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Preliminaries

Many non-homeomorphic ultrafilters

Overview of the results

All ultrafilters are non-principal and on w.

By identifying a subset of w with an element of 2¢ in the
obvious way, we can view any ultrafilter &/ as a subspace of 2.
Proposition (folklore)

There are 2° non-homeomorphic ultrafilters.

Using Lavrentiev’s lemma, one sees that the homeomorphism
classes have size . m

The above proof is a cardinality argument: it is not ‘honest’ in
the sense of Van Douwen. @

It would be desirable to get ‘quotable’ topological properties
that distinguish ultrafilters up to homeomorphism.
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Overview of the results

The distinguishing properties
From now on, all spaces are separable and metrizable.
Recall the following definitions.

Definition

@ A space X is completely Baire if every closed subspace of
X is a Baire space.

@ A space X is countable dense homogeneous if for every
pair (D, E) of countable dense subsets of X there exists a
homeomorphism h : X — X such that h[D] = E.

@ Given a space X, a subset A of X has the perfect set

property it A is countable or A contains a homeomorphic
copy of 2%,
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Main resulis

Theorem

Assume MA(countable). Let P be one of the following
topological properties.

@ P = being completely Baire.
@ P = countable dense homogeneity.
@ P = every closed subset has the perfect set property.

Then there exist ultrafilters U,V C 2“ such thatU has property
P and 'V does not have property P. ©

Can the assumption of MA(countable) be dropped?
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The negative results

Main resul )
ain results The positive results

Kunen’s closed embedding trick

Theorem (Kunen, private communication)

Let C be a zero-dimensional space. Then there exists an
ultrafilter U C 2 with a closed subspace homeomorphic to C.

By choosing C = Q or C = a Bernstein set one obtains the
following corollaries.

There exists an ultrafilter V C 2% that is not completely Baire.

There exists an ultrafilter V C 2* with a closed subset that does
not have the perfect set property.
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Proof of Kunen’s trick

Lemma (folklore)

There exists a perfect set P C 2* such that P is an independent
family: that is, every word

X1N---NXpNw\ysN---Nw\ yn is infinite,

where Xy, ..., Xm, Y1,---,¥n € P are distinct.

Let C be the space you want to embed in V as a closed subset.
Since P = 2¥, assume C C P. Now simply define

G=Cu{w\x:xeP\C}.

Notice that G has the finite intersection property because P is
independent. Any ultrafilter V O G will intersect P exactly on C.
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An ultrafilter that is not countable dense
homogeneous
We will use Sierpinski’s technique for killing homeomorphisms.

Lemma

Assume MA(countable). Fix Dy and D, disjoint countable dense
subsets of 2¥ such that D = Dy U D5 is an independent family.
Then there exists A O D satisfying the following conditions.
@ A is an independent family.
@ IfGDDisaG;ssubsetof2* andf: G— Gisa
homeomorphism such that f[D4] = D», then there exists
x € G such that {x,w\ f(x)} C A.

In the end, let V be any ultrafilter extending A.
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Enumerate as {f, : n € ¢} all such homeomorphisms.

We will construct an increasing sequence of independent
families A for € ¢. Set Ay = D and take unions at limit
stages.

We will take care of f, at stage £ = n + 1, using cov(M) = c.
List as {w, : « € x} all the words in A,,.

It is easy to check that, for any fixed n € w, o € Kk and 1,5 € 2,

Wane e, = {X € Gy i [Wo N X7 N (X)2| > n}

is open dense in G,,, SO comeager in 2%,
So pick x in the intersection of every W,, nc, -
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A countable dense homogeneous ultrafilter
Any ultrafilter &/ is homeomorphic to its dual maximal ideal 7.
So, for notational convenience, we will construct an increasing
sequence of ideals Z, for £ € ¢. In the end, let 7 be any
maximal ideal extending (¢ Ze.

The idea is to use the following lemma.

Letf:2¥ — 2¥ be a homeomorphism. Fix a maximal ideal
J C 2¥ and a countable dense subset D of ;7. Then f restricts
to a homeomorphism of 7 iff cl({d + f(d) : d € D}) C J.

Enumerate as {(D,, E,) : n € ¢} all pairs of countable dense
subsets of 2¥. At stage £ = n + 1, make sure that either
@ w\Xx eI forsome x € D, UE,, or
@ there exists an homeomorphism f : 2 — 2“ and x € Z
such that f[D,]| = E,, and {d + f(d) : d € D,,} C x|.
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To construct f : 2 — 2“ and x, use MA(countable) on the
poset IP consisting of all triples p = (s, g, m) = (Sp, gp, Tp) such
that, for some n = np € w, the following conditions hold.

@ s:n— 2.

@ g is a bijection between a finite subset of D and a finite
subset of E.

@  is a permutation of "2.
@ (t+n(t))(i) =1 implies s(i) =1 forevery t € "2 and i € n.
@ 7(d | n)=g(d) | nforevery d € dom(g).
Order P by declaring g < p if the following conditions hold.
@ Sq 2 Sp.
® gy 2 Gp.
@ mg(t) [ np =mp(t | np) forall t € "2.
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Main results The positive results

A completely Baire ultrafilter

We will construct an increasing sequence of filters F¢, for £ € .
In the end, let U be any ultrafilter extending (. %

The idea is to use the following lemma.

