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Abstract

This thesis analyzes a new algebraic multigrid (AMG) method for algebraic systems arising
from the discretization of second order elliptic boundary value problems by high-order finite
element methods on quadrilaterals in two dimensions. The new AMG method is developed
to analyze the sparse stiffness matrix from a discretization with biquadratic or bicubic La-
grangian finite elements and to recover the bilinear stiffness matrix associated with the same
underlying mesh by algebraic means only. The method assumes the knowledge of degree and
the usage of nodal Lagrangian basis functions, however the underlying grid’s geometry stays
unknown. This approach is motivated by far higher efficiency on discretizations of (bi)linear
finite elements. The gained linear system can be solved with any classical AMG solver, where
the smoothed aggregation method is chosen and carefully analyzed and adapted for parallel
execution. Moreover, a brief introduction into all needed general AMG concepts is given. All
developed algorithms are designed with special focus on fast and efficient parallel execution
using OpenMP, if applicable. The efficiency of the new method is presented in numerical
results by contrasting it with the classical AMG method which is directly applied to the
high-order finite element matrix, showing a much shorter solution time.
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Introduction

The numerical solution of partial differential equations (PDEs) lies at the heart of most
mathematical problems arising in industry and throughout the natural sciences. Due to the
rising complexity of realistic models and the constantly growing cost pressure in the market,
efficient and fast solution strategies gain more and more importance. Computer simulations
are the state of the art in nearly all new developments, as real experiments are too expensive
and time consuming. The ever rising demand for more accurate answers cannot be met
by the continuously increasing computing power of modern computer chips alone. A clear
consequence is the need for highly efficient algorithms in all areas of research.

This work focuses on a new solution method for solving large scale algebraic systems arising
form the discretization of elliptic PDEs. These are for instance used as models for the tem-
perature distribution in solid or fluid media and as models for the concentration distribution
of certain substances in diffusive media. A cutting edge technology for the solution of these
problems are multigrid methods, which can be developed by two approaches: the geometric
approach [2,3,14,33,44] and the algebraic approach [15,16,23,27,32–35,37]. Multigrid meth-
ods are well known to be by far the most efficient methods for solving this and other classes
of PDEs [4].

The development of multigrid methods started in the 1960s with the geometric approach,
where the geometry of the problem was used to define the various multigrid components.
They were first introduced by Fedorenko in 1961 [11] but their actual efficiency was only
realized more than 10 years later in the 1970s by the work of Brandt [3]. In the same decade
the method was independently rediscovered and extended by Hackbusch [13]. Whereas the
research on the algebraic approach started in the 1980s. Algebraic multigrid (AMG) methods
only use the information available in the linear system of equations Ax = b, which makes them
applicable as solvers on more complicated domains and unstructured grids, where geometric
multigrid is often too difficult to apply. Another advantage is the possibility of an easy
integration in existing software packages, as only the information of the linear system is
needed. This makes them very popular in industry.

Out of all available papers this thesis has been motivated by the work of Shu et al. [31] and
represents an extension of the methods on meshes of triangles onto meshes of quadrilaterals
with the aim of a parallel implementation. It proposes to be a multigrid solver which com-
bines both approaches and may be called “algebraic multigrid method based on geometric
considerations” [31, p. 347].

The coarsening in a typical AMG method is done by examining the algebraic properties of the
coefficient matrix. For doing so a vast range of algorithms exists, which work well on some
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classes of problems, but are far away from being optimal on more complicated ones. Especially
the agglomeration of elements brings difficulties and results in problems in the control of the
coarse degrees of freedom. The idea in [31] is to utilize hidden geometric information which
naturally comes with a specific class of problems. In particular, stiffness matrices from finite
element discretizations reflect the structure of the underlying geometric grid in a more or less
obvious way. In order to use this hidden information, additional input is necessary, which
results in a hybrid method, as it relies not only on the linear system as sole input to the
algorithm. However, the actual geometric data remains unknown.

The class of problems to be solved arises from the discretization with Lagrangian finite el-
ements of different orders. In general classical AMG methods show good performance on
(bi-)linear elements only and are far less efficient on higher-order elements. A main reason
for this behavior is that the graph of the stiffness matrix is nearly the same as the graph of
the finite element grid, whereas this property is lost for higher-order elements. Additionally,
higher-order elements result in more interactions between basis functions and lead to more
dense stiffness matrices. Hence, the coarsening process becomes more involved and requires
special considerations.

Within the solving process the main idea is to algebraically recover the (bi-)linear finite
element space and its associated stiffness matrix. For this purpose special methods have
been introduced in [31] for general triangulations, which were adapted to meshes of general
quadrilaterals. The recovered (bi-)linear system is solved with a classical AMG method,
where the smoothed aggregation approach (cf. [35]) in combination with a SOR- or Gauss-
Seidel-smoother was mainly used. Theoretically this technique can be visualized as a two-level
method, where the coarse space is the (bi-)linear finite element space associated with the same
geometrical grid.

The approaches mentioned will be described in accordance with the following structure. In
chapter 1 we introduce mathematical and technical preliminaries, which are essential in the
understanding of the presented theory. Chapter 2 introduces the concept of AMG in detail
and discusses the smoothed aggregation method and the classical Ruge-Stüben coarsening
strategy in combination with direct and standard interpolation. Special focus is laid on par-
allelization possibilities of the introduced algorithms, and the data structure is designed to
enable this potential. Chapter 3 lies at the center of this work. It introduces the new method
for biquadratic and bicubic finite elements including comments on the parallel implementa-
tion of the presented algorithms. Chapter 4 describes the implementations from a technical
perspective by presenting the program architecture. Chapter 5 presents different numerical
results, which show the efficiency of the new method, compared to classical AMG algorithms.
The algorithms were implemented in maiprogs using OpenMP for the purpose of paralleliza-
tion. Finally a summary of the achieved results is given and open problems with regard to
this topic are suggested for future research.
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Chapter 1

Mathematical Preliminaries

1.1 Notation and Problem Class for Higher-Order Finite Ele-

ment Problems

In the following the notation for the higher-order finite element algorithm developed in chap-
ter 3 is introduced. The algebraic multigrid method presented is designed for finite element
discretization of second-order finite element boundary value problems. We are mostly going
to use and extend the notation developed in [31]. The problem class we are going to solve
can be generally described by the following model problem

{

−∇ (d(x)∇u) = f, in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω ⊂ R
2 represents a polygonal domain, x = (x1, x2)⊤ ∈ R

2 and d(x) is a function
that is positive and bounded, but may contain large discontinuous jumps. For the algorithm
presented in chapter 3.3 we assume d(x) to be piecewise constant on the given grid.

Let Rh be a quadrilateral partition of the domain Ω and Pp the set of polynomials of degrees
not more than p, where h is the longest side of all elements in Rh. We denote the finite
element space by

V p
h := {ϕ ∈ H1

0 (Ω) : ϕ|R ∈ Pp,∀R ∈ R
h}.

In particular we will work with bilinear (p = 1), biquadratic (p = 2) and bicubic (p = 3)
elements. The finite element solution of equation (1.1) is denoted by uph ∈ V

p
h and satisfies

the following finite element scheme

a(uph, ϕ) = (f, ϕ), ∀ϕ ∈ V p
h ,

where we are using a(u, v) =
∫

Ω d(x) (ux1vx1 + ux2vx2) dx, (f, u) =
∫

Ω fu dx and the Sobolev
space Hm(Ω) = {v | ∂αv ∈ L2(Ω), |u| ≤ m}.

Let {φi}
N
i=1 be the standard nodal basisfunction of V p

h , where N denotes the total degrees of
freedom. Hence we can represent the solution of (1.1) in this basis by uph =

∑N
i=1 u

p
h,iφi and

substitute it into (1.1) to obtain the equivalent algebraic system

Aphu
p
h = fph (1.2)
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where

Aph = (a(φi, φj))i,j∈I , u
p
h =

(

uph,i

)

i∈I
and fph = (f, φi)i∈I

with I = {1, . . . , N}.

1.2 Sparse Matrix

The coefficient matrix A of any linear system Ax = b dealt with in this thesis is stored in a
sparse form in order to reduce the cost of memory and increase the efficiency. Let A ∈ R

N×N

be a sparse matrix with Nz nonzero entries. A popular sparse matrix data structure also
used by maiprogs is the Compressed Sparse Row (CSR) format (cf. [28]). In this format the
matrix A is stored in three one-dimensional arrays: AA, JA and IA. These are explained in
table 1.1.

Array Data type Size Usage

AA Real Nz The real values aij of the matrix A are stored row by
row, from row 1 to N

JA Integer Nz Contains the column indices of the element aij as stored
in the array AA

IA Integer N + 1 Contains pointers to the beginning of each row in the ar-
rays AA and JA. The element IA(N+1) = IA(1)+Nz
and can be interpreted as the beginning of the fictitious
row number N + 1. I.e. the elements of row i are stored
at the positions IA(i) to IA(i + 1)− 1 in AA and JA.

Table 1.1: Components of the CSR Format explained

Example 1.1: Consider the sparse matrix

A =








1. 0. 0. 2.
0. 3. 4. 0.
0. 0. 5. 0.
6. 7. 0. 8.







.

For this example N = 4, Nz = 8 and the CSR arrays hold the following values:

AA =
(

1. 2. 3. 4. 5. 6. 7. 8.
)

JA =
(

1 4 2 3 3 1 2 3
)

IA =
(

1 3 5 6 9
)

�

According to Shu et al. [31] we introduce the following assumption.

Assumption 1.2 (Nonzero Assumption): If the system matrix arises as the stiffness
matrix of a finite element discretization, we assume that for any entry of an element stiffness
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matrix, if its row and column indices relate to nodes which are not on the Dirichlet boundary,
it will be stored in the CSR format of A in the process of assembling the global stiffness
matrix A. �

From the above assumption it follows that there exists an entry with the row index i and the
column index j in the CSR format, if and only if the corresponding non-Dirichlet boundary
nodes xi and xj belong to the same element, that is

suppφi ∩ suppφj 6= ∅ (1.3)

where φi and φj are the corresponding nodal basisfunctions.

1.3 Norms

For the theoretical discussions the system matrix A is always assumed to be symmetric
and positive definite. Therefore we are able to define the following scalar products, where
D = diag(A) denotes the diagonal of A:

(u, v)H0 := (Du, v)2

(u, v)H1 := (Au, v)2

(u, v)H2 := (D−1Au,Av)2

The corresponding norms are ‖u‖Hi :=
√

(u, u)Hi , i ∈ {0, 1, 2}. In some sense these norms
are discrete counterparts of the Hk-Sobolev (semi-)norms (see [33,41]).

1.4 Lagrange Shape Functions on Rectangles in 2D

For the purpose of applying the finite element discretization, the definition of a set of basis-
functions φi(ξ), i = 1, . . . , N , defined on a reference element is necessary. An introduction into
the finite element method and a more detailed description can be found in [18,29,46]. We are
going to introduce Lagrange shape functions on rectangles in two dimensions following [12],
as they are needed for the theoretical discussions in chapter 3. On these rectangles we will
work with bilinear, biquadratic and bicubic functions. For more details see [38, pp. 179].

Lagrangian interpolants are simple to construct on rectangles by taking products of one
dimensional Lagrange polynomials. As a reference element we choose the canonical 2 × 2
square {(ξ, η) | − 1 ≤ ξ, η ≤ 1}. For our set of basisfunctions of degree d we choose d + 1
equally spaced points along each unit coordinate axis, and form the Cartesian product of
all possible pairs (ξi, ηj). This set is called the grid points and is shown in figure 1.1. Now
we associate every element of our set of basisfunctions with one grid point. Consequently,
element (i, j) represented by Ni,j(ξ, η) is a polynomial with the properties that

• for every monomial term in Ni,j(ξ, η), the exponents of ξ and η are between 0 and d,

• Ni,j(ξi, ηj) = 1,

10



• Ni,j(ξk, ηl) = 0, for all grid points (ξk, ηl) 6= (ξi, ηj).

This properties clearly imply, that the following formula for the element (i, j) of d-th degree
family of basisfunctions is given as

Ni,j(ξ, η) =

∏d+1
k=1;k 6=i(ξ − ξk)

∏d+1
l=1;l 6=j(η − ηl)

∏d+1
k=1;k 6=i(ξi − ξk)

∏d+1
l=1;l 6=j(ηj − ηl)

.

2,11,1

2,21,2

(a) Grid points for bilinear functions

b

2,1

1,3

1,1 3,1

2,21,2 3,2

2,33,3

(b) Grid points for biquadratic functions

Figure 1.1: Grid points and indexing on rectangular reference element for bilinear and
biquadratic basisfunctions

This construction leads us to the set of a Lagrange polynomial basis. It is defined over a set
of polynomials and points where every polynomial is associated with exactly one point, at
which it attains the value 1 but is zero at all other points [7].

The restriction of the bilinear Lagrange basisfunction ψi,j(ξ, η) to the canonical reference
element has the form

ψ(ξ, η) = c1,1N1,1(ξ, η) + c1,2N1,2(ξ, η) + c2,1N2,1(ξ, η) + c2,2N2,2(ξ, η).

The reference bilinear shape functions Ni,j(ξ, η) satisfy

Ni,j(ξk, ηl) = δikδjl, k, l = 1, 2.

This implies ψ(ξk, ηl) = ck,l and we are able to write Ni,j as the product of the one dimensional
hat functions

Ni,j(ξ, η) = N̂i(ξ)M̂j(η), i, j = 1, 2,

with the following functions for −1 ≤ ξ, η ≤ 1

N̂1(ξ) =
1− ξ

2
, M̂1(η) =

1− η

2
,

N̂2(ξ) =
1 + ξ

2
, M̂2(η) =

1 + η

2
.

The shape of function N1,1(ξ, η) is shown in figure 1.2a. It is a linear function along the edges
containing node (ξi, ηj) and vanishes on the opposite edges.
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0

0.2
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(a) Bilinear basisfunction N1,1 on
[−1, 1]× [−1, 1] reference element

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1
0

0.05

0.1

0.15

0.2

0.25

(b) Bilinear basisfunction on
intersection of four squares

Figure 1.2: Bilinear basisfunction

The basisfunction ψi,j can be constructed out of these reference shape function by combining
them on elements sharing a node with the condition to create a continuous function. An
example is shown in figure 1.2b where the support of the function ψi,j consists of four square
elements.

