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Compacted Binary Trees | What is a compacted binary tree?

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y)))

which represents (x2 − y2)(x2 + y2).

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.
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1 1

2

3 3 1 1 3 3

4

5

2 4

6

7

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)),
(6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.
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Compacted Binary Trees | What is a compacted binary tree?

Compacted trees

Efficient algorithm to compute compacted tree: expected time O(n)

Analyzed by [Flajolet, Sipala, Steyaert 1990]: A tree of size n has a
compacted form of expected size

C
n√

log n
,

where C is explicit related to the type of trees and the statistical model.

Applications:

XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
Compilers [Aho, Sethi, Ullman 1986]
LISP [Goto 1974]
Data storage [Meinel, Theobald 1998], [Knuth 1968], etc.

Reverse question

How many compacted trees of (compacted) size n exist?
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Compacted Binary Trees | What is a compacted binary tree?

Compacted (unlabeled binary) trees
Size: number of internal nodes

cn: number of compacted trees of size n

(cn)n≥0 = (1, 1, 3, 15, 111, 1119, 14487, . . . )

Important: Subtrees are unique!

Simple bounds

n! ≤ cn ≤
1

n + 1

(
2n

n

)
n!
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Compacted Binary Trees | What is a compacted binary tree?

Bounded right height (Previous work)

The right height of a binary tree is the maximal number of right children on any
path from the root to a leaf (not going through pointers).

←→

Theorem [Genitrini, Gittenberger, Kauers, W 2020]

The number ck,n of compacted trees with right height at most k is for n→∞
asymptotically equivalent to

ck,n ∼ κkn!

(
4 cos

(
π

k + 3

)2
)n

n−
k
2−

1
k+3−( 1

4−
1

k+3 ) cos( π
k+3 )−2

,

where κk ∈ R \ {0} is independent of n.
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Compacted Binary Trees | What is a compacted binary tree?

Main result compacted trees

A stretched exponential µnσ appears!

Theorem [Elvey Price, Fang, W 2021]

The number of compacted binary trees satisfies for n→∞

cn = Θ
(
n! 4ne3a1n

1/3

n3/4
)
,

with a1≈−2.338: largest root of the Airy function Ai(x)= 1
π

∞∫
0

cos
(

t3

3 +xt
)
dt.

Conjecture

Experimentally we find

cn ∼ γcn!4ne3a1n
1/3

n3/4,

where

γc ≈ 173.12670485.
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Compacted Binary Trees | What is a compacted binary tree?

Other appearances of stretched exponentials

Known exactly:

Integer partitions:
∼ (4
√

3)−1eπ(2n/3)
1/2

n−1

Pushed Dyck paths [Beaton, McKay 2014], [Guttmann 2015]:

∼ C14ne−3(
π log 2

2 )2/3
n1/3n−5/6

Cogrowth sequence of a lamplighter group variant of Z2 o Z [Revelle 2003]:

∼ C2µ
ne−3(π log(2)/2)2/3n1/3n1/6

Phylogenetic tree-child networks [Fuchs, Yu, Zhang 2020]:

Θ
(
n2n(12e−2)nea1(3n)

1/3

n−2/3
)

Conjectured:

Permutations avoiding 1324 [Conway, Guttmann, Zinn-Justin 2018]:

≈ µne−cn
1/2

Pushed self avoiding walks [Beaton, Guttmann, Jensen, Lawler 2015]:

≈ µne−cn
3/7

and recently more and more appear in group theory, queuing theory, . . .
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Compacted Binary Trees | What is a DFA?

Deterministic finite automata (DFA)

DFA on alphabet {a, b}
Graph with

two outgoing edges from each
node (state), labelled a and b

An initial state q0

A set F of final states (coloured
green).

Properties

Language: the set of accepted
words

Minimal: no DFA with fewer
states accepts the same language

Acyclic: no cycles (except loops
at unique sink)

q0

q1 q3

q4

a b

b

a a

b

a

a
b b

q2

Figure: DFA

, which is the minimal DFA recognizing the language {a, aa, ba, aba}.
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Compacted Binary Trees | What is a DFA?

Counting minimal acyclic DFAs

Studied by Domaratzki, Kisman, Shallit, and Liskovets 2002–2006

Open problem: Asymptotics

Best bounds were out by an exponential factor

q0

q1 q3

q4

a b

b

a a

b

a

a
b b

q2

Figure: DFA, which is the minimal DFA recognizing the language {a, aa, ba, aba}.
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Compacted Binary Trees | What is a DFA?

Main result minimal DFAs

A stretched exponential µnσ appears again!

