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Abstract. We show that Xλ is strongly homogeneous whenever
X is a non-separable zero-dimensional metrizable space and λ is an
infinite cardinal. This partially answers a question of Terada, and
improves a previous result of the author. Along the way, we show
that every non-compact weight-homogeneous metrizable space with
a π-base consisting of clopen sets can be partitioned into κ many
clopen sets, where κ is the weight of X. This improves a result of
van Engelen.
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1. Introduction

By space we always mean topological space. Recall that a space X is
homogeneous if for every px, yq P X � X there exists a homeomorphism
h : X ÝÑ X such that hpxq � y. This is a classical, well-studied notion
(see the survey [1]). Also recall that a space X is strongly homogeneous (or
h-homogeneous) if every non-empty clopen subspace of X is homeomor-
phic to X. The modifier “strongly” is motivated by the well-known fact
that every zero-dimensional first-countable strongly homogeneous space
is homogeneous (see [11, Proposition 3.32] for a picture-proof).

It is an interesting theme in general topology that taking infinite powers
tends to improve the homogeneity properties of a space. The first instance
of this phenomenon is of course the classical theorem of Keller [8] that
r0, 1sω is homogeneous. But the situation is particularly pleasant in the
zero-dimensional realm, as Lawrence [9] showed that Xω is homogeneous
for every zero-dimensional separable metrizable space X (answering the
first part of Problem 387 from the book “Open Problems in Topology,”
which is due to Fitzpatrick and Zhou [6, Problem 4]).

In fact, in the aptly named article [2], Gruenhage asked whether Xω

is homogeneous for every zero-dimensional first-countable space X, and
he obtained several partial answers in (unpublished) collaboration with
Zhou (see the last paragraph of [4]). Other related results were obtained
by van Engelen [4] and Medvedev [13]. The answer was finally shown to
be affirmative by Dow and Pearl [3], who combined Lawrence’s method
with the technique of elementary submodels.

However, while the issue of homogeneity was resolved in the spectacular
fashion described above, the following question [16] remains open (even
for separable metrizable spaces).

Question 1.1 (Terada). Is Xω strongly homogeneous for every zero-
dimensional first-countable space X?

Several partial answers to the above question are available (see [12,
Section 5] for a mini-survey). In particular, the author [10, Corollary 29]
proved that Xω is strongly homogeneous for every strongly zero-dimen-
sional non-separable metrizable space X. The aim of this article is to show
that “strongly zero-dimensional” can be weakened to “zero-dimensional”
(see Theorem 3.1).

We conclude this section by clarifying some terminology and notation.
Our reference for general topology is [5], and our reference for set theory
is [7]. A space is zero-dimensional if it is non-empty, T1, and it has
a base consisting of clopen sets. So a space X is zero-dimensional iff
X is T1 and indpXq � 0. It is easy to see that every zero-dimensional
space is Tychonoff. A space X is strongly zero-dimensional if X is a
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Tychonoff space and dimpXq � 0. By [5, Theorem 6.2.6], every strongly
zero-dimensional space is zero-dimensional. Recall that the weight of a
space X, which we will denote by wpXq, is the maximum between ω and
the minimal cardinality of a base for X. Given a metric space X with
distance d, a point x P X and a real number ε ¡ 0, we will denote by
Bpx, εq � tz P X : dpz, xq   εu the open ball around x of radius ε.

2. Partitions into clopen sets

The aim of this section is to show that every non-compact weight-
homogeneous zero-dimensional metrizable space X can be partitioned into
wpXq many clopen sets. This result was first obtained by van Engelen
[4, Lemma 2.1] under the additional assumption that X is strongly zero-
dimensional.1

In fact, the weaker assumption that X has a π-base consisting of clopen
sets will be sufficient (see Theorem 2.4). We remark that this level of
generality will not be needed in the proof of Theorem 3.1. However, this
assumption has proven to be a useful one (see [10] and [16]), and the
amount of extra work required is rather moderate. So we decided to state
our results this way.

Given a metric space X with distance d and a real number ε ¡ 0,
recall that D � X is ε-dispersed if dpd, eq ¥ ε whenever d, e P D and
d � e. Given a space X, recall that B is a π-base for X if B consists of
non-empty open subsets of X and for every non-empty open subset U of
X there exists V P B such that V � U .

Lemma 2.1. Let X be a metric space. Assume that X has a π-base
consisting of clopen sets. If X has an infinite ε-dispersed subset D for
some ε ¡ 0 then X can be partitioned into |D| many clopen sets.