The construction of biquadratic shape functions follows a similar manner. As their degree is
2 we require 9 grid points on the reference element. Additionally to the four vertex points we
use four points on the mid-sides and one at the center of the element (see figure 1.1b). By
restricting the basisfunction φ(ξ, η) to this reference element we obtain the form

φ(ξ, η) =
3∑

i=1

3∑

j=1

ci,jNi,j(ξ, η),

where similar to the case before Ni,j, i, j = 1, 2, 3 are the reference biquadratic shape functions
constructed as the product of one dimensional quadratic polynomial Lagrange shape functions

Ni,j(ξ, η) = N̂i(ξ)M̂j(η), i, j = 1, 2, 3,

with the following functions for −1 ≤ ξ, η ≤ 1

N̂1(ξ) = −
ξ(1− ξ)

2
, M̂1(η) = −

η(1− η)

2
,

N̂2(ξ) =
ξ(1 + ξ)

2
, M̂2(η) =

η(1 + η)

2
,

N̂3(ξ) = (1− ξ2), M̂3(η) = (1− η2).

Biquadratic basisfunctions can be constructed like in the bilinear case as union of reference
shape functions. In this case three different types of reference basisfunctions for a vertex, an
edge and the center, respectively are distinguished. They are shown in figure 1.3. All plots
showing the shape of considered basisfunctions were constructed using Matlab R2010b.

Higher-order shape functions as bicubic ones are constructed in a similar way.
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(c) Bubble function

Figure 1.3: Biquadratic basisfunctions on reference element

1.5 Delaunay Triangulation and Voronoi Diagram

The mesh generation is of paramount importance in the finite element method. In particular
the choice of a reasonable, which often means unstructured triangulation is a crucial step to
secure convergence. Unstructured meshes could be necessary on irregularly shaped domains,
which resist structured discretizations or in order to deal with certain geometrical singular-
ities [30, p. 6]. Such meshes are often computed by Delaunay triangulations of point sets.
Given a set of points fulfilling some assumptions, the Delaunay triangulation is the unique
triangulation which maximizes the minimum angle in the triangulation [19, pp. 234]. As small
interior angles lead to bad convergence in the finite element method, this property justifies
the importance of Delaunay triangulations.

The following analysis is based on [10, chapter 7 and 9] and [19, chapter 5]. It should be
remarked, that Delaunay triangulations are the dual graphs of Voronoi diagrams, which is
why we are going to discuss these first.

Let S = {p, q, r, . . .} ⊂ R
2 be a set of n distinct points in a plane. As a measure for the

influence between points p = (p1, p2) and x = (x1, x2), we use the Euclidean distance

‖px‖ :=
√

|p1 − x1|2 + |p2 − x2|2.
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For p ∈ S we define the Voronoi region as

V R(p, S) := {x ∈ R
2 | ‖px‖ ≤ ‖qx‖, ∀q ∈ S}.

Furthermore we define the Voronoi diagram V (S) as the decomposition of R
2 induced by

V R(p, S), p ∈ S (see figure 1.4a). The bisector B(p, q) of p, q ∈ S, is the set B(p, q) :=
{x ∈ R

2 | ‖px‖ = ‖qx‖}. It consists of all points located on the perpendicular line to the
line segment pq, which intersects with pq at its midpoint. B(p, q) splits R

2 into two open
half-planes

D(p, q) := {x ∈ R
2 | ‖px‖ < ‖qx‖} and

D(q, p) := {x ∈ R
2 | ‖px‖ > ‖qx‖}.

Obviously there is p ∈ D(p, q) and q ∈ D(q, p). Furthermore we deduce the following formula
depicted in figure 1.4b

V R(p, S) =
⋂

q∈S\{p}

D(p, q).

b
b

b

b

b

b

b

b

b

b

(a) Voronoi diagram

b
b

b

b

b

b

(b) Voronoi region as intersection
of half planes

Figure 1.4: Construction of Voronoi diagrams

Next we want to look at the boundaries of Voronoi regions. First, consider the edge epq
between V R(p, S) and V R(q, S):

∀x ∈ epq, ‖px‖ = ‖qx‖ < ‖rx‖, ∀r ∈ S \ {p, q}

Second, consider the vertex vpqr, which is the point where V R(p, S), V R(q, S) and V R(r, S)
intersect:

‖pvpqr‖ = ‖qvpqr‖ = ‖rvpqr‖ < ‖svpqr‖, ∀s ∈ S \ {p, q, r}

Moreover, vpqr is also the circumcenter of the circle through p, q and r, and the circle does
not contain any other points of S.

The structure of the Voronoi diagram depends on the position of the points p ∈ S to each
other. Two degenerate cases should be avoided (see figure 1.5):

1. For a set of n collinear points, the Voronoi diagram consists of n− 1 parallel lines.
2. For a set of co-circular points, the Voronoi diagram looks like a “pie slice”.
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(a) Parallel points

b

b

b

b

b

(b) Co-circular points

Figure 1.5: Degenerate cases of Voronoi diagrams

This motivates two general assumptions:

1. No three points are collinear.
2. No four points are co-circular.

This implies, that no Voronoi diagram has parallel edges and that the degree of each vertex
in it is three.

Now we are able to define the Delaunay triangulation DT (S) as the dual graph of the Voronoi
diagram V (S). Hence, DT (S) has a node for every Voronoi cell (i.e. for every point p ∈ S)
and two points p and q are connected by a line pq, if their Voronoi regions V R(p, S) and
V R(q, S) share a common edge in V (S). Note, that the degree of each vertex in V (S) is
three, which implies that DT (S) is a triangulation. An example is shown in figure 1.6.

b
b

b

b

b

b

b

b

b

b

Figure 1.6: Delaunay triangulation DT (S) as the dual grapf of Voronoi diagram V (S)

At the end, we want to give a summary of some basic properties of Delaunay triangulations.
With C◦ we denote the interior of the set C.

• pq ∈ DT (S) ⇔ ∂V (p, S) ∩ ∂V (q, S) is an edge in V (S)
• ∆pqr ∈ DT (S) ⇔ vpqr is a vertex in V (S).
• vpqr is the circumcenter of ∆pqr
• The circumcircle of each triangle in DT (S) is empty, i.e. no point p ∈ S lies inside.
• pg ∈ DT (S) ⇔ There exists a circle Cpq passing through p and q, such that C◦

pq∩S = ∅.

Especially the last two properties are very important and can be used to characterize Delaunay
triangulations [19, p. 235].
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1.6 Remarks on Programming

The implementation of scientific software can be split into two phases. In the first phase the
(mathematical) theory is converted into an algorithm which is possibly designed in pseudo
code, where no attention is paid to syntax and semantic. The general properties of an algo-
rithm, like complexity and parallelism are analyzed and if possible enhanced. All algorithms
presented in the following chapters, are algorithms which are the result of this phase.

The second phase deals with the translation of these pieces of pseudo code into actual code
of a programming language like Fortran 95. At this point issues like data structures, matrix-
vector or matrix-matrix multiplications, organization of subprograms and many more have to
be considered. Despite being mostly hidden behind fancy graphs and impressive tables, this
work represents the foundation for all numerical experiments and is of very high importance
for a successful implementation of the derived algorithms. In the following sections we want
to mention some of the biggest and most frequently recurring challenges of this phase, with
the aim of raising awareness for this crucial, but often underestimated phase of scientific work.

1.6.1 General Remarks

1. Set operations

The considered algorithms will often rely on set operations. Hereby we understand, for
example, the check if a given set is a subset or equal to another set. As the main data
structure is a sparse matrix, and most sets are constructed from one individual row,
they are generally very small. Hence the sets are saved in a vector. These operations
can be performed in linear time, if the sets are stored in sorted order. As mentioned
before, most sets are created from the sparse system matrix. Therefore the easiest and
most efficient way to create sorted sets, is to ensure that the rows of the sparse matrix
(stored in the CSR format) are sorted according to their column offsets (cf. example
1.1) and that this order is maintained when creating new sets.

2. Precompute constants

Constants which are used more often should be precomputed and stored in a separate
variable. This is particularly efficient within loops.

3. Usage of flag arrays with sparse data structures in nested loops

Consider two nested loops over a large amount of elements. Some problems require a
kind of array, like a flag array, which marks certain elements which were affected during
each iteration of the inner loop. This could be necessary for postprocessing steps on
these elements after each individual iteration of the outer loop. If this array needs to be
set back to its default values (mostly back to zero) before the start of the next iteration,
it would be very inefficient to perform this reset on all elements, as in general only a
minor amount was changed. A possible solution is to use additional memory in a vector
of fixed size, which remembers the positions of the saved parameters. If the vector is
big enough, it will be sufficient to reset the changed values only. Otherwise the amount
of allocated memory should be increased for the next iteration, since it is likely that the
same case appears repeatedly. For this particular iteration the whole vector has to be
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reset as the collected information is insufficient. The following table 1.2 illustrates this
solution.

Note, that the algorithms discussed in the following chapters will not consider this prob-
lem. For brevity and simplicity we will always choose the slower variant in the presented
pseudo codes, but the implementations will use the before discussed optimization.

Slow

1: for i ← 0 to n do

2: I ← 0
3: for j ← 0 to n do

4: If condition then I(j)← 1
5: end for

6: end for

Efficient

1: I ← 0 ⊲ Initialize
2: Allocate v(0, . . . ,M − 1) ⊲ M ≪ n
3: for i ← 0 to n do

4: c = 0 ⊲ Current position in v
5: for j ← 0 to n do

6: if condition then

7: I(j)← 1
8: If c < M then v(c)← j
9: c = c+ 1

10: end if

11: end for

12: if c ≤M then

13: for j ← 0 to c do

14: I(v(j)) ← 0
15: end for

16: else

17: I ← 0
18: Enlarge to v(0, . . . , c− 1)
19: end if

20: end for

Table 1.2: Efficient usage of a flag array with sparse data structures in nested loops

1.6.2 Parallel Programming

1. Frequently changing arrays

If an element of an array changes frequently during execution, a temporary variable
should be used to store intermediate results. After execution the final result is stored
in the array. This is illustrated in table 1.3.

2. Calculating the size of a sparse data structure before constructing it

Instead of allocating too much memory in advance, it is often advantageous to use an
additional loop in order to determine the actual size. This is mostly done by counting
how many elements of each row fulfill a certain condition. By doing so no memory is
wasted and the surplus effort in determining the size can be compensated by the ability
to execute the computation of the actual values in parallel.

E.g.: Determine the strongly coupled neighbors for a given matrix in section 2.4.1.
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Slow

1: x(k)← 0
2: for i ← 0 to n do

3: x(k)← x(k) + 1
4: end for

Efficient

1: tmp← 0
2: for i ← 0 to n do

3: tmp← tmp+ 1
4: end for

5: x(k)← tmp

Table 1.3: Efficient usage of frequently changing arrays

3. Decouple iterations

Parallel programming issues mainly address the parallel execution of expensive loops.
In order to execute the iterations in parallel it is essential that every iteration is inde-
pendent of any other, i.e. no iteration depends on the result of a previous one.

Some algorithms are inherently serial, like the classical Gauss-Seidel method or algo-
rithm 2.9. Though, in general it is possible to adapt these algorithms and develop
parallel variants. But one has to consider the payoff between additional costs and gain
in computation time. Often the preparatory costs are overwhelming the possibly won
advantage (compare algorithm 2.9 with parallel remarks on page 35).

However, many algorithms can be parallelized by some preparatory computations. In
the current implementations it is often necessary to construct a sparse matrix saved in
the CSR format (cf. chapter 1.2). These matrices are saved as vectors in a row-by-row
format. Unfortunately it is often not known beforehand, how many entries each row
will have and as the rows are stored one after each other, the location of an element in
the next row depends on the length of the previous one. This dependency can easily be
overcome, by counting the number of elements per row first. This structural information
decouples the rows and enables a parallel computation. Examples are algorithm 2.8,
where already computed information reveals the structure of the matrix and algorithm
3.2, where the number of entries per row is computed first.
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Chapter 2

AMG Concepts

The development of multilevel methods basically followed two approaches: geometric and
algebraic. In geometric multigrid the geometry of the underlying problem is used to define
the various components. In contrast algebraic multigrid uses only the information in the
linear (sparse) algebraic system of equations

Au = f or
n∑

j=1

aijuj = fi, for i = 1, 2, . . . , n. (2.1)

Therefore the advantage of AMG is that it can be directly applied to more complicated
domains and structured as well as unstructured grids. It can be shown that it provides very
robust solution methods, i.e. it solves a large class of problems.

Every multigrid method consists of the following components which will be introduced in this
chapter:

1. Smoother
2. Coarse Grid Hierarchy
3. Prolongation/Restriction
4. Coarse Grid Equation

The main difference between geometric and algebraic multigrid is the construction of the
coarse grid hierarchy. In the geometric method, the coarse grids are predefined and chosen
according to the geometric nature of the problem. Afterwards the smoother is adapted to the
defined grids, in order to achieve optimal error reduction. In contrary, in the algebraic case
the smoother is fixed beforehand and the coarse grids are adapted to the problem. To do so
the geometric information is not available in the algebraic case. Therefore the hierarchy is
created as part of the method in an additional setup phase. There are many approaches of
how to handle this problem, but all of them have in common that the linear system matrix
is the only source of information. This is illustrated in the figure 2.1 (see [33, p. 416]).

As the physical grid points are unknown the indices {1, 2, . . . , n} are used instead, as every
grid point or node corresponds to one index. In the following the terms grid point or node
always refer to the index and not to the physical point.

On these nodes, the connections within the grid are determined by the undirected adjacency
graph of the matrix A. Every vertex of the graph is associated with a grid point and there
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Requirement for any multilevel approach:

Efficient interplay between
smoothing and coarse grid correction

Geometric
Multigrid

Fix smoother
Adjust coarsening

Algebraic
Multigrid

Fix coarsening
Adjust smoother

Grid equations

(hierarchy given)

Lhuh = fh

Algebraic system

(no hierarchy given)

∑

j a
h
iju

h
j = fhi

Figure 2.1: Geometric versus Algebraic Multigrid

exists an edge between the nodes i and j if either aij 6= 0 or aji 6= 0. The graph represents the
connections in the grid and describes the interplay of the different nodes. A simple example
of this relationship is shown in figure 2.2.

A =
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34

5
6

Figure 2.2: The nonzero structure of A and its adjacency graph [5, p. 138]

A very important concept in the development of multigrid methods is the concept of smooth-
ness. We distinguish between geometric and algebraic smoothness. A function is geometrically
or physically smooth if it has a low spatial frequency. In geometric multigrid it is assumed
that the relaxation scheme smooths the error and that the smooth functions of a certain level
are represented exactly on the coarser grid. Intergrid transfer operators are chosen in such a
way, that smooth functions are transfered accurately between grids.