Theorem [Elvey Price, Fang, W 2020]

The number mn of minimal DFAs with n + 1 states recognizing a finite binary
language satisfies for n→∞

mn = Θ
(
n! 8ne3a1n

1/3

n7/8
)
,

with a1≈−2.338: largest root of the Airy function Ai(x)= 1
π

∞∫
0

cos
(

t3

3 +xt
)
dt.

Conjecture

Experimentally we find

mn ∼ γn!8ne3a1n
1/3

n7/8,

where

γ ≈ 76.438160702.
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Compacted Binary Trees | What is a DFA?

What is the Airy function?

Properties

Ai(x) = 1
π

∫∞
0

cos
(

t3

3 + xt
)
dt

Largest root a1 ≈ −2.338

limx→∞ Ai(x) = 0

Also defined by Ai′′(x) = xAi(x)

[Banderier, Flajolet, Schaeffer,
Soria 2001]: Random Maps

[Flajolet, Louchard 2001]:
Brownian excursion area
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Compacted Binary Trees | What is a DFA?

How to prove this?

Theorem [Elvey Price, Fang, W 2020]

The number mn of minimal DFAs with n + 1 states recognizing a finite binary
language satisfies for n→∞

mn = Θ
(
n! 8ne3a1n

1/3

n7/8
)
,

with a1≈−2.338: largest root of the Airy function Ai(x)= 1
π

∞∫
0

cos
(

t3

3 +xt
)
dt.

1 Bijection to decorated Dyck paths

2 Two-parameter recurrence relation for decorated Dyck paths

3 Heuristic analysis of recurrence

4 Inductive proof of asymptotically tight bounds using heuristics
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Compacted Binary Trees | Bijection to decorated paths

Bijection to decorated paths

q0

a

a

a

a

a

a

a b

b

b

b

b

b

b

a, b
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Compacted Binary Trees | Bijection to decorated paths

Bijection to decorated paths

a

a

a

a b

b

b

b

a, b

q0

a

a

a
b

b

b

Highlight spanning tree given by depth first search (ignoring the sink)
I.e., black path to each vertex is first in lexicographic order
Colour other edges red
Draw as a binary tree with a edges pointing left and b edges pointing right
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a

a
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a
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b
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b
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Bijection to decorated paths

q0

a

a

a

a
a

a

a

b

b b

b

b

b

b

a, b

Highlight spanning tree given by depth first search (ignoring the sink)
I.e., black path to each vertex is first in lexicographic order
Colour other edges red
Draw as a binary tree with a edges pointing left and b edges pointing right

Michael Wallner | TU Wien | 27.05.2021 13 / 20



Compacted Binary Trees | Bijection to decorated paths

Bijection to decorated paths

2

3 4

5

6

7

8

1

Label nodes in post-order. By construction red edges point from a larger
number to a smaller number
→ Label pointers
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Bijection to decorated paths

2

3 4

5

6

7

8

1

6

3513

11

Label nodes in post-order. By construction red edges point from a larger
number to a smaller number
→ Label pointers

Michael Wallner | TU Wien | 27.05.2021 13 / 20



Compacted Binary Trees | Bijection to decorated paths

Bijection to decorated paths

2

3 4

5

6

7

8

1

6

3513

11 1

2

3

4

5

6

7

8

(0, 0)

(−1, 0)

(7, 7)

2a 2b 4a 4b 6a 6b 7b3a
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Bijection to decorated paths

2

3 4

5

6

7

8

1

6

3513

11 1

2

3

4

5

6

7

8

(0, 0)

(−1, 0)

(7, 7)

2a 2b 4a 4b 6a 6b 7b3a

When the tree traversal...
goes up: add up step with color matching the corresponding node.
passes a pointer:

add horizontal step
mark box corresponding to pointer label
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Decorated paths

1

2

3

4

5

6

7

8

(0, 0)

(−1, 0)

(7, 7)

2a 2b 4a 4b 6a 6b 7b3a

Path starts at (−1, 0) and ends at (n, n)
Path stays below diagonal (after first step)
One box is marked below each horizontal step
Each vertical step is colored white or green

By the bijection: The number of these paths is the number dn of acyclic DFAs
with n + 1 nodes.
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Decorated paths
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3 3 3 3

4 4 4
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(n,m)m+ 1

(n,m− 1)

(n− 1,m)

2

Recurrence: Denote by an,m the number of paths ending at (n,m).

an,m = 2an,m−1 + (m + 1)an−1,m, for n ≥ m

a−1,0 = 1.

By the bijection: dn = an,n is the number of acyclic DFAs with n + 1 nodes.

What about minimality?
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Recurrence for minimal DFAs
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2 2 2 2 2
2 2 2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2

2 2

2

3 3 3 3

4 4 4

5 5

(n,m)m+ 1

(n,m− 1)

(n− 1,m)

2

Recurrence: Denote by bn,m the number of paths ending at (n,m).

bn,m = 2bn,m−1 + (m + 1)bn−1,m − mbn−2,m−1, for n ≥ m,

b−1,0 = 1.