Proof. Let d denote the metric on X. Fix an infinite ε-dispersed subset
D of X, where ε ¡ 0. We will use cl to denote closure in X. For every
d P D, fix a non-empty clopen subset Ud of X such that Ud � Bpd, ε{4q.
It is clear that Ud X Ue � ∅ whenever d, e P D and d � e. Therefore,
to conclude the proof, it will be enough to show that U is closed, where
U �

�
dPD Ud.

Assume, in order to get a contradiction, that xn P U for n P ω and
xn Ñ x, but x R U . Pick N P ω such that dpxn, xq   ε{4 whenever
n ¥ N . If there existed d P D such that xn P Ud for every n ¥ N , then
we would have x P clpUdq � Ud, contradicting the assumption that x R U .

1 At the very beginning of [4, Section 2], van Engelen assumes that all spaces are
metrizable and strongly zero-dimensional.
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So we can fix distinct d, e P D and m,n ¥ N such that xm P Ud and
xn P Ue. Then

dpd, eq ¤ dpd, xmq � dpxm, xq � dpx, xnq � dpxn, eq   4pε{4q � ε,

which contradicts the fact that D is ε-dispersed. □

Lemma 2.2. Let X be a metrizable space, and let κ be a cardinal of
uncountable cofinality. Assume that X has a π-base consisting of clopen
sets. If κ ¤ wpXq then X can be partitioned into κ many clopen sets.

Proof. Assume that κ ¤ wpXq. Let d be a metric on X. By Zorn’s
Lemma, for every n P ω we can fix a maximal 2�n-dispersed subset Dn

of X. It is straightforward to check that

B �
¤

nPω

tBpd, 2�nq : d P Dnu

is a base for X. Assume, in order to get a contradiction, that |Dn|   κ
for each n. Since κ has uncountable cofinality, it follows that

|B| ¤
¸

nPω

|Dn| � supt|Dn| : n P ωu   κ ¤ wpXq,

where the equality holds by [7, Lemma 5.8] and the fact that at least
one Dn is infinite (otherwise X would be separable). This is clearly a
contradiction, hence |Dn| ¥ κ for some n. An application of Lemma 2.1
concludes the proof. □

The following lemma first appeared (without proof) as [10, Lemma 3].
The proof given here is taken almost verbatim from [11, Lemma 3.3].
According to [5], a space X is pseudocompact if it is Tychonoff and every
continuous function f : X ÝÑ R is bounded. However, being Tychonoff
is irrelevant to Lemma 2.3, so we state it more directly as follows. Also
recall that a metrizable space is pseudocompact iff it is compact (see [5,
Theorem 4.1.17] and the subsequent remark).

Lemma 2.3. Let X be a space. Assume that X has a π-base B consisting
of clopen sets, and that there exists an unbounded continuous function
f : X ÝÑ R. Then X can be partitioned into infinitely many clopen sets.

Proof. Fix a metric d on R. Throughout this proof, we will use cl to denote
closure in R. It is a simple exercise to construct D � tdn : n P ωu � f rXs
and open subsets Un of R for n P ω such that the following conditions are
satisfied:


 D is a closed subset of R,

 dn P Un for each n,

 Um X Un � ∅ whenever m � n.
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Then set Vn � Bpdn, εnq for n P ω, where the εn are such that 0   εn ¤
2�n and clpVnq � Un.

Next, we will show that V �
�

nPω clpVnq is closed in R. Pick x R V .
Choose N P ω such that 2�N   dpx,Dq, then set W � Bpx, 2�pN�1qq. We
claim that W X Vn � ∅ for every n ¥ N � 1. Otherwise, for an element
z of such an intersection, we would have

dpx, dnq ¤ dpx, zq � dpz, dnq ¤ 2�pN�1q � 2�pN�1q � 2�N   dpx,Dq,

which is a contradiction. So W zpclpV0q Y � � � Y clpVN qq is an open neigh-
borhood of x that is disjoint from V .

Finally, fix Bn P B for n P ω so that each Bn � f�1rVns. To conclude
the proof, we will show that B �

�
nPω Bn is closed. Pick x R B. If

x P f�1rUns for some n P ω, then f�1rUnszBn is an open neighborhood
of x that is disjoint from B. Now assume that x R

�
nPω f�1rUns. Then

y � fpxq R V , so we can find an open neighborhood W of y that is
disjoint from V . It is clear that f�1rW s is an open neighborhood of x
that is disjoint from B. □

Recall that a space X is weight-homogeneous if wpUq � wpXq for every
non-empty open subspace U of X. Naturally, in the context of this article,
the only relevant examples of weight-homogeneous spaces are the infinite
powers.