As in AMG the relaxation scheme is chosen first, it allows us to determine the nature of
the smooth error. However, we have no access to the physical grid and for this reason the
necessity arises to define the sense of smoothness algebraically. With the help of this sense
of smoothness the coarse grids are selected and the intergrid transfer operators are defined.
Finally a coarse grid version of the operator A is selected. The goal within this procedure
stays the same as in the geometric case: Eliminate the error components in the range of the
interpolation operator (see [5, 33,45]).
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2.1 Concept and Cost of AMG

This section gives an overview of the AMG concept. We follow the structure of [45], a detailed
explanation can be found in [27] or any similar introduction to AMG.

Relaxation schemes like weighted Jacobi and Gauss-Seidel show the interesting property of
fast initial convergence which stalls abruptly after a small number of iterations. The central
idea in all multigrid methods is to use the fast initial convergence of these relaxation schemes.
When performing a Fourier analysis in certain model problems it can be shown, that these
relaxation schemes are very efficient on high frequency components of the error, but very
poor on low frequency parts [2,5]. Therefore the core idea in any multigrid method is that a
smooth error e that is not eliminated by relaxation must be removed by coarse grid correction.
This is done by solving the residual equation Ae = r on a coarser grid, then interpolating the
error back to the fine grid and using it to correct the fine-grid approximation by u← u+ e.

This procedure is best described in an algorithm. We use subscripts to indicate the level
number, where 0 indicates the finest level (i.e. A0 = A and Ω0 = Ω). The current level is
denoted by k and the number of unknowns on one level by nk. The following components are
needed for AMG:

1. Grids: Ω0 ⊃ Ω1 ⊃ . . . ⊃ ΩM with the subsets:
Set of coarse points or C-points Ck, k = 0, 1, . . . ,M − 1
Set of fine points or F -points Fk, k = 0, 1, . . . ,M − 1

2. Grid Operators: A0, A1, . . . , AM
3. Grid transfer operators:

Interpolation: Pk : Ωk+1 → Ωk, k = 0, 1, . . . ,M − 1
Restriction: Rk : Ωk → Ωk+1, k = 0, 1, . . . ,M − 1

4. Smoothers: Sk, k = 0, 1, . . . ,M − 1

Note, that coarse grid selection and interpolation/restriction must go hand in hand and affect
each other in many ways. In the following we will use the terms interpolation and prolongation
synonymously as the operation performed by Pk, k = 0, . . . ,M .

In the first step, the setup phase, these components are constructed in algorithm 2.1. Clearly,
if the same problem has to be solved more often, the setup phase needs to be performed only
once.

Algorithm 2.1 AMG Setup Phase

1: k ← 0
2: while Ωk is big do

3: Partition Ωk into two disjoint sets Ck and Fk
4: Ωk+1 ← Ck
5: Define interpolation Pk
6: Define restriction Rk (often Rk ← (Pk)

⊤)
7: Setup Ak+1 (often Ak+1 ← RkAkPk)
8: Setup Sk if necessary
9: end while

10: M ← k
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After the setup phase is completed, the solve phase is performed recursively in algorithm 2.2.
It represents a V (m1,m2)-cycle (i.e. a V -cycle with m1 presmoothing and m2 postsmoothing
steps) which, along with other more complex variants such as a W -cycle, is described in detail
in [5, pp. 40].

Algorithm 2.2 AMG Solve Phase

1: procedure MGV(Ak, Rk, Pk, Sk, uk, fk)
2: if k == M then

3: Solve AMuM = fM with a direct solver ⊲ Coarsest level
4: else

5: Presmoothing: Apply smoother Sk m1 times to Akuk = fk
6: Coarse grid correction:

7: rk ← fk −Akuk ⊲ Residual
8: rk+1 ← Rkrk ⊲ Restrict residual
9: Call MGV(Ak+1, Rk+1, Pk+1, Sk+1,ek+1, rk+1)

10: ek ← Pkek+1 ⊲ Interpolate
11: uk ← uk + ek ⊲ Correct solution
12: Postsmoothing: Apply smoother Sk m2 times to Akuk = fk
13: end if

14: end procedure

The quality of AMG depends basically on two measures, which are both very important, but
depending on the priorities of the user, one might be of more importance than the other one:

1. Convergence factor: gives an indication on how fast the method converges
2. Complexity: affects the number of operations per iteration and the memory usage

The complexity can be understood as the cost of AMG. The geometric case has regular and
predictable costs, in terms of storage and floating-point operation count. By contrast, there
are no predictive cost analyses for AMG. This is due to the fact, that we do not know in
advance how many levels will be created and thus we do not know the ratio of coarse to fine
grid points on each level.

We distinguish between two types of complexities [5, p. 154] shown in table 2.1:

1. Grid complexity: the total number of grid points, on all grids, divided by the
number of grid points on the finest grid

2. Operator complexity: the total number of nonzero entries, in all matrices Ak, di-
vided by the number of nonzero entries in the fine grid op-
erator A = A0

Table 2.1: Complexities

The grid complexity gives an accurate measure of the storage required for the right sides and
approximation vectors and can be directly compared to geometric multigrid.

The operator complexity indicates the total storage space required by the operators Ak over all
grids. Additionally it has another use. Similarly to the geometric case, the work in the solve
phase of AMG is dominated by the relaxation and residual computations, which are directly
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proportional to the number of nonzero entries in the operator. Hence, the work of a V -cycle
turns out to be essentially proportional to the operator complexity. This proportionality is
not perfect, but operator complexity is generally considered to be a good indication of the
expense of one AMG V -cycle.

2.2 Smoother

The idea of multigrid started with a detailed analysis of classical iterative methods as solvers
for the linear system of equations

Au = f. (2.2)

In the following discussion we denote the exact solution as u and an approximation of it as
v. With this notation the error e of an approximation is defined as e := u − v. Note that if
the solution u is not known, this applies also for the error e. Furthermore we will need the
following definition.

Definition 2.1: The residual r corresponding to an approximation v of the solution u of the
linear system of equations Au = f is defined as

r := f −Av. �

If the solution of the linear system is unique, it can be shown, that r = 0 if and only if e = 0.
Moreover there is another important connection between residual and error.

Lemma 2.2: For the residual r and the error e of an approximation v of (2.2), it holds that

Ae = r. (2.3)

Proof: A substitution gives r = f −Av = Au−Av = A(u− v) = Ae. �

This equation is often called residual equation and forms the basis of most iterative solution
methods. If the approximation v is known, the following algorithm 2.3 presents the idea of
improving v iteratively.

Algorithm 2.3 One step of a general iterative solution method

1: Compute residual: r = f −Av
2: Compute approximation to error: ê approximately solves Ae = r
3: Correct approximation to solution: v = v + ê

In mathematical notation, the above algorithm 2.3 can be represented as

vk+1 = vk +M−1 (f −Avk) ,

where vk denotes the k-th approximation of the exact solution u. Examples for iterative
methods are the Jacobi or Gauß-Seidel scheme, in which the matrix M is assigned with the
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values

M = D (Jacobi),

M = D + L (Gauß-Seidel),

where A = D + L+ U and L (D) is a strict lower (upper) triangular matrix.

These methods show in general very fast convergence in the first iterations, but slow down
dramatically afterwards. This is due to the fact, that these methods reduce only high fre-
quency error components efficiently. Hence, instead of reducing the error ek = u − vk, they
only smooth the error. This explains the origin of their equivalent name smoother, which is
particularly used in the context of multigrid methods (see [41, pp. 13]). A more technical
discussion can be found in [14, pp. 49].

These basis methods can be extended by introducing the weight parameter ω ∈ [0, 2]. With
this parameter we introduce the following generalizations of the above methods:

vk+1 = vk + ωM̂−1 (f −Avk)

The iteration method changes only in the case of the Gauss-Seidel method and we get the
weighted Jacobi and the SOR (successive over-relaxation) schemes.

M̂ = D (Weighted Jacobi)

M̂ = D + ωL (SOR)

Note that for ω = 1 we get the classical methods, however a typical choice is ω = 4/3
(cf. [28, pp. 95]).

Remark 2.3: The representation formulas of the iteration steps over the residuals allows a
compact representation and simplifies the notation, but for an explicit implementation there
exist more efficient formulas. These are more technical and conceal the core ideas, but bring
advantageous in computation time and memory usage. The interested reader is referred
to [28, chapter 4] or [14]. �

2.3 Algebraic Smoothness

As the concept of algebraic smoothness is very important to AMG it is worthwhile investigat-
ing it in more detail. Here we follow the ideas of [5,27,41]. For the theoretical discussion the
system matrix A is always assumed to be symmetric and positive definite. In the following
the norms of chapter 1.3 are needed.

In geometric multigrid the most important property of a smooth error is, that it is not
effectively reduced by relaxation. This motivates a loose definition of an algebraically smooth
error as an error slow to converge with respect to a smoother S. In the following we are going
to consider the weighted point Jacobi method which can be expressed as

vk+1 ← vk + ωD−1(f −Avk) (2.4)
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where D is the diagonal of A. Here vk denotes the k-th approximation to the exact solution
u. We define the error as ek := u−vk and look at the error propagation in this scheme. Note,
that the exact solution u is a fixed point of the above iteration if ω is chosen appropriately,
i.e. u = u + ωD−1(f − Au). Subtracting the above equation (2.4) from this one we get a
relation for the error propagation:

u− vk+1 = u− vk − ωD
−1A(u− vk)

ek+1 = u− vk − ωD
−1Aek

= (I − ωD−1A)ek

= Sek

It can be shown, that the weighted Jacobi relaxation (as all smoothers), has the property that
after making great progress towards convergence, it stalls and little improvement is made with
successive iterations (see [28, chapter 4] or [24, pp. 9]). At this point we define the error to
be algebraically smooth, i.e.:

‖Sek‖H1 ≈ ‖ek‖H1 .

Depending on A, an algebraically smooth error may well be highly oscillatory in the geomet-
rical sense.

Ruge and Stüben have shown, that for typical relaxation schemes the inequality

‖Sek‖
2
H1 ≤ ‖ek‖

2
H1 − α‖ek‖

2
H2 (2.5)

holds with α > 0 (e.g. α = 0.25) [27, pp. 82]. Therefore an algebraically smooth error has to
satisfy ‖ek‖H2 ≪ ‖ek‖H1 . We are able to us this result for two important implications.

First, writing this expression in components gives

∑

i

r2
i

aii
≪
∑

i

riei.

Fixing i with the motivation of considering the result on average yields

|ri| ≪ aii|ei|.

This implies, that an algebraically smooth error can be characterized by relatively small
residuals. Despite our analysis here for the weighted Jacobi method, the Gauss-Seidel relax-
ation is more commonly used for AMG. However, a similar analysis also leads to the above
conclusion [5, p. 139].

Second, remark that the matrix D has full rank and all entries are greater than zero, because
A is a positive definite matrix. Hence we are able to take the square root of every entry and
to invert the matrix. As this matrix is trivially symmetric it is also self-adjoint. If it is clear
from the context we will write e instead of ek for easier readability. So this reasoning and the
application of the Cauchy-Schwarz inequality shows

‖e‖2H1 = (Ae, e)2 = (D−1/2Ae,D1/2e)2

≤ ‖D−1/2Ae‖2‖D
1/2e‖2

= (D−1Ae,Ae)2(De, e)2 = ‖e‖H2‖e‖H0 .
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Consequently ‖e‖H2 ≪ ‖e‖H1 implies ‖e‖H1 ≪ ‖e‖H0 . Writing the last relation more explic-
itly and using the symmetry of A again we get

(Ae, e)2
sym.
=

1

2

∑

i,j

−aij(ei − ej)
2 +

1

2

∑

i,j

aije
2
i +

1

2

∑

i,j

aije
2
j

sym.
=

1

2

∑

i,j

−aij(ei − ej)
2 +

∑

i




∑

j

aij



 e2
i ≪

∑

i

aiie
2
i (= (De, e)2) .

If we consider the important case of
∑

j 6=i |aij| ≈ aii or
∑

i aij ≈ 0, this yields, that at least
on average, the algebraically smooth error e satisfies for each i

1

2

∑

j 6=i

−aij(ei − ej)
2 ≪ aiie

2
i ,

∑

j 6=i

|aij |

aii

(ei − ej)
2

e2
i

≪ 2.

This means, that an algebraically smooth error varies generally slowly in the direction of

strong connections, i.e. from ei to ej if
|aij |
aii

is relatively large.

2.4 Coarse Grid Hierarchy

There are basically two ways of choosing a coarse grid. The first approach splits all points
into two groups: coarse points (C-points) and fine points (F -points). The C-points form
the next coarser level, while the F -points will be interpolated by these. This is the classical
approach which was mainly developed by Ruge and Stüben [27,33]. The second approach is
referred to as coarsening by (smoothed) aggregation or agglomeration and was developed by
Vaněk, Mandel and Brezina [34,35,37]. It accumulates aggregates which represent the coarse
points of the next coarser level.

Both have in common that they use a concept of strength to measure the dependencies in the
undirected adjacency graph. By this measure, a neighborhood for every point i is defined,
which is used to construct the coarse level in several steps.

We start our discussion with the approach of smoothed aggregation, because most experiments
of chapter 5 use this one as basis AMG algorithm. Compared to the classical RS coarsening,
it possesses a faster setup phase, as the coarsening is more aggressive, which results in sparser
coarse system matrices, but slower convergence, as fine nodes are interpolated from less coarse
nodes.

2.4.1 Smoothed Aggregation

Following [35] we describe in this section the construction of a system of aggregates {Aki }
nk+1

i=1

of the matrix Ak. The aggregates form a disjoint partitioning of the domain Ωk, i.e.
⋃

iA
k
i =

Ωk. In order to measure the dependencies of different nodes on each other, we give the
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following definition of strength.

Definition 2.4: A point i is strongly coupled to a point j if

|aij | ≥ θ
√

|aiiajj|.

The strongly coupled neighborhood of the node i on level k is defined as

Nk
i (θ) = {i ∈ Ωk | |aij | ≥ θ

√

|aiiajj|}

where θ ≥ 0. �

Therefore an aggregate Aki is defined by a root point î and its neighborhood Nk
î

(θ). Now
the basic aggregation procedure consists of the following three phases. First a root point,
that is not adjacent to any already existing aggregate is picked. The aggregate is defined
by the root point and all its neighbors in the above sense. This procedure is repeated until
all unaggregated points are adjacent to an aggregate. In the second phase all remaining
unaggregated points are integrated into existing aggregates, if possible. Otherwise, in the
third phase new aggregates are created for all points which are still unaggregated, which is
done in the same manner as in phase one. Algorithm 2.4 describes this procedure.

Experiments have shown that step 3 is typically not performed, because R = ∅ after step 2.

In the following we discuss the individual steps in more detail and point out where paral-
lelization can be used to enhance the performance. As a shorthand we refer to the strongly
coupled neighbors as neighbors only.