Now: mn = bn,n is the number of minimal acyclic DFAs with n + 1 nodes.
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Transforming the recurrence for minimal DFAs
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5 5

Transformation: en+m,n−m =
1

n!2m
bn,m.

New recurrence:

en,m =

(
1− 2(m + 1)

n + m

)
en−1,m−1 + en−1,m+1 −

n −m

(n + m)(n + m − 2)
en−3,m−1.

Now: mn = n!2ne2n,0.
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Compacted Binary Trees | Heuristic analysis of recurrence

Heuristics

We want to understand en,m for large (fixed) n.

20 40 60 80 100

5.0×1022

1.0×1023

1.5×1023

en,m

m + 1
200 400 600 800 1000

5.0×10281

1.0×10282

1.5×10282

2.0×10282

en,m

m + 1

Figure: Plots of en,m against m + 1. Left: n = 100, Right: n = 1000.

Let’s zoom in to the left (small m) where interesting things are happening.
It seems to be converging to something...

Guess: en,m ≈ h(n)f

(
m + 1

g(n)

)
. Moreover, we guess g(n) = 3

√
n.
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Compacted Binary Trees | Heuristic analysis of recurrence

Heuristic analysis of weighted paths

Recurrence

en,m =

(
1− 2(m + 1)

n + m

)
en−1,m−1 + en−1,m+1 −

n −m

(n + m)(n + m − 2)
en−3,m−1.

Ansatz (a): en,m ≈ h(n)f

(
m + 1

3
√
n

)
.

Substitute into recurrence and set m = κ 3
√
n − 1:

sn :=
h(n)

h(n − 1)
≈ 2 +

f ′′(κ)− 2κf (κ)

f (κ)
n−2/3 + O(n−1)

Ansatz (b):

sn = 2 + cn−2/3 + O(n−1) ⇒ h(n) ≈ 2ne
3c
2 n1/3

Solution

f ′′(κ) = (2κ+ c)f (κ)

⇒ f (κ) = Ai(2−2/3(2κ+ c))

Where c is constant

and Ai is the Airy function.

Boundary condition en,−1 = 0. Then f (0) = 0 implies c = 22/3a1, where
a1 ≈ −2.338 satisfies Ai(a1) = 0.
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Refined heuristic analysis

1 Ansatz of order 1:

en,m ≈ h(n)f

(
m + 1

3
√
n

)
,

sn = 2 + cn−2/3 + O(n−1).

yields estimates c = 22/3a1 such that

h(n) ≈ 2ne3a1(n/2)
1/3

and f (κ) = Ai(21/3κ+ a1).

2 Ansatz of order 2:

en,m ≈ h(n)

(
f0

(
m + 1

3
√
n

)
+ n−1/3f1

(
m + 1

3
√
n

))
,

sn = 2 + cn−2/3 + dn−1 + O(n−4/3).

yields estimates d = 29/12 such that

h(n) ∼ const · 2ne3a1(n/2)
1/3

n29/24 and f0(κ) = Ai(21/3κ+ a1).

This way we conjecture the asymptotic form for acyclic minimal DFAs:

mn = 2nn!e2n,0 = Θ
(
n!8ne3a1n

1/3

n7/8
)
.
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Compacted Binary Trees | Thank you

The end

Theorem

The number mn of minimal DFAs recognizing a finite binary language and the
number cn (rn) of compacted (relaxed) binary trees satisfy for n→∞

mn = Θ
(
n! 8ne3a1n

1/3

n7/8
)
,

cn = Θ
(
n! 4ne3a1n

1/3

n3/4
)
,

rn = Θ
(
n! 4ne3a1n

1/3

n
)
,

with a1≈−2.338: largest root of the Airy function Ai(x)= 1
π

∞∫
0

cos
(

t3

3 +xt
)
dt.

Many future research directions:
Multiplicative constant? Does it exist?
Characterizing 2-parameter recurrences admitting stretched exponentials.
Limit shapes: expected height? longest word? etc.
Further applications to biology and queuing theory.

Open PhD position in my project “Stretched exponentials and beyond”!
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Backup
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Minimal acyclic DFAs

2
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7

8

(0, 0)

(−1, 0)

(7, 7)

2a 2b 4a 4b 6a 6b 7b3a

cherry:

For the DFA to be minimal, no state can be equivalent to a previous state:
only possible if the new node is a cherry.
If cherry is labeled m, then m − 1 choices (of pointer labels and state color)
must be avoided.
Cherry corresponds to → → ↑ in path.
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Side note: Pushed Dyck paths

Dyck paths of length 2n where paths of height h get weight 2−h

h

2n
0
0

Consider paths with max height h = nα (for 0 < α ≤ 1/2):

Number of paths ≈ 4ne−c1n
1−2α

, Weight = 2−n
α

= e− log(2)nα .

