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Young tableaux with local decreases

We consider Young tableaux in which some pairs
of (horizontally or vertically) consecutive cells are
1011416 allowed to have decreasing labels. Places where a
11(13]15 decrease is allowed (but not compulsory) are drawn
by a red edge, which we call a “wall".
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Nice formulas for some specific tableaux of shape n x 2:
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Young tableaux with local decreases

We consider Young tableaux in which some pairs
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Bijections with paths and trees

The number of n x 2 Young tableaux ) with k vertical walls is equal to

M 1 2n\ [n+1
mk= 1\ n k )

Proof #1: Bicolored down-steps in Dyck bridges + the Chung—Feller property
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Long walls with small holes: hook-length type formulas

Holes of size 1 on the border

)\1 )\2 /\3 /\4

Theorem

The number of n x m Young tableaux of size mn with k walls from column 1 to
m — 1 at distance 0 < d; := Z'-z Xi<n, i=1, ..., kwith h; < hi;1 is equal to

(mn S—mm_—ll ﬁni_f (A +J> h (ﬁ <m:"7+nj/\_’ 1)> ’

i=1 j=1 i=1

where the multinomial coefficients contain m — 1 \;’s.

o

Drawback: efficient formula but too ad-hoc. What about more complicated holes?
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https://hal.archives-ouvertes.fr/hal-01795882/document

Larger holes lead to unusual asymptotics

The “simplest case” of holes of size 2 on the border :
o
6 |10114|15(17|18 ..O
Q
315|9|12|13|16 Y N
211 |7|4]11]8 v
BAADBACFCBEDECDFEF

The number 7, of such Young tableaux of size n x 3 satisfies
f,=0© (n! 1272 (30 n_2/3) ,

where a; &~ —2.338 is the largest root of the Airy function of the first kind.

@ Bijections to phylogenetic networks, special words with n distinct letters, and
related to compacted trees (special DAGs) [Fuchs—Yu-Zhang 21]

@ General method to prove stretched exponentials in bivariate recurrences
[Elvey Price-Fang—Wallner 21]. Here:

Yn.k = Ynk—1 + (2!7 +k — 1)yn—1,k and fo = Yn,n-
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Generic approach:

The density method

far origins in poset theory (volume of polytopes, log-concavity) (scanley 1081]
enumeration of linear extensions is #P-complete [pyer Fricze 1088, Brightwell Winkler 1001]
avatars in number theory [zagier, Beukers Kolk Calabi 1003, Elkies 2003]

applied to square Young tableaux (arishnikov 2001]
and variants of alternating permutations [saryshnikev Romik 2010, Stanley 2010]

generalized to further posets & random generation [sanderier Marchal Wallner 2016-2021]
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Uniform random generation and enumeration

6 [15]16

1113|114

] 110]18 This example is “without loss of generality”
31010 for o perod shane). <
47|17

215 |11

How to generate/enumerate such tableaux? Brute-force is hopeless!
Solution = use our density method!

The density method will give thousands of coefficients in a few seconds.
. . 1 .
The number of tableaux of size 2n x 3 is f, = (6n + 1)! [ ps(2z)dz, with
21
Prt1(z) = / ﬂ(z —1)(x—2)(3x> = 7x?z — xz° — 2 — 2x* + 4xz + 42°) pn(x) dx.
0
{f}azo={1, 12, 8550, 39235050, 620738299350, 26095645151941500, 2323497950101372223250,
392833430654718548673344250, 115375222087417545717234273063750,
55038140590519890608190921051205837500, . .. }.
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From (periodic) tableaux to tuples of reals and polytopes

s 1516 7016(17 .74/.96|.97
)
T30 2 14|15 .25.94|.95 S| zZ|\wW

9 [11]19 .85(.91[.99 R|Y|V
8(10[18

4 (10|13 .42(.90/.93 X
30912

51818 .54/.82(.98 s W
417117 Ro<vo<v

31612 .35/.57|.92 v
25|11 X

1 .06

@ The density method generates real numbers with the same relative order
e All possible values = a polytope P, C [0, 1]6*1
@ "Building blocks” of 7 cells for this periodic tableau

Uniformity via the “right” choice of densities

pni1(z) = / / / / / / pn(v) dv dw ds dr dy dx
0<x<z <y<z 0<r<y Jr<s<z <w<1l y<v<w

pn(Xn) pk(Xk)lblockk o pO(XO)]-Pn . 177n o 1'Pn

Jy pa(t)dt iz Presi(x1) [ pa(t)dt [y pa(t)de  vOl(Pa)
Prob(x € P,) = vol(P,) = f,/(6n + 1)!

d(x) =
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Jenga tableaux and the density method

16]17]19]21
[1]5]15]20[22
11|14
10[18]

_|

Jenga! = Construct! in Swahili. ly

Given a shape (¢}, r;)ien, what is the number f, of tableaux with n lines?

n 1
£ = (Z(z,- it 1))!/ pu(x) dx
i=1 0
Zi(1 = 2)™ [ ) (1 — 7)n
pn(z) = %/0 Pn—1(x) dx with pi(z) = %
Proof: po(z)= [ -+ [ [ f J pa-1(x)dxdur...dugdy,...dv

z<v1<l v, 1<V, <1 O<up<z O<ui<uz 0<x<z
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A classification of 2 x 2 periodic shapes

A periodic shape is the concatenation of n copies of a building block B of <cells:

y=nB5"
A tableau ) with periodic walls is a periodic shape filled with all integers from
{1,...,|B|n} respecting the induced order constraints.