Before the algorithm starts the neighborhoods Nk
i (θ) must be constructed. In a first step the

diagonal elements are extracted from Ak. Then above condition is checked for every element
aij . As the matrix Ak is a sparse matrix, the computed neighbors are best stored in a sparse
format too. Therefore we use an adapted CSR-format (cf. section 1.2) without the vector AA
to store real values. Hence the neighbors of node i are JA(l), l = IA(i), . . . , IA(i + 1) − 1.
Due to the sparse structure of the matrix, this needs only O(nk) operations.

As a second data structure we introduce the vector Mk of length nk. It maps every node i
to its aggregate, which is identified by a unique number (in algorithm 2.4 j counts the total
number of aggregates). The first aggregate starts with 1, we use 0 to mark unaggregated
entries and nk + 1 to mark isolated points. A node i is an isolated point, if the number of
elements in row i of matrix Ak is equal one.

Mk(i) :=







j, i ∈ Akj ,

0, i ∈ R,

nk + 1, i isolated point.

(2.6)

Parallel 2.5: With the right data structure, most parts can be performed in parallel. First
every row is scanned for the diagonal entries which are stored in vector of length nk. Second
the number of neighbors in each row is computed using this information. Finally, the array
of neighbors is initialized in parallel (see point 2 in section 1.6.2). �

27



Algorithm 2.4 Aggregation

1: Initialization:

2: R← {i ∈ Ωk | N
k
i (0) 6= {i}}

3: j ← 0
4: Step 1 - Startup aggregation:

5: for all i ∈ R do

6: if Nk
i (θ) ⊂ R then

7: j ← j + 1 ⊲ New Aggregate
8: Akj ← Nk

i (θ)

9: R← R \ Akj
10: end if

11: end for

12: Step 2 - Enlarging the decomposition sets:

13: for all l ≤ j do

14: Ākl ← A
k
l ⊲ Copy

15: end for

16: for all i ∈ R do

17: for all z ≤ j do

18: if Nk
i (θ) ∩ Ākl 6= ∅ then

19: Akl ← A
k
l ∪ {i} ⊲ Add to existing aggregate

20: R← R \ {i}
21: break
22: end if

23: end for

24: end for

25: Step 3 - Handling remnants:

26: for all i ∈ R do

27: j ← j + 1 ⊲ New Aggregate
28: Akj ← Nk

i (θ) ∩R

29: R← R \ Akj
30: end for

In the following we are going to discuss each step individually:

Init.: The set R is represented by all entries equal to 0 in Mk. It is created during the
setup of the neighborhoods.
Complexity: O(nk)

Step 1: If an element i has not been aggregated yet (i.e. Mk(i) == 0), we check if all
neighbors are still members of R (i.e. Mk(j) == 0, ∀j ∈ Nk

i (θ)).
Complexity: O(nk) due to sparsity of Ak

Step 2: As the vector Mk uses only positive integers to indicate aggregates, we can use the
negative numbers of aggregates to save newly added elements during this phase.
By this strategy memory and computation time are saved because the aggregates
Akl , l = 1, . . . , j do not need to be copied. At the end we take the absolute value
of Mk to merge newly added elements with existing sets.
Complexity: O(nk)

Step 3: Similar to step 1 but often not even needed because R = ∅ after step 2.
Complexity: O(nk)

28



Parallel 2.6: Most steps can be performed only sequentially as the aggregation depends on
the previously aggregated elements. Only step 2 can be performed in parallel, as it does not
create new aggregates and the sets are not changed during the iterations. �

The disadvantage of storing the aggregates in an array is that if only the elements of one
specific aggregate are needed, all nk elements must be checked. To increase the performance
it is advisable to group elements at the end according to their aggregate number.

2.4.2 Classical RS-Coarsening

The classical coarsening strategy is usually called RS (Ruge-Stüben) approach. We are going
to follow the explanation of [45, pp. 214], a more detailed description can be found in [33,
pp. 472].

In contrast to the last approch of smoothed aggregation, the basic idea is to split all nodes
into two disjoint sets Ω = C ∪ F . The C-points represent the degrees of freedom of the next
coarser grid, while the F -points will be interpolated by the C-points. In order to obtain this
splitting we need a concept of strength to identify matrix coefficients which have a stronger
influence than others.

Definition 2.7: A point i strongly depends on a point j or the point j strongly influences a
point i if

−aij ≥ θmax
l 6=i
{−ail} ,

where 0 < θ ≤ 1.

Denote by Si the set of points that strongly influence the point i and by S⊤
i the set of points

that strongly depend on the point i, i.e.

Si = {j ∈ Ωk | − aij ≥ θmax
l 6=i
{−ail}},

S⊤
i = {j ∈ Ωk | − aji ≥ θmax

l 6=j
{−ajl}}. �

Remark 2.8: Definition 2.7 was originally motivated by the assumption that A is a sym-
metric M -matrix, i.e. a positive definite matrix with non-positive off-diagonal elements, but
it can be applied to a more general class of matrices as well [45, p. 214]. �

The initial selection of coarse grid points is guided by the following two heuristics [5, p. 146]:

(H1) For each F -point i, every point j ∈ Si, that strongly influences i, j is either a C-point
or it strongly depends on a C-point l that also strongly influences i, i.e. l ∈ Si.

(H2) The set of C-points should be a maximal subset of all points with the property, that no
C-point strongly depends on another C-point.

Heuristic (H1) ensures the quality of interpolation and heuristic (H2) should restrict the size
of the coarse grids. In general it is impossible to fulfill both conditions, which is why we
choose to enforce (H1), while (H2) serves as a guideline.
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Now we are able to describe the coarsening algorithm, which proceeds in two passes. In the
first pass C- and F -points are generated in such a way, that there are enough C-points for
interpolation but as little as possible, to minimize the complexity. Algorithm 2.5 describes
the first pass. In the initialization phase each point i is assigned a measure λi, which equals
the number of points that are strongly influenced by i. Then the C/F -splitting starts. First a
point with a maximal λi is selected as coarse point. Note that in general there will be several
and each choice could generate a different coarse grid. Then all points that strongly depend
on i become F -points (i.e. S⊤

i ). For all points j that strongly influence these new F -points,
their measure λj is increased by the number of new F -points that are strongly influenced by
them. This increases their chances of becoming a C-point. The first pass finishes, when all
points are either C- or F -points.

Remark 2.9: The measure λi can be interpreted as a “measure of importance”, as it de-
termines which node should become the next C-point. Instead of the chosen λi = |S⊤

i | any
reasonable formula can be applied. A different suggestion is λi = |S⊤

i ∩R|+ 2|S⊤
i ∩F |, where

R is like in algorithm 2.5, at any stage the current set of undecided nodes [33, p. 474]. �

Algorithm 2.5 RS Coarsening, First pass

1: Associate every point i with a measure λi ← |S
⊤
i |

2: R← Ω, C ← ∅, F ← ∅
3: while R 6= ∅ do

4: Select point i ∈ R with λi = maxj 6=i λj
5: C ← C ∪ {i} ⊲ New coarse node
6: for all j ∈ S⊤

i do

7: F ← F ∪ {j} ⊲ New fine node
8: λl ← λl + |S⊤

l | for all l ∈ Sj ⊲ Increase chances of becoming C-point
9: end for

10: R← R \ (S⊤
i ∪ {i})

11: end while

The second pass enforces condition (H1) by examining all strong F -F connections for common
coarse neighbors and if heuristic (H1) is not satisfied new C-points will be added. It is
described in detail in algorithm 2.6. Note that the choice of j as the new C-point in line 4 is
arbitrary and could be replaced by node l. In that case leaving the inner loop in the next line
is not allowed. The second pass is necessary, because strong connections between F -points
without common C-point as neighbor worsen interpolation and therefore convergence.

Parallel 2.10: RS coarsening works very well for many applications, but it is in its nature
an inherently sequential algorithm. Only the computation of the dependence sets Si and S⊤

i

and the initialization phase of the first pass, can be performed in parallel. �

The second pass often generates too many C-points and leads to large complexities and
inefficiency. Hence, condition (H1) is modified to the following [45, p. 215]:

(H1′) Each F -point i needs to strongly depend on at least one C-point j.
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Algorithm 2.6 RS Coarsening, Second pass

1: for all j ∈ F do

2: for all l ∈ Sj ∩ F do ⊲ Strong F -F -connection
3: if Sj ∩ Sl ∩ C = ∅ then

4: F ← F \ {j} and C ← C ∪ {j} ⊲ New coarse node
5: exit ⊲ Now j /∈ F anymore
6: end if

7: end for

8: end for

Only the first pass of the RS coarsening fulfills this requirement. We call this method weaker
RS coarsening. Yet another method in order to reduce complexities is aggressive coarsening,
where condition (H1) is weakened to allow longer connections and not look at direct neighbors
only [33, pp. 472].

The disadvantage of all previously mentioned methods is their sequential nature. Hence,
generalizations for parallel architectures have been considered, like CLJP , RS0 and RS3
coarsening. As the focus of this work lies on an optimization of AMG for higher-order dis-
cretizations rather than on efficient classical AMG algorithms, these optimizations are not
considered any further. The interested reader is referred to [33, chapter 7] or [15, p. 160-165].

2.5 Interpolation

Interpolation in AMG is used to transfer (prolongate) an error from a coarse level to the next
finer level. The usual procedure is to use the same value as on the coarse level for C-points and
represent F -points as a linear combination of C-points. This means for the i-th component
of the interpolation operator applied on the error e

(

P hHe
)

i
=

{

ei, if i ∈ C,
∑

j∈C wijej , if i ∈ F,

where wij denotes the interpolation weight, which has to be determined. The choice of
interpolation weights depends on the chosen interpolation algorithm. In general we have to
distinguish between interpolation for the smoothed aggregation approach and the classical
methods. The smoothed aggregation algorithm builts a so called tentative prolongator of the
above structure and applies a smoothing algorithm on it. By doing so the above structure
does not hold any more for the final interpolation operator.

The basis for all interpolation schemes is an algebraically smooth error, which main charac-
teristic is that the residual is small: r ≈ 0 (see section 2.3). Hence, the residual equation
(2.3) implies Ae ≈ 0 and therefore the ith component of the error can be approximated as

aiiei +
∑

j∈Ni

aijej ≈ 0, (2.7)

where Ni is the set of all neighboring points of i. The interpolation weights are then set, so
that the interpolation is as good as possible. Note, that for the interpolation from a coarse
level only the C-points, and not all members of Ni, are available.
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2.5.1 Interpolation for Smoothed Aggregation

In [34] a construction scheme for prolongators is introduced, which is extended and analyzed
in more detail in [37]. Additionally, [36] gives an optimization method for the strategy of
smoothed prolongation which turns out to be a generalization of the previous methods. In
the applications of chapter 3 only the case of scalar equations is needed, to which we limit
this discussion which is mostly orientated on the summary in [41].

In section 2.4.1 we constructed aggregates {Aki }
nk+1

i=1 for a given level k starting from the
system matrix Ak ∈ R

nk×nk . Now we want to create a hierarchy of tentative prolongators
(prolongation operators) Y k

k+1 : Ωk+1 → Ωk such that for a given test vector t0 ∈ R
n0

t0 ∈ ran (Y 0
l ), Y 0

l = Y 0
1 Y

1
2 · · ·Y

k
k+1, Y 0

0 = I, k = 0, . . . ,M − 1. (2.8)

A typical example for t0 is t0 = (1, . . . , 1)⊤ (what we are going to use) or t0 = ker(A). The
idea behind this choice is to ensure the exact interpolation of certain vectors. The interested
reader is referred to [39,40] where similar so-called test vectors have been introduced.

We are going to construct a vector tk+1 and the prolongator Y k
k+1 with the relation

Y k
k+1tk+1 = tk,

where tk has been constructed during the setup of Y k
k+1 or is given for k = 0. This implies

for (2.8)

Y 0
l tl = t0.

In the more complex case of systems of partial differential equations, the test vectors tl become
matrices [37].

Every column of the tentative prolongator Y k
k+1 is associated with one aggregate Aki , as every

aggregate gives rise to one degree of freedom on the coarse grid. It is formed by restriction
of the corresponding rows of tk onto the aggregate Aki and is visualized in figure 2.3. For
simplicity we assume that the fine level unknowns are numbered by consecutive numbers
within each aggregate. This assumption may easily be obtained by possible renumbering.
The detailed algorithm 2.7 follows.

Algorithm 2.7 Construction of tentative prolongator

1: Partition the vector tk ∈ R
nk into nk+1 blocks tik, i = 1, . . . , nk+1

2: qik ←
ti
k

‖ti
l
‖

3: (tk+1)i ← ‖t
i
k‖

4: Construct Y and tk+1:

5: Y ←






q1
k

. . .

q
nk+1

k




, tk+1 ←







(tk+1)1
...

(tk+1)nk+1







We use the tentative prolongators to define the final transfer operators Pk and Rk, k =
0, . . . ,M − 1.

Pk = ZkY
k
k+1 Rk = (Pk)

⊤
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q1
k

q2
k

q3
k

t1
k

t2
k

t3
k

=

(tk+1)1

(tk+1)2

(tk+1)3

tk+1

Y k
k+1tk

nk

nk+1

Figure 2.3: Structure of tentative prolongator Y k
k+1

Here Zk denotes a smoothing operator for Y k
k+1. There are many choices for this operator.

In [37] the following form is used to perform a convergence analysis:

Zk = I −
4

3λ̄Wk
W−1
k Ak

Wk =
(

Y 0
k

) (

Y 0
k

)⊤
, λ̄Wk ≥ ρ(W−1

k Ak)

Furthermore they show that for system matrices A produced by a finite element discretization
of an elliptic partial differential equation

λ̄Wk = 9−kλ̄

is a possible choice, where λ̄ ≥ ρ(A) is an upper bound for the spectral radius of A.

We are going to follow the original suggestions which were proposed in [35]. As a smoothing
operator a simple damped Jacobi smoother

ZK = I − ωD−1AFk (2.9)

is used. AFk = (aFij) is the filtered matrix given by

aFij =

{

aij, if j ∈ Nk
i (θ),

0, otherwise.

}

if i 6= j, aFii = aii +
nk∑

j=1
j 6=i

(

aij − a
F
ij

)

, (2.10)

where D denotes the diagonal of Ak and Nk
i (θ) is given by definition 2.4.

Parallel 2.11: As a first fact note, that the filtered matrix AFk will be a sparse matrix. We
are going to use the notation introduced in chapter 1.2.

In order to setup AFk we need the neighborhoods Nk
i (θ) first. These have been computed

already for algorithm 2.4 to perform the aggregation procedure. According to the definition
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in (2.10) the nonzero structure of AFk is completely determined by these neighborhoods. Hence
we are able to allocate exactly the needed memory without any further computation.