Weighted number of paths is ≈ 4ne−c1n
1−2α−log(2)nα .

Maximum occurs when α = 1/3 and is equal to 4ne−cn
1/3

.
Our case: weights decrease similarly with height so we expect similar behavior
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Proof method

Recall:

en,m =

(
1− 2(m + 1)

n + m

)
en−1,m−1 + en−1,m+1 −

n −m

(n + m)(n + m − 2)
en−3,m−1

Number of minimal acyclic DFAs is mn = 2nn!e2n,0.

Method:
Find sequences Xn,m and Yn,m with the same asymptotic form, such that

Xn,m ≤ en,m ≤ Yn,m,

for all m and all n large enough.

How to find them?

1 Use heuristics

2 Fiddle until Xn,m and Yn,m satisfy the recurrence of en,m with the equalities
replaced by inequalities:

= −→ ≤ and ≥
3 Prove Xn,m ≤ en,m ≤ Yn,m by induction.

Unfortunately very technical (and not suited for the end of a talk ;) )
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Technicalities for compacted trees and minimal DFAs

Lots of technicalities:
Before induction, we have to remove the negative term from the recurrence,
but we have to do so precisely for asymptotics to stay the same.
We only prove bounds for small m; we prove that large m terms don’t matter
The lower bound is negative for very large m, so we have to be careful with
induction
We only prove the bounds for sufficiently large n, but this only makes a
difference to the constant term. Proof involves colorful Newton polygons:
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Relaxed problem (relaxed compacted trees)

Recurrence for relaxed compacted trees

dn,m =
n −m + 2

n + m
dn−1,m−1 + dn−1,m+1.

Lemma (lower bound)

For all n,m ≥ 0 let

X̃n,m :=

(
1− 2m2

3n
+

m

2n

)
Ai

(
a1 +

21/3(m + 1)

n1/3

)
and

s̃n := 2 +
22/3a1
n2/3

+
8

3n
− 1

n7/6
.

Then, for any ε > 0, there exists an ñ0 such that

X̃n,m s̃n ≤
n −m + 2

n + m
X̃n−1,m−1 + X̃n−1,m+1,

for all n ≥ ñ0 and for all 0 ≤ m < n1−ε.
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Lower bound – Expansion

1 Transform to Pn,m ≥ 0 for

Pn,m := −X̃n,m s̃n +
n −m + 2

n + m
X̃n−1,m−1 + X̃n−1,m+1.

where (σi , τj ∈ R)

s̃n := σ0 +
σ1
n1/3

+
σ2
n2/3

+
σ3
n

+
σ4
n7/6

,

X̃n,m :=

(
1 +

τ2m
2 + τ1m

n

)
Ai

(
a1 +

21/3(m + 1)

n1/3

)
.

2 Expand Ai(z) in a neighborhood of

α = a1 +
21/3m

n1/3
,

using Ai′′(z) = zAi(z). Then

Pn,m = pn,mAi(α) + p′n,mAi′(α),

where pn,m and p′n,m are power series in n−1/6 whose coefficients are
polynomials in m.
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Lower bound – Polygon

We get

Pn,m = Ai(α)

(
− σ4
n7/6

− 25/3a1m

3n5/3
−41m2

9n2
− 28/3a1m

3

3n8/3
−34m4

9n3
− 62m5

135n4
+ . . .

)
+

Ai′(α)

(
21/3(2τ1 − 1)

n4/3
+

21/3

n3/2
− 8a1m

9n2
+

21/3(24τ1 − 31)m2

9n7/3
−213/3m3

9n7/3
+ . . .
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Lower bound – Case analysis

3 Treat pn,m and p′n,m separately and prove that all dominating terms (corners
of convex hull) are positive.

pn,m =
∑

ãi,jm
inj p′n,m =

∑
ã′i,jm

inj

non-zero coefficients
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Relaxed trees: Proof idea – lower bound

Main idea

Suppose (Xn,m)n≥m≥0 and (sn)n≥1 satisfy

Xn,msn ≤
n −m + 2

n + m
Xn−1,m−1 + Xn−1,m+1, (1)

for all sufficiently large n and all integers m ∈ [0, n].

Define (hn)n≥0 by h0 = 1 and hn = snhn−1; then prove that

Xn,mhn ≤ b0dn,m

for some constant b0 by induction:

Xn,mhn
(1)

≤ n −m + 2

n + m
Xn−1,m−1hn−1 + Xn−1,m+1hn−1

(Induction)

≤ n −m + 2

n + m
b0dn−1,m−1 + b0dn−1,m+1

Rec. dn,m
= b0dn,m.
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