Lemma (Hurewicz)

A space is completely Baire iff it does not contain any closed
copies of Q.

Enumerate as {Q, : 7 € ¢} all copies of Q in 2¢.
At stage ¢ = n + 1, make sure that either

@ w\x e F forsome x € Q,, or
@ there exists x € F¢ such that x € cl(Q,) \ Q,.

To construct x, use MA(countable) on
P={qg|n:qge Q,necw}, ordered by reverse inclusion.
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Main results The positive results

An ultrafilter I/ such that AN/ has the
perfect set property whenever A is analytic
Recall that a play of the strong Choquet game on a topological
space (X, 7) is of the form

I (q07 UO) (q17 U1) o
i 7 Vi

where Uy, V, € T are such that g, € V, C Upand U,y C V)
for every n € w.

Player Il wins if (", Un # @.

The topological space (X, 7) is strong Choquetif Il has a
winning strategy in the above game.
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Define an A-triple to be a triple of the form (7, A, Q) such that
the following conditions are satisfied.

@ 7 is a strong Choquet, second-countable topology on 2“
that is finer than the standard topology.

@ AcT.

@ Qs a non-empty countable subset of A with no isolated
points in the subspace topology it inherits from 7.

For every analytic A there exists a topology 7 as above.
Also, such a topology 7 necessarily consists only of analytic
sets. In particular, we can enumerate all A-triples as
{(7,,,A,, Q) : 1 € ¢}, making sure that each A-triple appears
cofinally often.
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Main results The positive results

We will construct an increasing sequence of filters F¢, for £ € .
Enumerate as {z, : n € ¢} all subsets of w.
At stage £ = n + 1, make sure that the following conditions hold.

@ Either z, € Frorw\ z, € F¢.

e If Q, C F, then there exists x € F, such that xT NA,
contains a perfect subset.

Let i = Uge, Fe. If ANU is uncountable for some analytic A
then it must have an uncountable subset S with no isolated
points. Hence there exists some Q C S and 7 such that
(7,A, Q) is an A-triple. So we took care of it.
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Main results The positive results

Given an A-triple (7, A, Q) = (7,, A,, Qy), construct x by
applying MA(countable) to the following poset.

Fix a winning strategy X for player Il in the strong Choquet
game in (2¥, 7). Also, fix a countable base B for (2“, T).

Let IP be the countable poset consisting of all functions p such
that for some n = n, € w the following conditions hold.

@ p:="2 — Q x B. We will use the notation
p(s) = (g8, Us).

o U5 =A

@ Forevery s,t € =2, if s and t are incompatible (that is,
s¢ tand t ¢ s)then US N UY = o.
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@ Forevery se "2,
| (qé)ro’ Ugro) e (qgrn’ Ugrn)
Il Vfro e me
is a partial play of the strong Choquet game in (2¥,7),
where the open sets Vfr,. played by Il are the ones dictated
by the strategy ¥.

Order PP by setting p < p’ whenever p D p'.

The generic tree will naturally yield a perfect set P such that
F, U{ P} has the finite intersection property.
Sosetx =P.
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A question of Hru8ak and Zamora Avilés
Extending the perfect set property

Bonus materials P-points

A question of Hrusak and Zamora Avilés
Hrudak and Zamora Avilés showed that, for a Borel X C 2, the
following conditions are equivalent.

@ XY is countable dense homogeneous.

o Xisa Gs.

Then they asked whether there exists a non-G; subset X of 2¢
such that X is countable dense homogeneous.
The following theorem consistently answers their question.

Assume MA(countable). Then there exists an ultrafilterf C 2%
such thatU* is countable dense homogeneous.
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Extending the perfect set property

Under V=L, there exists a co-analytic subset of 2“ without the
perfect set property. So MA(countable) is not enough to extend
the perfect set property to & N A for all co-analytic A.

Assume the consistency of a Mahlo cardinal. Then it is
consistent that there exists an ultrafiltertd C 2* such ANU has
the perfect set property for all A € P(Zw) N L(R).

At least an inaccessible is needed for the above theorem.

Does the Levy collapse of an inaccessible r to wy force such an
ultrafilter?
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Bonus materials P-points

P-points and completely Baire ultrafilters
We constructed the following examples.

P-point | non-P-point
cB v ?

non-cB ? v

For a non-principal ultrafilter U C 2%, is being a P-point
equivalent to being completely Baire?
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P-points and the perfect set property
We constructed the following examples.

P-point | non-P-point
psp v ?
non-psp ? v

Question

For an ultrafilterd C 2¥, is being a P-point equivalenttoUd N A
having the perfect set property whenever A C 2% is analytic?

| A

Theorem

LetU be a P,,-point. Then ANU has the perfect set property
whenever A C 2“ is such that every closed subset of A has the
perfect set property. (For example, whenever A is analytic).
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Bonus materials P-points

P-points and countable dense homogeneity
We constructed the following examples.

P-point | non-P-point
cdh v v
non-cdh ? v

The following is the only question left open.

Is a P-point necessarily countable dense homogeneous?
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