The neighborhoods have been saved in a sparse format, similar to the one of a sparse matrix.
It follows, that the nonzero structure of matrix AFk is given by the vectors JA and IA of
the neighborhood data structure. Hence, we do not need to recompute this information and
receive full knowledge over every position in this matrix.

Thus, the last step, the actual computation of the values in algorithm 2.8 stored in this
vector AA can be performed completely in parallel and without any further preparatory
computation. Every row can be computed in parallel as it is independent of any other. �

Algorithm 2.8 Setup of filtered matrix AFh

1: AFh ← 0
2: for i ← 1 to nk do ⊲ All iterations can be performed in parallel
3: s← 0 ⊲ Sum for weak neighbors in row i
4: for all j with aij 6= 0 do

5: if j ∈ Nk
i (θ) then

6: aFij ← aFij + aij ⊲ Strong neighbor
7: else

8: s← s+ aij ⊲ Weak neighbor
9: end if

10: end for

11: aFii ← aFii + s ⊲ Correct diagonal element
12: end for

After the setup of the filtered matrix AFk we are able to apply formula (2.9). We give an
algorithm to construct the restriction operator Rk because our implementation needs this
operator as an input. Formula (2.9) transforms to

Rk = Pk
⊤ = Y k

k+1
⊤
(

I − ωD−1AFk

)⊤
.

Let Y k
k+1 = (y1, . . . , ynk+1), where yi = (0, . . . , 0, qik, 0, . . . , 0)

⊤
is the i-th column vector of

Y k
k+1. Then the i-th row ri of Rk is given by

ri = (yi)
⊤
− ω

(

D−1AFk y
i
)⊤

Therefore the smoothing process can be split in single tasks. The outermost subtraction and
the multiplication with the constant ω can be performed individually, hence in parallel for
every row. The diagonal values in D can be computed within algorithm 2.8 by an additional
if-clause after line 6. The most involved task is the matrix-vector multiplication. Due to the
special structure of the column vectors of Y kk+1, this process can be highly optimized.

The matrix Y k
k+1 has only nk different nonzero values and here again every row has exactly

one. Hence, the matrix-matrix multiplication, can be interpreted and performed as a matrix-
vector multiplication, as every entry of the matrix AFk multiplies with exactly one nonzero
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value of the matrix Y k
k+1 only. Thus, Y k

k+1 can be interpreted as a vector q ∈ R
nk , where qi is

the nonzero value in row i of Y k
k+1.

The difficulty lies in the fact, that all matrices are stored in the CSR format (see chapter
1.2) and in particular in the fact, that they are saved row by row. Therefore computing the
transposed matrix is quite expensive and we want to combine the computation of the values
and the transposition into one operation. To do so we are able to exploit the previously
mentioned structure. Let us consider the following example first, which explains the key
ideas.















a1 a2 a3 . . .
b1 b2 b3 . . .
...

...















q1

q2

q3

q4

q5



















⊤

=






a1q1 + a2q2 a3q3 + a4q4 + a5q5 . . .
b1q1 + b2q2 b3q3 + b4q4 + b5q5 . . .

...
...






⊤

=






a1q1 + a2q2 b1q1 + b2q2 . . .
a3q3 + a4q4 + a5q5 b3q3 + b4q4 + b5q5 . . .

...
...






Here we see, that every a/b-value multiplies with exactly one q-value only and note, that the
a-values of the first row influence only values of the first column in the result. The same
statement holds for the b-values of the second row. Note, that due to the sparsity of AFk and
Y k
k+1 most entries of the matrix-matrix product will be zero. Therefore, as a first step, we

count the number of entries per row, by checking for every entry, if at least one a/b-value and
one q-value not equal to zero multiply with each other. Due to the sparsity and the above
mentioned fact, this task can be performed in O(nk) operations. With this information we
define the vector IAR of Rk, which marks the start of every row.

The actual multiplication is then done by iterating over all entries of AFk , multiplying them
with the corresponding q-value and adding them to their predefined position. In the following
algorithm 2.9 we will need the data structure Mk defined in (2.6), which maps every node to
its aggregate number.

Algorithm 2.9 Matrix-Matrix product AFh Y
k
k+1 to setup restriction operator Rk

1: Rk = (rij)nk×nk+1
← 0

2: for i ← 1 to nk do

3: for all j with aFi,j 6= 0 do

4: if Mk(j) ≤ nk then ⊲ Mk(j) = nk + 1 for an isolated point
5: rMk(j),i ← rMkj,i + aFi,j ·

qi

aii

6: end if

7: end for

8: end for

Note, that algorithm 2.9 is a serial algorithm, which is because we are dealing with a sparse
matrix in the CSR format. Every row can grow in each iteration, and it is not known
beforehand, which iterations will influence which rows. Despite that, the algorithm is still
very efficient, as it needs the minimal number of operations to compute the matrix-matrix
product. It would be possible to compute the interpolation operator Pk in parallel, but in
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order to obtain the restriction operator Rk, the previous one would need to be transposed,
which results in similar steps as above and in the same complexity. Hence this strategy would
be less efficient.

Remark 2.12: Experiments show that the application of algorithm 2.4 to uniformly elliptic
problems results usually in a coarsening by a factor of 3 in each dimension. In this case the
filtration (2.10) has little or no effect. In the case of anisotropic problems, the application
of the smoother with the unfiltered matrix would make the supports of the basisfunctions
overlap extensively in the direction of weak connections. Here the filtration prevents these
undesired overlaps. The special treatment of the diagonal entries ensures, that the sum of
entries in a row of AFk is zero whenever the sum of the entries in the corresponding row of
A is zero. Hence, for the choice of a constant test vector t0 = (1, . . . , 1), a constant remains
in the local kernel of AFk at every point where a constant is in the local kernel of Ak. This
ensures certain requirements for an efficient and robust AMG algorithm, developed in [35].
We are not going to pursue a detailed discussion of these requirements, as the aim of this
work is not so much in the mathematical theory but rather in its numerical implementations
and experiments. �

Example 2.13: Consider the standard one dimensional model problem

Au = f, A = [−1 2 − 1], A ∈ Rn×n,

resulting from the discretization of a one dimensional Laplace operator. If the damped Jacobi
smoother

S = I −
2

3
D−1A, D = diag(A),

with damping factor ω = 2/3 is applied to the vector ϑ = (0, . . . , 0, 1, 1, 1, 0, . . . , 0)⊤ we get
the smoothed vector

Sϑ = ϕ = (0, . . . , 0,
1

3
,
2

3
, 1,

2

3
,

1

3
, 0, . . . , 0)

⊤

.

The vectors ϑ and ϕ can be interpreted as discretizations of coarse grid basisfunctions. The
effect of smoothing these vectors is shown in figure 2.4. As mentioned above, this strategy
reduces the number of degrees of freedom on the coarse grid to approximately 1/3 com-
pared to the number of fine grid points. Note, that the prolongation induced by the vectors
(0, . . . , 0, 1/2, 1, 1/2, 0, . . . , 0)⊤ which are discrete versions of the standard 1D linear basis-
functions leads to a coarsening of about 1/2. �

Numerical experiments have shown that the suggested parameters

θ = 0.08 · 2−k and ω =
2

3

achieve in general a reasonable balance between coarsening and interpolation. The choice of
a fixed θ for all levels, results in general in two slow coarsening on lower levels. But many
problems are very sensible to these values and require an independent analysis.
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Figure 2.4: Smoothed basisfunctions

2.5.2 Direct Interpolation

Direct interpolation is one implemented approach, which applies in the case that the C/F -
splitting has been constructed by means of classical coarsening procedures like RS coarsening
[45, p. 223], [33, p. 479]. The idea behind this procedure is, that influences from F -points
can be neglected and that interpolation can be done from neighboring C-points only. In the
easiest case weights are defined as

wij = −

( ∑

l∈Ni
ail

∑

m∈Ci
aim

)

aij
aii
,

where Ci = C ∩Ni are the coarse neighbors of point i.

This approach can be improved by distinguishing between positive and negative matrix ele-
ments. Therefore we define the following notation

a+
ij =

{

aij, if aij > 0,

0, otherwise,
a−
ij =

{

aij , if aij < 0,

0, otherwise.

Additionally we define the set of interpolatory points Pi for point i as Pi := Ci∩Si, where Si is
defined like in definition 2.7. The definition of positive and negative connections is canonically
extended onto sets, i.e. P+

i and P−
i . Now we give a variant of the direct interpolation, whose

implementation showed better convergence properties in most performed experiments.

wij =

{

−αi aij/aii, for j ∈ P−
i ,

−βi aij/aii, for j ∈ P+
i ,

with

αi =

∑

l∈Ni
a−
il

∑

m∈Pi
a−
im

and βi =

∑

l∈Ni
a+
il

∑

m∈Pi
a+
im

.
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If P+
i = ∅, this formula is modified, such that we set βi = 0 and add all positive entries, if

there are any, to the diagonal.

Note, that for M -matrices (compare remark on page 29) both procedures will be equivalent.
Since the formulas involve only direct connections of the variable i, this approach is referred
to as direct interpolation.

This method obviously only makes sense if the interpolation of F -points from C-points only
is reasonably good. This has to be guaranteed by the used coarsening method, otherwise
interpolation and therefore convergence will deteriorate. This problem is a motivation for the
definition of strong and weak connections for points with big or small influence. The idea is
that strongly influencing points become C-points and guarantee a good interpolation.

Parallel 2.14: The rather simple structure of the formulas, enables a straightforward parallel
implementation, which somehow compensates the loss in convergence for certain problems.
However, our implementation in maiprogs requires the restriction instead of the interpolation
matrix. Because this matrix is saved in the CSR format, it requires more effort to implement
it in parallel, since the matrix is created column by column (compare algorithm 2.9). As our
main AMG algorithm is the method of smoothed aggregation, we do not consider this case
here. �

2.5.3 Standard Interpolation

In order to achieve better convergence, more information has to be used. The problem
of direct interpolation are strong F -F -connections, as it is assumed, that all F -points can
be interpolated well enough from C-points only. Standard interpolation works like direct
interpolation but eliminates components of strongly influencing F -points in formula (2.7)
first by approximating these with the j-th equation

ej = −
∑

l∈Nj

ajl
ajj

.

This results in a new equation for ei:

âiiei +
∑

j∈N̂i

âijej ≈ 0, with N̂i := {j 6= i | âij 6= 0}

Defining the interpolatory set Pi as the union of Ci∩Si and all Cj ∩Si where j ∈ F ∩Ni∩Si,
we now define interpolation exactly as for direct interpolation with all as replaced by âs and
Ni replaced by N̂i.

Standard interpolation leads to very good convergence, but the computation of the extended
neighborhoods results in higher setup times.

Parallel 2.15: The computation of the new matrix Â = (âij) can be mostly done in parallel.
Otherwise the the discussion at direct interpolation applies. �
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Chapter 3

Higher-Order Finite Element

Discretizations on Quadrilaterals

Multigrid methods can be split into two approaches: the geometric-based approach and the
algebraic approach (see figure 2.1). In this chapter we consider a hybrid method which can
be seen as an algebraic multigrid algorithm based on geometric considerations. We follow the
ideas of Shu et al. who introduced this ideas for triangulations [31] and extend them onto
domains discretized by quadrilaterals. This approach is used to solve algebraic systems which
arise from the discretization of second order elliptic partial differential equations obtained by
high-order finite element discretization using Lagrangian finite elements or any hierarchical
basis in two spacial dimensions.

Lagrangian finite elements of different orders are very popular choices for finite element bases.
They are naturally defined on a mesh of triangles or quadrilaterals in which a definition can
be found in section 1.4.

3.1 A Hybrid Method

The development of classical algebraic multigrid (AMG) methods was mainly focused on
bilinear elements and they are much more efficient for these than for higher-order elements.
One main reason for the higher efficiency when using bilinear elements is that the algebraic
mesh graph corresponding to the stiffness matrix is very similar to the geometric mesh graph.
This property is lost when using higher-order finite elements which lead to more dense stiffness
matrices, and consequently to a more complicated coarsening process (cf. [16], [17], [43]).

The main idea is to reveal hidden geometric information of the stiffness matrix in order to
algebraically construct the bilinear finite element stiffness matrix as first coarsening step and
then apply the classical AMG method on the retrieved matrix. This process can be interpreted
as a two-level method in which the coarse space is a bilinear finite element space. The main
step in our algorithm is the identification of the bilinear finite element subspace by algebraic
means only, but using further geometric information about the discretization.

Compared to the classical AMG a less algebraic method is obtained in the sense that more
a-priori knowledge is necessary than the linear algebraic system all alone. In particular we
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need to know

1. the type of the finite element space (i.e. biquadratic or bicubic) and

2. what type of basisfunctions are used in generating the stiffness matrices.

The goal is to use as little information as necessary in order to improve a given AMG solver
by exploiting the high efficiency of the classical AMG methods on bilinear finite element
spaces. This can be compared with the core idea of multigrid to utilize the excellent error
damping properties of classical smoothers on high frequency errors via introducing hierarchies
of coarser grids.

3.2 Biquadratic Lagrangian Finite Elements

In the following we are going to follow the structure of [31] who described the technical results
for the case of triangles.

Let Rh be the underlying quadrilateral partition of the domain Ω as for example shown in
figure 3.1a. The problem (1.1) is discretized by a quadratic Lagrangian FEM basis and results
in the following discrete version

A2
hu

2
h = f2

h (3.1)

where A2
h = (aij)i,j∈I , u

2
h = (ui)i∈I and f2

h = (fi)i∈I with I = {1, . . . , N} and N denotes the
number of freedom in above equation (3.1).

