)

k + c2
c1

)

.

It suffices, by Lévy’s continuity theorem, and (2.3) to show that

lim
j→∞

φj(
t

j
) = lim

j→∞
E(e−t

(Wn,j−j)

j ) = exp
(

(1 +
c2
c1
)

∫ t

0

e−v − 1

v
dv
)

,

for finite and real t. Now

φj(
t

j
) = exp

(

log(φj(
t

j
))
)

= exp
(

j−1
∑

k=1

log
(

1 +
(e−tk − 1)(1 + c2

c1
)

k + c2
c1

)

)

= exp
(

(1 +
c2
c1
)

j−1
∑

k=1

e
−kt

j − 1

k + c2
c1

+Rj(t)
)

,

where

Rj(t) :=
∑

l≥2

(−1)l−1

l

j−1
∑

k=1

(

(1 + c2
c1
)
)l(
e
−kt

j − 1
)l

(

k + c2
c1

)l
= O(

|t2|

j
).

Now we apply the Euler-MacLaurin summation formula to show
j−1
∑

k=1

e
−kt

j − 1

k + c2
c1

=

∫ t

0

e−v − 1

v
dv +O(

|t2|

j
).

6.2 Weighted Distances

We only sketch the proofs for the weighted distances since they are similar to the proof
in Subsection 6.1. Let ψn(t) := E(e−t(Wn,j−j−n)) denote the Laplace transform of the
shifted random variable Wn,j − j − n.

φn(t) = E(e−t(Wn,j−j−n)) = E(e−t(Wj+1,j−j))
∏

j+1≤k≤n−1

k − 1 + e−tk(1 + c2
c1
)

k + c2
c1

= E(e−t(Wj+1,j−j))
∏

j+1≤k≤n−1

(

1 +
(e−tk − 1)(1 + c2

c1
)

k + c2
c1

)

.
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Hence

φn(
t

n
) = E(e−

t(Wj+1,j−j)

n ) exp
(

(1 +
c2
c1
)

n−1
∑

k=j+1

(e−tk − 1)

k + c2
c1

)

+Rn,j(t)
)

,

where for fixed j it can be seen that

Rn,j(t) := O(
|t2|

n
). (22)

For fixed j we use again Euler-MacLaurin summation to show that

n−1
∑

k=j+1

(e−
tk
n − 1)

k + c2
c1

=

∫ t

0

e−v − 1

v
dv +O(

|t2|

n
).

For grown simple families of increasing trees satisfying c1 = −2c2 we get

φn(t) = E(e−t(Wn,j−j−n)) =

(

∏

1≤k≤j−1

(

1 +
(e−tk − 1)

k + 1
2

)

)(

∏

j+1≤k≤n−1

(

1 +
(e−tk − 1)1

2

k − 1
2

)

)

,

and further

φn(
t

n
) = exp

(

j−1
∑

k=1

(e−
tk
n − 1)

k + c2
c1

+
1

2

n−1
∑

k=j+1

(e−
tk
n − 1)

k + c2
c1

+ R̂n,j(t) + R̃n,j(t)
)

.

An application of Euler-MacLaurin summation then provides Theorem 3.

7 Conclusion

We presented the limit laws of weighted depths and distances in increasing trees. Note
that it is possible to setup an even more general (f -weighted) depth and distance by
introducing a weight function f(x) and defining

W
[f ]
j,j

(d)
= f(j)⊕

j−1
∑

k=1

f(k) · I(Ak),

where Ak denotes the event that node k is on the path from j to the root. Furthermore

W
[f ]
n,j

(d)
= f(n)⊕ f(j)⊕

j−1
∑

k=1

f(k) · I(Ak)⊕
n−1
∑

k=j+1

f(k) · I(Ak),
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where for, 1 ≤ k ≤ j − 1 and j + 1 ≤ k ≤ n− 1, Ak denotes the event that node k is
on the path from j to node n. E.g. f(x) ≡ 1 leads to the ordinary depth and distance
(shifted by 1), where f(x) = x leads to the weighted depth and weighted distance
studied in this paper. Hence choosing f(x) = xα would provide a natural transition
between ordinary depths and weighted depths.

8 Acknowledgements

This work was supported by the Austrian Science Foundation FWF, grant S9608-N13.
The authors thank an anonymous referee for many valuable comments.

References

[1] R. Aguech, N. Lasmar and H. Mahmoud, Extremal weighted path lengths in
random binary search trees, Probability in the Engineering and Informational Sci-
ences, to appear.

[2] F. Bergeron, P. Flajolet and B. Salvy, Varieties of increasing trees, Lecture Notes
in Computer Science 581, 24–48, 1992.

[3] B. Bollobas and O. M. Riordan, Mathematical results on scale-free random graphs,
in Handbook of graphs and networks, 1–34, Wiley-VCH, Weinheim, 2003.

[4] L. Devroye and R. Neininger, Distances and finger search in random binary search
trees, SIAM Journal on Computing 33, 647–658, 2004.

[5] R. Dobrow, On the distribution of distances in recursive trees, Journal of Applied
Probability 33, 749–757, 1996.

[6] R. Dobrow and R. Smythe, Poisson approximations for functionals of random
trees, Random Structures & Algorithms 9, 79-92, 1996.
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