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Institut für Diskrete Mathematik und Geometrie
Technische Universität Wien

July 18, 2022



Preliminaries
All spaces are assumed to be separable and metrizable. Given a
space X , denote by H(X ) the group of homeomorphisms of X .

◮ A space X is homogeneous if for every (x , y) ∈ X × X there
exists h ∈ H(X ) such that h(x) = y .

◮ A zero-dimensional space X is strongly homogeneous if all its
non-empty clopen subspaces are homeomorphic.

◮ A space X is rigid if |X | ≥ 2 and H(X ) = {id}.
◮ A space is σ-homogeneous if it is the union of countably many

of its homogeneous subspaces.

◮ A space is Borel if it can be embedded into some Polish space
as a Borel set. Similarly define analytic and coanalytic.

◮ A space X is c-crowded if it is non-empty and every
non-empty open subset of X has size c.

Exercise: every zero-dimensional strongly homogeneous space is
homogeneous.



An established pattern in set theory
Many properties P behave as follows:

◮ Every Borel set of reals satisfies P,

◮ Under AD, all sets of reals satisfy P,

◮ Under AC, there exist counterexamples to P,

◮ Under V = L, there exist definable (usually coanalytic)
counterexamples to P.

The classical regularity properties (P = “perfect set property”,
P = “Lebesgue measurable” and P = “Baire property”) are the
most famous instances of this pattern. More entertaining examples
include P = “not a Hamel basis” and P = “not an ultrafilter”.
A recent example is P = “Effros group”. This talk is about

P = “σ-homogeneity”,

in the context of zero-dimensional spaces.



A theorem of Steel
Recall that a Wadge class in 2ω is a collection of the form

Γ = {f −1[A]|f : 2ω −→ 2ω is continuous}

for some A ⊆ 2ω. Given Γ ⊆ P(2ω), set Γ̌ = {2ω \ A : A ∈ Γ}.
We will say that Γ is reasonably closed if
for every .

Theorem (Steel, 1980)

Assume AD. Let Γ be a reasonably closed Wadge class in 2ω, and
let X ,Y ⊆ 2ω be such that the following conditions hold:

◮ X and Y are either both comeager or both meager,

◮ For every basic clopen subset U of 2ω, both X ∩U and Y ∩U
have complexity exactly Γ (i.e. they belong to Γ \ Γ̌).

Then there exists h ∈ H(2ω) such that h[X ] = Y .

Exercise: show that Qω ≈ {x ∈ ωω : limn→∞ xn = ∞}.



The positive results

Theorem (Ostrovsky, 2011)

Every zero-dimensional Borel space is σ-homogeneous.

Ostrovsky used the techniques of van Engelen’s remarkable Ph.D.
thesis, where he employed Louveau’s 1983 article to classify all
zero-dimensional homogeneous Borel spaces. Using instead
material from Louveau’s unpublished book, it is possible to extend
these techniques beyond the Borel realm.

Theorem
Assume AD. Then every zero-dimensional space is σ-homogeneous.

Lemma
Assume AD. Then it is possible to associate to every non-empty
X ⊆ 2ω a non-empty homogeneous clopen subspace HC(X ) of X .

Corollary (van Engelen, Miller and Steel, 1987)

Assume AD. Then there are no zero-dimensional rigid spaces.



Proof of the theorem, using the lemma
Given X ⊆ 2ω, define Xα for every ordinal α as follows:

◮ X0 = X ,

◮ Xα+1 = Xα \ HC(Xα),

◮ Xγ =
!

α<γ Xα if γ is a limit ordinal.

Since X0 ⊇ X1 ⊇ · · · are closed in X , the sequence must stabilize
at some countable ordinal δ, and clearly Xδ = ∅.

!
“Proof” of the lemma
Take a non-empty clopen subspace U of X of “minimal
complexity” (in the sense of Wadge theory). This is possible
because, under AD, the Wadge hierarchy is well-founded (by the
Martin-Monk theorem). It can be shown that the Wadge class
generated by U in 2ω will be reasonably closed. Using Steel’s
theorem, one sees that U is (strongly) homogeneous.

!



A counterexample in ZFC
The naive definition of “hereditarily rigid” would be silly. But:

Definition
A space X is c-hereditarily rigid if X is c-crowded and every
c-crowded subspace of X is rigid.

Theorem
There exists a ZFC example of a zero-dimensional c-hereditarily
rigid space.

Corollary

There exists a ZFC example of a zero-dimensional space that is not
σ-homogeneous.

Question
Is there a ZFC example of a zero-dimensional space that is rigid
and σ-homogeneous? (Yes, by van Engelen and van Mill, 1983.)



Obviously, if you’re a topologist, studying computability theory is a
complete waste of time...



Definable counterexamples under V = L
In his 1989 paper, Miller sketched a method for constructing
coanalytic versions of certain pathological sets of reals (in the spirit
of Gödel’s coanalytic set without the perfect set property).
In 2014, Vidnyánszky gave a “black box” version of Miller’s
method. Using this, it’s not hard to prove the following:

Lemma
Assume V = L. Then there exists X ⊆ ωω such that:

◮ X is coanalytic,

◮ X is dense in ωω and c-crowded,

◮ Every element of X is self-constructible,

◮ If x , y ∈ X and x ∕= y then ωx
1 ∕= ωy

1 .

Given x ∈ ωω, we denote by ωx
1 the smallest ordinal not

computable from x . We say that x is self-constructible if x ∈ Lωx
1
.



Lemma
Assume V = L. Let X ⊆ ωω be as in the previous lemma and set
Y = ωω \ X. Then:

◮ X and Y are c-crowded,

◮ X is c-hereditarily rigid,

◮ X is not σ-homogeneous,

◮ Y is rigid but not c-hereditarily rigid,

◮ Y is not σ-homogeneous with Borel witnesses.

Theorem
Assume V = L. Then there exists a zero-dimensional coanalytic
space that is not σ-homogeneous.

Theorem (van Engelen, Miller, Steel, 1987)

Assume V = L. Then there there exist both analytic and
coanalytic examples of zero-dimensional rigid spaces.



Proof that X is c-hereditarily rigid

Pick a c-crowded subspace S of X , and let h : S −→ S be a
homeomorphism. By Lavrentieff’s Lemma, we can fix a
homeomorphism "h : G −→ G that extends h, where G ∈ Π0

2(ω
ω).

Pick a countable ordinal δ such that "h is coded in Lδ.

Pick x ∈ S such that ωx
1 ≥ δ. (Notice that, by the injectivity

condition, all but countably many elements of S have this
property.) Observe that x ∈ Lωx

1
by self-constructibility.

Set y = h(x) = "h(x), and observe that y ∈ Lωx
1
.

Since ωx
1 /∈ Lωx

1
, it follows that ωx

1 is not computable from y .
In conclusion, we see that ωy

1 ≤ ωx
1 .

A similar argument, applied to "h−1, shows that ωx
1 ≤ ωy

1 .
Therefore ωx

1 = ωy
1 , hence x = y by the injectivity condition.

Since S is c-crowded, this shows that h is the identity on S .

!



Two more open questions

Question
Is every analytic zero-dimensional space σ-homogeneous?

Theorem (Medini, van Mill, Zdomskyy, 2016)

There exists a ZFC example of a subspace X of 2ω with the
following properties, where Y = 2ω \ X:

◮ X is Bernstein,

◮ X is rigid,

◮ Y is homogeneous.

It turns out that such an X cannot be c-hereditarily rigid. But:

Question
Under V = L, is there a coanalytic zero-dimensional rigid space
that is not c-hereditarily rigid?
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