As an input to our algorithm we need the stiffness matrix A2
h, the right hand side vector f2

h

plus the knowledge of the degree p = 2 and the fact that nodal basisfunctions have been used.
The first step is to split the nodes into three classes:

Definition 3.1: All vertices of the grid which do not lie on the Dirichlet boundary are called
type-a nodes, the mid points of the edges which do not lie on the Dirichlet boundary are
defined as type-b nodes and the mid points of the elements are defined as type-c nodes (see
Fig. 3.1b). The sets of all type-a, type-b and type-c nodes are denoted by Xa, Xb and Xc,
respectively and Na, Nb and Nc are the cardinalities of theses sets. �

Remark 3.2: In the case of triangles two types of nodes (type-a and type-b) are sufficient,
due to the fact that the mid point of a quadrilateral element is the mid point of the longest
side of the triangle in that case and therefore a type-b node (cf. [31]). �

As all nodes are considered it follows that N = Na + Nb + Nc. With these definitions we
divide the set S of all indices in (3.1) into the following three subsets where xi is the node
related to the component ui:

Sa = {i | i ∈ S, xi ∈ Xa}, Sb = {i | i ∈ S, xi ∈ Xb}, Sc = {i | i ∈ S, xi ∈ Xc} (3.2)
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(a) The grid Rh

b b

b b

a ba

b

c

(b) Nodes in V 2
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(c) Nodes in V 1

h

Figure 3.1: Type-a, type-b and type-c nodes on quadrilateral elements

As mentioned in chapter 1.1 let V 2
h be the biquadratic Lagrangian finite element space on the

grid Rh and {φi}i∈S be the corresponding nodal basisfunctions which satisfy

φi(xj) = δi,j ∀i, j ∈ S. (3.3)

The nodal basisfunctions {φi}i∈S of the biquadratic Lagrangian finite element space, are in
the same manner divided into three groups which will be represented by the vectors Φa =
(φi1 , . . . , φiNa

)⊤, Φb = (φj1 , . . . , φjNb
)⊤ and Φc = (φk1 , . . . , φkNc

)⊤ for all ip ∈ Sa, jq ∈ Sb and
kr ∈ Sc. This gives rise to the following matrix notation:

a(Φa,Φa) := (aij)i,j∈Sa
, a(Φa,Φb) := (aij)i∈Sa,j∈Sb

, a(Φa,Φc) := (aij)i∈Sa,j∈Sc
,

a(Φb,Φa) := (aij)i∈Sb,j∈Sa
, a(Φb,Φb) := (aij)i,j∈Sb

, a(Φb,Φc) := (aij)i∈Sb,j∈Sc
,

a(Φc,Φa) := (aij)i∈Sc,j∈Sa
, a(Φc,Φb) := (aij)i∈Sc,j∈Sb

, a(Φc,Φc) := (aij)i,j∈Sc
.

The interactions of basisfunctions corresponding to a certain class of nodes is represented by
these nine parts of the stiffness matrix A2

h. After possible reordering this interplay can be
seen in the stiffness matrix which is a first step in revealing the hidden geometric information:

A2
h =






a(Φa,Φa) a(Φa,Φb) a(Φa,Φc)
a(Φb,Φa) a(Φb,Φb) a(Φb,Φc)
a(Φc,Φa) a(Φc,Φb) a(Φc,Φc)




 . (3.4)

As a first step we introduce the bilinear finite element space V 1
h on the grid Rh with the corre-

sponding nodal basisfunctions {ψi}i∈Sa (see Fig. 3.1c) as the coarse space of the biquadratic
finite element space V 2

h . The nodal basisfunctions satisfy

ψi(xj) = δi,j ∀i, j ∈ Sa. (3.5)

Due to V 1
h ⊂ V

2
h we are able to represent every basisfunction of V 1

h as a linear combination of
basisfunctions of V 2

h . Using (3.3) and (3.5) and the compact support properties of {ψi}i∈Sa

all we need to find are the nodal values of the bilinear basisfunctions at the interpolatory
nodes of type-a, type-b and type-c. A straightforward calculation gives

ψi(x) = φi(x) +
1

2

∑

j∈S
b1
i

φj(x) +
1

4

∑

k∈S
c1
i

φk(x), i ∈ Sa, (3.6)
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where Sb1
i := {j | ψi(xj) 6= 0, j ∈ Sb} ⊆ Sb and Sc1

i := {k | ψi(xk) 6= 0, k ∈ Sc} ⊆ Sc are the
interpolatory sets of type-b and type-c nodes, respectively, for the type-a node i. This is also
visualized in the following figure 3.2.

(a) Bilinear basisfunction

b b

b b
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00

(b) Values at interpolatory nodes

Figure 3.2: Interpolation of bilinear from biquadratic basisfunctions

In the same way as for the biquadratic basisfunction φi(x) we define Ψ := (ψi1 , . . . , ψiNa
)⊤,

ip ∈ Sa. Hence we can write the last equation in matrix form

Ψ = PHh






Φa

Φb

Φc




 , (3.7)

where PHh is a Na ×N -matrix.

This operator defines our restriction operator from V 2
h to V 1

h and we choose P hH := (PHh )
⊤

as our prolongation operator from V 1
h to V 2

h . The coarse grid operator is constructed using
(3.4), (3.7) and the Galerkin condition:

A1
h := (a(Ψ,Ψ)) = PHh A

2
hP

h
H (3.8)

This enables us to construct a two-level algorithm for solving the linear system (3.1):

Algorithm 3.1 Two-Level Algorithm for the biquadratic Lagrangian FEM-Equation

1: Presmoothing: uh ← uh + S(f −A2
huh), j = 1, . . . ,m1

2: Solving the coarse equation: eh,1 ← (A1
h)−1PHh

(
f −A2

huh
)

3: Correcting: uh ← uh + P hHeh,1
4: Postsmoothing: uh ← uh + S(f −A2

huh), j = 1, . . . ,m2

Interpolatory Sets

In order to apply algorithm 3.1 we need to find the interpolatory sets Sb1
i and Sc1

i , which
depend on the sets Sa, Sb and Sc. Hence, we have to solve the following two problems:

Problem Q1: Find the sets Sa, Sb and Sc from the coefficient matrix A2
h.

Problem Q2: Find the interpolatory sets Sb1
i and Sc1

i for any fixed i ∈ Sa.
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3.2.1 Algorithm for Problem Q1 – Find Sa, Sb and Sc

In the following, if not explicitly stated, for the indices i, j, k it holds that i ∈ Sa, j ∈ Sb and
k ∈ Sc. First we introduce index sets as defined below where suppφi denotes the support of
function φi.

Si = {l | suppφi ∩ suppφl 6= ∅, l 6= i, l ∈ S}

Sbi = {l | suppφi ∩ suppφl 6= ∅, l ∈ Sb}

Sci = {l | suppφi ∩ suppφl 6= ∅, l ∈ Sc}

Rj = {l | suppφi ∩ suppφl 6= ∅, l 6= j, l ∈ S}

Rbcj = {l | suppφi ∩ suppφl 6= ∅, l 6= j, l ∈ Sb ∪ Sc}

Ek = {l | suppφi ∩ suppφl 6= ∅, l 6= k, l ∈ S}

Ebck = {l | suppφi ∩ suppφl 6= ∅, l 6= k, l ∈ Sb ∪ Sc}
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(a) Neighbors of xj ∈ Xb
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(b) Neighbors of xk ∈ Xc

Figure 3.3: Maximal Number of neighbors for elements of Xb and Xc;
(a): Rbcj ={7, 8, . . . , 14}, Rj={1, 2, . . . , 14}, (b): Ebck ={5, 6, 7, 8}, Ek={1, 2, . . . , 8}

Additionally we give the following definitions.

Definition 3.3: An edge is called an interior edge if its two vertices do not belong to the
Dirichlet boundary. If an edge has only one vertex on the Dirichlet boundary, then we call it a
half-interior edge. If four edges of an element in Rh are all interior edges, then this element is
called an interior element otherwise boundary element. For a given node xi ∈ Xa an element
is called a neighboring element of xi, if xi is a vertex of the element. �

Furthermore we assume that for the given grid Rh every element has at least one type-a node
(i.e. not all four vertices on the Dirichlet boundary) and that every node in Xa fulfills at least
one of the following assumptions.

Assumption 3.4: There exists at least one interior element of the node xi ∈ Xa and

(1) two other neighboring elements which possess in total at most two half-interior edges,
(2) at least three other neighboring elements. �
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Figure 3.4: Minimal number of neighbors for elements of Xa under Assumption 3.4 for p = 2

Under the Nonzero Assumption 1.2, for any i ∈ Sa, j ∈ Sb and k ∈ Sc, |Si| + 1, |Rj| + 1
and |Ek|+ 1 are exactly the nonzero entries of the i-th, j-th and k-th row in the matrix A2

h,
respectively.

Combining implication (1.3) of the Nonzero Assumption 1.2 and the compact support prop-
erties of the basisfunction φi we are able to split the set S into the two groups of type-a nodes
and type-b/c nodes. This is done by counting the neighbors in Fig. 3.3a and Fig. 3.4.

Proposition 3.5: For a given grid Rh, under the Nonzero Assumption 1.2, we have

|Si| ≥ 15, for any i ∈ Sa

and

|Rj | ≤ 14, for any j ∈ Sb,

|Ek| ≤ 8, 0 for any k ∈ Sc.

Therefore we are able to uniquely identify type-a nodes among all other nodes, by only
algebraic means.

Criterion 3.6: For any index i ∈ S, if there are more than 15 nonzero entries in the row i
of the matrix A2

h, then the node xi related to the index i is a type-a node. �

In the same way as in [31] we introduce a flag array Ia(k), k = 1, . . . , N for the matrix A2
h,

which satisfies

Ia(k) :=

{

1, xk ∈ Xa,

0, xk ∈ Xb ∪Xc.

Parallel 3.7: By criterion 3.6 the process of checking if a row i corresponds to a type-a
node is independent of all the other rows j 6= i in the matrix A2

h. Hence this process can be
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performed in parallel. If the matrix is stored in the CSR format (chapter 1.2) the complexity
of setting up Ia is O(N). �

With the purpose of distinguishing between type-b and type-c nodes we investigate certain
types of neighborhoods which represent up to permutation all possible ones. In particular
their layout on the Dirichlet-boundary is of interest.

b

b
b

a

b

a b

ab

xj b

a

c c

ab

ab

b

(a)

b

b
b

a

b

a b

ab

xj bc c

ab

ab

b

D

(b)

b

b
b

a

b

a b

ab

xj bc c

b

ab

b

D

D

(c)b

b
b

ab

ab

xj bc c

ab

ab

b

D

D

D

(d)

b

b
b

ab

ab

xj bc c

ab

b

b

D

D

D

D

(e)

b

b
b

ab

xj bc c

ab

ab

b

D

D

D

D D

(f)b

b
b

ab

xj bc c

ab

b

D

D

D

DDDD

(g)

Figure 3.5: Neighborhoods of type-b nodes; (a): |Rj |=14, |Rbcj |=8; (b): |Rj|=13, |Rbcj |=8;

(c): |Rj |=12, |Rbcj |=8; (d): |Rj |=11, |Rbcj |=7; (e): |Rj |=10, |Rbcj |=7; (f): |Rj |=9, |Rbcj |=6;

(g): |Rj |=7, |Rbcj |=5

As we see in Fig. 3.5 and Fig. 3.6, is the number of nonzero entries in a row (i.e. |Rj | or |Ek|)
no unique identifier on its own. In particular the cardinality 7 appears for both types of these
sets. We could distinguish this case by checking a second parameter, like e.g. the number of
type-a nodes in their neighborhood.

But in this geometry the size of the type-b and type-c neighborhoods Rbcj and Ebck provides
a unique way of distinguishing between these two nodes. This leads us to the following
proposition and splits the set Xb ∪Xc.

Proposition 3.8: For a given grid Rh, under the Nonzero Assumption 1.2, we have

|Rbcj | ≥ 5, for any j ∈ Sb

and

|Ebck | ≤ 4, for any k ∈ Sc.
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Hence we obtain the following criterion for type-c nodes.

Criterion 3.9: For any index i ∈ S, which is not a type-a node, if there are less than six
nonzero entries whose column indices are not related to type-a nodes, then the node xi related
to the index i is a type-c node. �

As a final step we have to identify the neighbor index sets Sbi , S
c
i , R

bc
j and Ebck and give an

algorithm to construct them. To do so the following criterion 3.10 will be used.

Criterion 3.10: For any fixed index i ∈ Sa, j ∈ Sb and k ∈ Sc under the Nonzero Assump-
tion 1.2, there holds:

1. The index l ∈ Sbi or l ∈ Sci , iff l ∈ Sb or l ∈ Sc, respectively, and suppφi ∩ suppφl 6= ∅.

2. The index l ∈ Rbcj or l ∈ Ebck , iff l 6= j or l 6= k, respectively, l ∈ Sb ∪ Sc and suppφi ∩
suppφl 6= ∅. �

We will give an algorithm to create Sbci := Sbi ∪ S
c
i , R

bc
j and Ebck , then the other two sets

can be extracted out of Sbci by criterion 3.9. In the following the last two sets are treated
equivalently, as from the algorithmic point of view, there is no difference in creating them.
First we introduce a vector nc of length N , where each entry counts the size of the bc-
neighborhoods for the corresponding entry. This can be done using the vector Ia. Then we
allocate a sparse structure consisting of nbc, inbc that is stored in the CSR format, similar to
a sparse matrix but without the array for the values, as only their offsets are of interest.

Parallel 3.11: Algorithm 3.2 is designed for parallel computation. Every iteration in the
first and the last loop is independent from any other. Hence, it can be performed in parallel.
The second loop must be performed iteratively, as every value depends on the previous one.
However, by determining the storage size of the array nbc with the first two loops, the last
loop to run can be performed in parallel. �

Remark 3.12: The splitting of the set Sbci (cf. criterion 3.9) can be postponed till the point
where the restriction operator is created because type-b and type-c nodes are treated in the
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Algorithm 3.2 Generate Rbcj and Ebck for p = 2

1: for i ← 1 to N do ⊲ Count members
2: for all j with ai,j 6= 0 and Ia(j) == 0 do

3: nc(i)← nc(i) + 1 ⊲ type-b/c neighbor
4: end for

5: end for

6:

7: inbc(1)← 0 ⊲ Initialize inbc
8: for i ← 2 to N+1 do

9: inbc(i)← inbc(i− 1) + nc(i− 1)
10: end for

11:

12: for i ← 1 to N do ⊲ Initialize nbc
13: cnt← inbc(i)
14: for all j with ai,j 6= 0 and i 6= j and Ia(j) == 0 do

15: nbc(cnt)← j
16: cnt← cnt+ 1
17: end for

18: end for

same way as they do not correspond to a bilinear basisfunction like the type-a nodes. �

3.2.2 Algorithm for Problem Q2 – Find Sb1
i and Sc1

i

Now we have to identify the interpolatory sets Sb1
i and Sc1

i for every i ∈ Sa. It is easy to see
that Sci = Sc1

i because the values of the bilinear basisfunction ψi at the type-c nodes cannot
be trivial (cf. figure 3.2). In particular the value is always 1/4.

For the type-b node the case is more complicated, because ψi can be equal zero at neighboring
type-b nodes. We revealed above that the set Si is always bigger than the sets Rj and Ek of
its neighboring nodes. But there holds another important relationship.

Criterion 3.13: For any index i related to a type-a node, and for any index j ∈ Sbi , we have
j ∈ Sb1

i , iff Rbcj ⊆ S
bc
i . �

This must always hold, as every type-b node has at least two type-c neighbors and is shown
by figure 3.5, which shows all possible cases if we consider the type-a node at the bottom
right corner. We give an algorithm for this last algebraic step of the setup phase.

Parallel 3.14: The difficulty of a parallel execution of algorithm 3.3 is the growing set Sb1
i .