Theorem 2.4. Let X be a metrizable space. Assume that X is non-
compact, weight-homogeneous, and has a π-base consisting of clopen sets.
Then X can be partitioned into wpXq many clopen sets.

Proof. Set κ � wpXq. If κ � ω, the desired conclusion follows from
Lemma 2.3. On the other hand, if κ has uncountable cofinality, the desired
conclusion follows from Lemma 2.2. So assume that κ is uncountable but
has countable cofinality, and let κn for n P ω be cardinals of uncountable
cofinality such that suptκn : n P ωu � κ.

Since X is non-compact, by Lemma 2.3 we can fix non-empty clopen
subsets Xn of X for n P ω such that

�
nPω Xn � X and Xm X Xn � ∅

whenever m � n. Notice that each wpXnq � κ ¥ κn by weight-homogen-
eity. Hence each Xn can be partitioned into κn many clopen sets by
Lemma 2.2. To conclude the proof, simply consider the union of these
partitions. □

It is clear from the above proof that the assumption of weight-homogen-
eity is only used in the case when wpXq is uncountable of countable cofi-
nality. Of course, it would be nice to eliminate it altogether.

Question 2.5. Is it possible to drop the the assumption of weight-
homogeneity in Theorem 2.4?
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3. The main result

As we mentioned in the introduction, the following result shows that
the assumption of strong zero-dimensionality in [10, Corollary 29] can be
weakened to mere zero-dimensionality. Recall that a space X is strongly
divisible by 2 if X�2 is homeomorphic to X, where 2 is the discrete space
with two elements.

Theorem 3.1. Let X be a non-separable zero-dimensional metrizable
space, and let λ be an infinite cardinal. Then Xλ is strongly homogeneous.

Proof. Since strong homogeneity is productive in the zero-dimensional
realm (see [10, Corollary 14]) and Xλ is homeomorphic to pXωqλ, it will
be enough to show that Xω is strongly homogeneous. By Theorem 2.4,
we can fix an uncountable cardinal κ and non-empty clopen subsets Xα

of Xω for α P κ such that
�

αPκ Xα � Xω and Xα XXβ � ∅ whenever
α � β. Pick x P Xω and a local base tUn : n P ωu for Xω at x consisting
of clopen sets. Since Xω is homogeneous by [3], for every α P κ there
exist npαq P ω and a clopen subspace Vα of Xω such that Vα � Xα and
Vα is homeomorphic to Unpαq. Since κ is uncountable, there must be an
uncountable I � κ and n P ω such that npαq � n for all α P I. Set
V �

�
αPI Vα, and observe that V is a non-empty clopen subspace of Xω

that is strongly divisible by 2. The desired conclusion then follows from
[10, Proposition 24]. □

We conclude by observing that there might be a more systematic way
of proving Theorem 3.1. The following result is [14, Theorem 5] (see also
[15, Theorem 6]).2

Theorem 3.2 (Medvedev). Let X be a strongly zero-dimensional metriz-
able space. Assume that wpXq has uncountable cofinality and that X is
weight-homogeneous. If X is homogeneous then X is strongly homoge-
neous.

Notice that the assumption of weight-homogeneity in the above result
cannot be dropped. To see this, simply consider κ � X, where X is a
strongly zero-dimensional homogeneous metrizable space and κ ¡ wpXq
is a cardinal of uncountable cofinality with the discrete topology. Fur-
thermore, as ω � 2ω shows, the assumption that wpXq has uncountable
cofinality cannot be altogether dropped. However, we do not know the

2 At the very beginning of [14], Medvedev assumes that all spaces are metrizable.
Furthermore, it is well-known that IndpXq � dimpXq for every metrizable space X (see
[5, Theorem 7.3.2]). Regarding [15, Theorem 6], although the assumption indpXq � 0

appears in its statement, we remark that the stronger assumption dimpXq � 0 is in
fact used.
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answers to the following questions. As we hinted at above, affirmative
answers to both questions would yield a better proof of Theorem 3.1 as a
by-product.
Question 3.3. Is it possible to weaken “has uncountable cofinality” to
“is uncountable” in Theorem 3.2?
Question 3.4. Is it possible to weaken “strongly zero-dimensional” to
“zero-dimensional” in Theorem 3.2?
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