311015 |6(12|16(13|14
214171891115

B: 84:

There are a priori 2% = 64 shapes, but some are in bijection (e.g., turn by 180
degrees and reverse labels). It turns out that it leads to 32 different sequences.

We now characterize all 2 x 2 shapes according to the nature of the counting
sequence/generating function, which is either

@ “simple” hypergeometric

@ hypergeometric,

@ algebraic,

@ D-algebraic and beyond.
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Hypergeometric cases

= cases with uniquely determined minimum or maximum

Class

Shape Sequence

OEIS

H2
H3
H4
H5
H6
H7

Proofs:

- i e
i=1

f[(zf —1)(4i - 1)

2"+1n!f[(4i -3)

i=1
(4:) i]:[l(a -~
(4:) f[1(3i -2
HE‘ 2“n|H (4i —3)
HE( BE! H (2 —1)(4i — 1)

HEHEHHH
HEHEHE

4101485
4159605
27+1.0084943
(*")-r008544
(*")-a007559
n!-A084948

A159605

@ Models H1-Hs: variants of Jenga tableaux with r; = 0 for all
@ Models H6—H7: recursively decompose with respect to the location of the
unique minimum or maximum.

Cyril Banderier & Michael Wallner
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https://oeis.org/A101485
https://oeis.org/A159605
https://oeis.org/A084943
https://oeis.org/A008544
https://oeis.org/A007559
https://oeis.org/A084948
https://oeis.org/A159605

D-algebraic cases?

~ cases with a zig-zag-like pattern

Class Shape GF OEIS Example

D-algebraic, and not D-finite:
B} H} cos( t/\f + cosh(t/v/2)? related to 4211212 ........
2cos t/\f cosh(t/v/2)

EH ) H} open problem! —

[2[4]5]8 [u]iz]i]s]

s open problem! —
Proof for z1: A permutation (a1,...,a,) is an
alternatlng permutation of type (ki ..y km) if

ap < <Ay D A+l < < Apgtky D kg thetl < v < ap.
Then, k,- =1 gives classical alternating permutations;

while ki =3, ko = -+ = k, =4, and k,.1 = 1 gives Z1. Leonard Carlitz
A generalization of [Carlitz 73] then leads to s i
Eas(t)Eqq1(t) gkt
F(t)= ————— 4+ E40(t h Er . (t) = 1)
( ) E4,0(t) + 470( ) where k, ( ) ;0( ) (nk—|— I’)I
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https://oeis.org/A211212
https://oeis.org/search?q=3%2C119%2C13761%2C3178785%2C1226341035%2C711310157271%2C578808021857625%2C+629094292867153665%2C880420061542046903955%2C1542142783860061524297975%2C3305066423033878298552132145%2C8507914454392557998456492959905&sort=&language=english&go=Search
https://oeis.org/search?q=8%2C416%2C56136%2C14433600%2C6042488040%2C3743684613216%2C3219214017819240%2C3668912290108229760%2C5352687624294728270280%2C9729190960995966590426400%2C21557816749990824984425855880%2C57201801255727138416863255878080&sort=&language=english&go=Search

Conclusion

@ 3 ways to enumerate and generate Young tableaux with walls:
hook-length type formulas, bijections, density method.
@ Approach different from [Greene Nijenhuis Wilf 84].
They used the existence of a simple product formula (hook-length formula).

@ Brute-force generation or P-partition formulas — exponential cost.
Generation via our density method — O(n?) cost.

o A field to explore: examine more families of posets (e.g., permutations, Young
tableaux, increasing trees, urn models in [Banderier Marchal Wallner 20]).

@ Asymptotics? D-finite? D-algebraic? Links with other objects?
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https://doi.org/10.1016/0097-3165(84)90065-7

Bonus slides

Bonus Slides
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Values of the zeta function (after Zagier, Calabi, Elkies)

£ (2k+ 1y

5(2) = Z 2k+1)2 Z// // 1fx(iyy

k>0

Change of varlable x=2and y = 2.
The integration domain becomes the tnangle T={u>0,v>0,u+v<m/2}.

2
5(2):/ dudv = =
; 8
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Values of the zeta function (after Zagier, Calabi, Elkies)

£ (2k+ 1y

5(2) = Z 2k+1)2 Z// // 1fx(iyy

k>0

Change of varlable x=2and y = 2.
The integration domain becomes the tnangle T={u>0,v>0,u+v<m/2}.

2
5(2):/ dudv = =
; 8

Calabi and Elkies generalisation:
n even: S(n) = vol(polytope of dimension n) = (g)

A(n) = # alternating permutations of length n.
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Exponential cost formulas via P-partitions

E.g. for the zigzag shape Z3, Christian Krattenthaler obtained via Stanley's
P-partition theory a nice formula (but with exponential cost):

4n)! 1 1
Z3(n) = (Qn) >, (e (fl(e) - fz(ﬁ))

e€{0,1}n—1
where |e[:=€; 4+ -+ + €,-1 and
n—1

file) =L@ +1+2er+-+€))(2i+2+ 21+ +¢)),

fa(e) =3[ (21 +2+2(er + -+ +€))(2 +3+2(e1 + -+ +¢)).

Open problem: to infer from it asymptotics, (non?) D-finiteness, etc.

Advantage of our density method: polynomial cost via the integrals of densities.
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