As we are dealing with a partition of the domain every type-a node has only a fraction of all
possible elements as neighboring ones. Therefore the size of the set Sbi is bounded by a small
constant which again bounds the maximal size of Sb1

i . This holds because every neighboring
element contains at most 4 type-b nodes. Hence, a possible solution is to determine the
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Algorithm 3.3 Generate Sb1
i for p = 2

1: for all i with Ia(i) == 1 do ⊲ Coarse Nodes
2: Sb1

i = ∅
3: for all j ∈ Sbi do ⊲ type-b neighbors
4: if Rbcj ⊆ S

bc
i then

5: Sb1
i = Sb1

i ∪ {j}
6: end if

7: end for

8: end for

maximal size M of Sb1
i for all i ∈ Sa first and then store the values in a Na×M -matrix. Here

every row corresponds to an index i ∈ Sa. Furthermore we need a vector of length Na which
stores the actual size of the row i. This creates independent memory for every iteration and
enables them to be performed in parallel. �

With the obtained sets Sa and Sb1
i , Sc1

i for any i ∈ Sa and the equation (3.6) we are able to

construct the restriction operator PHh . The prolongation operator is defined as P hH =
(

PHh

)⊤

and the coarse grid matrix is calculated by A1
h = P hHA

2
hP

H
h . By adapting algorithm 3.1 we

give the multigrid algorithm for the biquadratic FEM equation (3.1):

Algorithm 3.4 Modified Algorithm for the biquadratic Lagrangian FEM-Equation

1: Setup:

2: Find the flag array Ia by criterion 3.6
3: Split Sb ∪ Sc by criterion 3.9
4: Find sets Sbi , S

c
i , R

bc
j and Ebck by criterion 3.10 and algorithm 3.2

5: Find sets Sb1
i and Sc1

i by criterion 3.13 and algorithm 3.3
6: Construct the restriction operator PHh by (3.6)

7: Construct the prolongation operator P hH =
(

PHh

)⊤

8: Construct the coarse matrix A1
h = P hHA

2
hP

H
h

9: Presmoothing: uh ← uh + S(f −A2
huh), j = 1, . . . ,m1

10: Solving the coarse equation: eh,1 ← A1
h

−1
PHh

(
f −A2

huh
)

11: Correcting: uh ← uh + P hHeh,1
12: Postsmoothing: uh ← uh + S(f −A2

huh), j = 1, . . . ,m2

3.3 Bicubic Lagrangian Finite Elements

An extension to higher-order elements has also been presented in [31] for triangular meshes.
This extension is not trivial, because as the order of the elements increases, the algebraic
identification of different types of nodes becomes more complicated due to the fact that more
nodes per element are present and new types of nodes emerge. In this section we are going
to consider the extension to bicubic elements on quadrilateral meshes.

48



Let Rh be the underlying quadrilateral partition of the domain Ω as shown in figure 3.7a. The
problem (1.1) is discretized by a bicubic Lagrangian FEM basis and results in the following
discrete version

A3
hu

3
h = f3

h (3.9)

where A3
h = (aij)i,j∈I , u

3
h = (ui)i∈I , f

3
h = (fi)i∈I with I = {1, . . . , N} and N denotes the

number of freedom in (3.9).

(a) The grid Rh

b b
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h

Figure 3.7: Type-a, type-e and type-z nodes on quadrilateral elements

Alike to the biquadratic case we need the stiffness matrix A3
h, the right hand side vector f3

h

plus the knowledge of the degree p = 3 and the fact that nodal basisfunctions have been used
as input to our algorithm. The first step is to split the nodes into three classes:

Definition 3.15: All vertices of the grid are called type-a nodes, points on the edges are
defined as type-e nodes and points in the interior of the elements are defined as type-z nodes
(see Fig. 3.1b). The set of all type-a, type-e and type-z nodes are denoted by Xa, Xe and
Xz, respectively, and Na, Ne and Nz are the cardinalities of theses sets. �

Trivially it holds that N = Na +Ne+Nz. Next the set S of all indices in (3.9) is divided into
the following three subsets where xi is the node related to ui:

Sa = {i | i ∈ S, xi ∈ Xa}, Se = {i | i ∈ S, xi ∈ Xe}, Sz = {i | i ∈ S, xi ∈ Xz} (3.10)

Let V 3
h be the bicubic Lagrangian finite element space on the grid Rh and {γi}i∈S be the

corresponding nodal basisfunctions which satisfy

γi(xj) = δi,j ∀i, j ∈ S. (3.11)

To unveil the structure of the system matrix A3
h we introduce basisfunction vectors Υa =

(γi1 , . . . , γiNa
)⊤, Υe = (γj1, . . . , γjNe

)⊤ and Υz = (γk1 , . . . , γkNz
)⊤ for all ip ∈ Sa, jq ∈ Se and

kr ∈ Sz. This gives rise to the following matrix notation:

a(Υa,Υa) := (aij)i,j∈Sa
, a(Υa,Υe) := (aij)i∈Sa,j∈Se

, a(Υa,Υz) := (aij)i∈Sa,j∈Sz
,

a(Υe,Υa) := (aij)i∈Se,j∈Sa
, a(Υe,Υe) := (aij)i,j∈Se

, a(Υe,Υz) := (aij)i∈Se,j∈Sz
,

a(Υz,Υa) := (aij)i∈Sz ,j∈Sa
, a(Υz,Υe) := (aij)i∈Sz ,j∈Se

, a(Υz,Υz) := (aij)i,j∈Sz
.
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Analogously to the biquadratic case the interaction of basisfunctions corresponding to a class
of nodes is represented by these nine parts of the stiffness matrix A3

h. After possible reordering
this interplay can be seen:

A3
h =






a(Υa,Υa) a(Υa,Υe) a(Υa,Υz)
a(Υe,Υa) a(Υe,Υe) a(Υe,Υz))
a(Υz,Υa) a(Υz,Υe) a(Υz,Υz)




 . (3.12)

In the following, if not explicitly stated, for the indices i, j, r it holds that i ∈ Sa, j ∈ Se and
r ∈ Sz. We recap and extend the index sets from section 3.2:

Si = {l | supp γi ∩ supp γl 6= ∅, l 6= i, l ∈ S}

Sei = {l | supp γi ∩ supp γl 6= ∅, l ∈ Se}

Szi = {l | supp γi ∩ supp γl 6= ∅, l ∈ Sz}

Rj = {l | supp γi ∩ supp γl 6= ∅, l 6= j, l ∈ S}

Raj = {l | supp γi ∩ supp γl 6= ∅, l ∈ Sa}

Rej = {l | supp γi ∩ supp γl 6= ∅, l 6= j, l ∈ Se}

Rzj = {l | supp γi ∩ supp γl 6= ∅, l ∈ Sz}

Er = {l | supp γi ∩ supp γl 6= ∅, l 6= k, l ∈ S}

Eak = {l | supp γi ∩ supp γl 6= ∅, l ∈ Sa}

Eek = {l | supp γi ∩ supp γl 6= ∅, l ∈ Se}

Ezk = {l | supp γi ∩ supp γl 6= ∅, l 6= k, l ∈ Sz}

Finally we use the same idea as in the biquadratic case: Let {ψi}i∈Sa be the nodal basisfunc-
tions of the bilinear FEM space A1

h on Rh. As a consequence of V 1
h ⊂ V 3

h , (3.11), (3.5) and
the compact support properties of {ψi}i∈Sa we get

ψi(x) = γi(x) +
∑

(j,k)∈S
e12
i

(
2

3
γj(x) +

1

3
γk(x)

)

+ . . .

(3.13)
∑

(r,s,t,u)∈S
z123
i

(
4

9
γr(x) +

2

9
γs(x) +

2

9
γt(x) +

1

9
γu(x)

)

, i ∈ Sa,

where Se12
i ⊆ Se is the set of indices (j, k) related to two type-e nodes xj and xk with

the property that xj and xk are on the same neighboring edge of xi (i.e. ψi(xj) 6= 0 and
ψi(xk) 6= 0) and xj is geometrically closer to xi than xk (see Fig. 3.8a). The second set Sz123

i

is the set of indices (r, s, t, u) related to four type-z nodes xr, xs, xt and xu in which these
are in the interior of one neighboring element where

• xr is geometrically the closest,
• xs and xt are farther away and
• xu is the farthest away

compared to xi (see Fig. 3.8b). We neglect to distinguish between xs and xt as it is not
necessary for our algorithm.
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Figure 3.8: Geometry in Se12
i and Sz123

i

Let Ψ := (ψi1 , . . . , ψiNa
)⊤, ip ∈ Sa and rewrite (3.13) as

Ψ = PHh






Υa

Υe

Υz




 , (3.14)

where PHh is an Na ×N matrix.

Then PHh defines our restriction operator from V 3
h to V 1

h and P hH := (PHh )
⊤

defines our
prolongation operator from V 1

h to V 3
h . The coarse grid operator is constructed using (3.12),

(3.14) and the Galerkin condition:

A1
h := (a(Ψ,Ψ)) = PHh A

3
hP

h
H (3.15)

Interpolatory Sets

In order to develop an AMG method for the problem (3.9), we need to solve the following
two problems by algebraic means.

Problem C1: Find the sets Sa, Se and Sz from the coefficient matrix A3
h.

Problem C2: Find the interpolatory sets Se12
i and Sz123

i for any fixed i ∈ Sa.

3.3.1 Algorithm for Problem C1 – Find Sa, Se and Sz

We assume that all nodes in Xa satisfy Assumption 3.4 (see Fig. 3.10) and the Nonzero
Assumption 1.2.

Hence, for any i ∈ Sa, j ∈ Se and r ∈ Sz, |Si|+1, |Rj |+1 and |Er|+1 are exactly the nonzero
entries of the i-th, j-th and r-th row in the matrix A3

h, respectively.

By implication (1.3) and the compact support properties of the basisfunctions γi we are able
to split the set S. This is done by counting the neighbors in Fig. 3.9a and Fig. 3.10.

Proposition 3.16: For a given grid Rh, under the Nonzero Assumption 1.2, we have

|Si| ≥ 32, for any i ∈ Sa
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and

|Rj | ≤ 27, for any j ∈ Se,

|Er| ≤ 15, for any r ∈ Sz.
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Figure 3.10: Minimal number of neighbors for elements of Xa under Assumption 3.4 for
p = 3

Therefore we are able to uniquely identify type-a nodes among all other nodes in a similar
way as in the biquadratic case.

Criterion 3.17: For any index i ∈ S, if there are more than 27 nonzero entries in the row i
of the matrix A3

h, then the node xi related to the index i is a type-a node. �

Parallel 3.18: By Criterion 3.17 the process of checking if a row i corresponds to a
type-a node is independent of all the other rows j 6= i in the matrix A3

h. Hence this process
can be performed in parallel. If the matrix is stored in the CSR format (cf. section 1.2) the
complexity of this task is O(N). �

With the purpose of distinguishing between type-e and type-z nodes we investigate certain
types of neighborhoods which represent up to permutation all possible ones. In particular
their layout on the Dirichlet-boundary is of interest.

52



b

b
b b

bb

b b

bb

xj

(a) |Rj |=27

b

b
b b

bb

b b

bb

xj

D

(b) |Rj |=26

b

b
b b

bb

b b

bb

xj

D

D

(c) |Rj |=25

b

b
b b

bb

b b

bb

xj

D

D

D

D

(d) |Rj |=23

b

b
b b

bb

b b

bb

xj

D

D

D

D

D

(e) |Rj |=22

b

b
b b

bb

b b

bb

xj

D

D

D

D

DD D

(f) |Rj |=20

b

b
b b

bb

b b

bb

xj

D

D

D

D

DD D D

(g) |Rj |=19

b

b
b b

bb

b b

bb

xj

D

D

D

D

DD D D D D

(h) |Rj |=17

b

b
b b

bb

b b

bb

xj

D

D

D

D

DD D D D D

D

(i) |Rj |=16

b

b
b b

bb

b b

bb

xj

D

D

D

D

DD D D D D

D

D

D

(j) |Rj |=14

Figure 3.11: Neighborhoods of type-e nodes
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Figure 3.12: Neighborhoods of type-z nodes

Similar to the biquadratic case we see in Fig. 3.11 and Fig. 3.12 that the number of nonzero
entries in a row (i.e. |Rj | or |Er|) is no unique identifier on its own. In particular the cardinality
14 appears for both types of sets . We distinguish these cases by checking the number of
type-a nodes in their neighborhood. Hence, we present the following proposition.

Proposition 3.19: For a given grid Rh, under the Nonzero Assumption 1.2, we have for any
j ∈ Se

1. 16 ≤ |Rj | ≤ 27 (see Fig. 3.11a-i),
2. |Rj | = 14, |Raj | = 1 (see Fig. 3.11j),

and for any r ∈ Sz,

1. |Er| < 14 (see Fig. 3.12c-f),
2. |Er| = 14, |Ear | > 1 (see Fig. 3.12b),
3. |Er| = 15 (see Fig. 3.12a).

Thus, by proposition 3.19 we get the following criterion to distinguish between type-e and
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type-z nodes.

Criterion 3.20: For any index i ∈ S, in the row i of matrix A3
h, if one of the following

conditions holds, then the node xi related to the index i belongs to type-z.

1. There are less than 14 nonzero entries or just 15 nonzero entries.
2. There are just 14 nonzero entries and and among them are more than one nonzero

entries which belong to type-a. �

With the last to criteria 3.17 and 3.20 we are able to identify type-a and type-z nodes. The
remaining nodes are of type-e. In order to associate all nodes with their type we introduce
the following flag array Iaez(k), k = 1, . . . , N for the matrix A3

h, which satisfies

Iaez(k) :=







1, xk ∈ Xa,

2, xk ∈ Xz,

3, xk ∈ Xe.

Using the flag array, we can easily obtain an algorithm to get Na, Ne, Nz, N and the index
sets Sa, Se, Sz.

As a final step we have to identify the neighbor index sets Sei , S
z
i , Rej , R

z
j , E

e
r and Ezr . To do

so the following criterion 3.21 will be used.

Criterion 3.21: For any fixed index i ∈ Sa, j ∈ Se and r ∈ Sz under the Nonzero Assump-
tion 1.2, there holds:

1. The index l ∈ Sei or l ∈ Szi , iff l ∈ Se or l ∈ Sz, respectively, and supp γi ∩ suppγl 6= ∅.
2. The index l ∈ Rej , iff l 6= j and l ∈ Se and supp γi ∩ supp γl 6= ∅.
3. The index l ∈ Rzj , iff l 6= j and l ∈ Sz and supp γi ∩ supp γl 6= ∅.
4. The index l ∈ Eer , iff l 6= r and l ∈ Se and suppγi ∩ suppγl 6= ∅.
5. The index l ∈ Ezr , iff l 6= r and l ∈ Sz and suppγi ∩ suppγl 6= ∅. �

Using criterion 3.21 we can obtain the above index sets which is analogous to algorithm 3.2.
Instead of only for type-a nodes the algorithm is now performed for all three types and we have
to distinguish between type-e and type-z neighbors. This generalization is straightforward
and the same data structures can be used.

3.3.2 Algorithm for Problem C2 on squares – Find Se12
i and Sz123

i

For any i ∈ Sa we have to identify the interpolatory sets Se12
i and Sz123

i . As before we
generalize the definitions and methods derived in [31].

The size and structure of the neighboring elements will not be enough to uniquely distinguish
between nodes which lie on the same edge or on the same element. We will need to utilize
more information from the problem. The following section will solve problems of type (1.1)
where for simplicity we restrict d(x) to be piecewise constant.

By geometric consideration illustrated in Fig. 3.8 we motivate the following definitions. For
any i ∈ Sa we set

Seei = {(j, k) | Rj = Rk ⊆ Si, j, k ∈ Se},

Szzi = {(r, s, t, u) | Er = Es = Et = Eu ⊆ Si, r, s, t, u ∈ Sz}
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where (j, k) and (k, j) are viewed as the same pair. Analogous for (r, s, t, u) and its permuta-
tions.

The construction of theses sets is easily done by considering the relations of the supports of
different basisfunctions. Functions which are associated with nodes that lie on the same edge
or element have the same support.

Criterion 3.22: For any i ∈ Sa under the Nonzero Assumption 1.2 there holds, that the
index (j, k) ∈ Seei iff suppγj = supp γk ⊆ suppγi. Under the same assumptions there holds,
that (r, s, t, u) ∈ Szzi , iff suppγr = supp γs = suppγt = supp γu ⊆ supp γi. �

In order to generate Seei we need to identify all nodes which are part of an edge that does
not lie on the Dirichlet boundary. In the following algorithm 3.5 we denote this set be E .
Afterwards pairs of nodes which are part of one and the same edge are identified. Note that
it is enough to compare the type-z neighbors of a type-e node to check if they share the same
support (see line 11).

Algorithm 3.5 Generate Seei for p = 3

1: Seei ← ∅
2: E ← ∅
3: for all j ∈ Sei do ⊲ type-e neighbors
4: if Rj ⊆ Si then ⊲ Part of an edge
5: E ← E ∪ {j}
6: end if

7: end for

8: while E 6= ∅ do

9: j ∈ E
10: for all k ∈ E \ {j} do

11: if Rzj == Rzk then ⊲ Same support
12: Seei ← Seei ∪ (j, k)
13: E ← E \ {j, k}
14: break
15: end if

16: end for

17: end while

Algorithm 3.6 describes the generation of Szzi for a fixed i ∈ Sa. Note, that the support of
type-z functions is given by only one element and therefore is Ej ⊆ Si for all j ∈ Szi . As
every element has exactly four type-z nodes, which cannot lie on the Dirichlet boundary, the
set Ezj will always consist of exactly three elements.

Parallel 3.23: Algorithms 3.5 and 3.6 can be performed in parallel for every i ∈ Sa as there
is no dependence between Seei or Szzi for different type-a nodes i. The algorithms themselves
are iterative, as the set E changes during each iteration. �

The only remaining task is to identify the correct order in the pairs (j, k) and quadruples
(r, s, t, u) which corresponds to the correct geometric position of the associated basisfunctions.
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Algorithm 3.6 Generate Szzi for p = 3

1: Szzi ← ∅
2: E ← Szi
3: while E 6= ∅ do

4: j ∈ E ⊲ type-z neighbor of i
5: Ezj ← {r, s, t} ⊲ Support is just one element
6: Szzi ← Szzi ∪ (r, s, t, j)
7: E ← E \ (Ezj ∪ {j})
8: end while

In order to make the presentation of the theory clearer we assume a mesh of squares first.
This assumption prevents the introduction of many similar cases. Furthermore it enables us
to use a heuristic based on the symmetry of our basisfunctions to identify the nodes s and t
which correspond to the basisfunctions with the value 2/9 in the linear combination of ψ(x)
in (3.13). The differences to the general case are discussed in section 3.3.3.

Criterion 3.24: Let Rh be a mesh of squares. For any i ∈ Sa, (r, s, t, u) ∈ Szzi and piecewise
constant function d(x) holds that ai,s = ai,t. �

Proof: All basisfunctions γr, γs, γt and γu share the same support ω ∈ Ω. On this element we
denote the constant parts of d(x) as dω. Using the notation of section 1.1 we will show that

ai,s = a(γi, γs) =

∫

ω
dω∇γi(x, y)∇γs(x, y) d(x, y)

!
= dω

∫

ω
∇γi(x, y)∇γt(x, y) d(x, y) = ai,t.

First we consider the construction of bicubic basisfunctions (cf. section 1.4). We need four
reference basisfunctions N̂i(ξ), i = 1, . . . , 4 and M̂j(η), i = 1, . . . , 4 for each axis. It holds
that M̂j(η) = N̂i(η). Then the basisfunctions are constructed as

Ni,j(ξ, η) = N̂i(ξ)M̂j(η) i, j = 1, . . . , 4.

It is enough to consider the case of the reference square, as a transformation into a different
square does not change any proportions. WLOG we set associate γi(x, y) with N1,1(x, y),
γs(x, y) with N3,4(x, y) and γt(x, y) with N4,3(x, y). Note that the points (3, 4) and (4, 3)
correspond to the points on the element which do not lie on the diagonal through point (1, 1).
Finally we obtain

∫

ω
∇N1,1(x, y)∇N3,4(x, y) d(x, y) =

∫

ω
∇ (N1(x)M1(y))∇ (N3(x)M4(y)) d(x, y)

=

∫

ω
∇ (M1(x)N1(y))∇ (M3(x)N4(y)) d(x, y)

=

∫

ω
∇N1,1(x̃, ỹ)∇N4,3(x̃, ỹ) d(x̃, ỹ)

where Ni(x),Mj(y) denote onto the square ω transformed functions. The last equality holds
because the integration boundaries for x and y are the same. �
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By criterion 3.24 we can obtain an algebraic algorithm to identify the nodes s and t in every
quadruple (r, s, t, u) ∈ Szzi .

In the following x is a shorthand for the vector (x, y)⊤. Let i ∈ Sa be fixed and ψi(x) be
the corresponding bilinear basisfunction. We define ni and mi as the number of elements in
the set Seei and Szzi , respectively. Motivated by (3.13) and assuming the knowledge of the
position of the nodes s and t by criterion 3.24, we can represent ψi(x) as

ψi(x) = γi(x) +
ni∑

n=1

αnγjn(x) + (1− αn)γkn
(x) + . . .

(3.16)
mi∑

m=1

βmγrm(x) + (1− βm)γum(x) +
2

9
(γsm(x) + γtm(x), )

where (jn, kn) is the n-th index in Seei , (rm, sm, tm, um) is the m-th index in Szzi and the
variables αl, βm ∈ [0, 1] for n = 1, . . . , ni, m = 1, . . . ,mi are the unknown parameters.

We are going to analyze the equation (3.16) with respect to {αn}
ni
n=1 and {β}mi

m=1. By re-
ordering we get the following representation:

ψi(x) = γi(x) +
ni∑

n=1

γkn
+

mi∑

m=1

2

9
(γsm(x) + γtm(x))

︸ ︷︷ ︸

=:ϕ(x)

+ . . .

ni∑

n=1

αn (γjn − γkn
)

︸ ︷︷ ︸

=:ϕ̃n(x)

+
mi∑

m=1

βm (γrm − γum)
︸ ︷︷ ︸

=:θm(x)

= ϕ(x) +
ni∑

n=1

αnϕ̃n(x) +
mi∑

m=1

βmθm(x). (3.17)

Let λ := (α1, . . . , αni
, β1, . . . , βmi

)⊤ and

J(λ) = a(ψi, ψi), (3.18)

where a(·, ·) is the bilinear form of our model problem (1.1). In order to simplify the notation
we define Mi := ni + mi, ηj := ϕ̃j for j = 1, . . . , ni and ηj := θj−ni

for j = ni + 1, . . . ,Mi.
This results in a shorter notation for (3.17):

ψi(x) = ϕ(x) +
Mi∑

j=1

λjηj(x). (3.19)

With this notation we introduce the following minimization problem: Find λ∗ ∈ R
Mi , such

that

J(λ∗) = min
λ∈R

Mi

J(λ). (3.20)
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By inserting (3.19) into (3.18), we obtain

J(λ) = a(ϕ(x) +
Mi∑

j=1

λjηj(x), ϕ(x) +
Mi∑

j=1

λjηj(x))

=
Mi∑

j=1

Mi∑

m=1

λjλma(ηj , ηm) + 2
Mi∑

j=1

λja(ηj , ϕ) + a(ϕ,ϕ). (3.21)

Theorem 3.25 [31]: There exists a unique solution vector λ∗ = (α∗
1, . . . , α

∗
ni
, β∗

1 , . . . , β
∗
mi

)⊤

of the minimization problem (3.20). Moreover, the solution

ψ∗
i (x) = γi(x) +

ni∑

n=1

α∗
nγjn(x) + (1− α∗

n)γkn
(x) + . . .

(3.22)
mi∑

m=1

β∗
mγrm(x) + (1− β∗

m)γum(x) +
2

9
(γsm(x) + γtm(x))

must be the basisfunction ψi(x) of the bilinear finite element related to the node xi.

Proof: The proof is analogous to [31, p. 368].

First we prove the existence and uniqueness of a solution of the minimization problem (3.20).
As the functions {ηj(x)}Mi

j=1 have all compact support, it is easy to derive their linear inde-
pendence. We skip this step here. Looking closely at (3.21) we see that J(λ) is a quadratic
function which can be written as

J(λ) = λ⊤Âλ+ b⊤λ+ c

with the SPD-matrix Â = (âjm)ni×mi
, âjm = a(ηj , ηm), the vector b = (bj)ni

, bj = a(ηj , ϕ)
and c = a(ϕ,ϕ). Applying the results of multivariate optimization (see e.g. [9, chapter 22]),
we conclude that there exists a unique solution vector λ∗ with

Âλ∗ = F̂ (3.23)

where F̂ = −b. For the following discussion the following equivalent form is used:

a(ηj , ψ
∗
i ) = 0, j = 1, . . . ,Mi (3.24)

where ψ∗
i (x) = ϕ(x) +

∑Mi

j=1 λ
∗
jηj(x). Due to the fact that the bilinear basisfunction ψi(x)

associated with the node xi can be expressed as (3.17), the only thing we need to verify in
order to proof theorem 3.25, is that the nodal basisfunction ψi(x) satisfies (3.24).

We are going to discuss the function ϕ̃ and θ separately. Let el, l = 1, . . . , ni be all rectangular
elements neighboring node xi. By the compact support property of ψi, for any fixed j,
j = 1, . . . , ni we get

a(ϕ̃j , ψi) =
ni∑

l=1

∫

el

del
∇ϕ̃j∇ψi d(x, y) (3.25)

= del1

∫

el1

∇ϕ̃j∇ψi d(x, y) + del2

∫

el2

∇ϕ̃j∇ψi d(x, y), (3.26)
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where ϕ̃j is defined by (3.17) and el1 , el2 are two elements neighboring to the edge e(jl,kl) with
the starting point xjl

and the ending point xkl
.

For the next step note that ψi(x) is linear with respect to each of its variables. Using Green’s
formula, we obtain

0 =

∫

el

∆ψiϕ̃j d(x, y) =

∫

∂el

∂ψi
∂n

ϕ̃j ds−
∫

el

∇ϕ̃j∇ψi d(x, y), (3.27)

where n is the unit outward normal vector and ∂el1 is the boundary of the rectangular element
el1 .

Substituting the definition of ϕ̃ from (3.17) into (3.27) and using the compact support property
of ϕ̃ we obtain

∫

el

∇ϕ̃j∇ψi d(x, y) =

∫

∂el

∂ψi
∂n

ϕ̃j ds =

∫

e(jl,kl)

∂ψi
∂n

ϕ̃j ds (3.28)

=
∂ψi
∂n

∫

e(jl,kl)

ϕ̃j ds =
∂ψi
∂n

∫

e(jl,kl)

(γjl
− γkl

) ds, (3.29)

where we use, that ∂ψi

∂n |e(jl,kl)
is a constant, because ψi|e(jl,kl)

is a linear polynomial.

Computing the last integral explicitly we get

∫

e(jl,kl)

(γjl
− γkl

) ds = C

∫ 1

−1
ξ(1 + ξ)(1− ξ) dξ = 0,

where C is a constant, which depends on the length |e(jl,kl)| of the edge e(jl,kl) and the height
of the bicubic basisfunctions.

Substituting the previous result back into (3.28) for el1 and el2 , we get
∫

el1

∇ϕ̃j∇ψi d(x, y) = 0 and

∫

el2

∇ϕ̃j∇ψi d(x, y) = 0.

Substituting these results into (3.25), we get

a(ϕ̃j , ψi) = 0, j = 1, . . . , ni.

In the case of j = ni + 1, . . . ,Mi equation (3.25) simplifies even further:

a(θj , ψi) = del

∫

el

∇θj∇ψi d(x, y)

where θj is define by (3.17) and el is the element e(rl,sl,tl,ul) with the four vertices xrl
, xsl

, xtl
and xul

.

Analogously we apply the result (3.27) and use the compact support property of θj to derive

∫

el

∇θj∇ψi d(x, y) =

∫

e(jl,kl)

∂ψi
∂n

θj ds = 0. (3.30)

The last equality holds, because θ(x)|∂el
≡ 0, due to its definition θ(x) = γrm(x) − γum(x)

and the fact that γrm(x) and γum(x) are zero on the boundary (cf. section 1.4).
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Therefore we get the same result as in the previous case:

a(θj, ψi) = 0, j = ni + 1, . . . ,Mi.

This completes the proof of theorem 3.25. �

For any fixed i ∈ Sa we know from theorem 3.25 how to assemble linear system (3.23). First
we investigate the structure of the coefficient matrix Â and the the right hand side vector F̂ .
In the following we will use the index sets Iα := {1, . . . , ni} and Iβ := {ni + 1, . . . ,Mi} as

a shorthand. Furthermore we define the vectors ϕ̃ = (ϕ̃1, . . . , ϕ̃ni
)⊤ and θ = (θ1, . . . , θmi

)⊤

which are used in the following matrix notation:

a(ϕ̃, ϕ̃) = (âjm)j,m∈Iα
, a(ϕ̃, ϕ) = (a(ϕ̃j , ϕ))j∈{1,...,ni}

,

a(ϕ̃, θ) = (âjm)j∈Iα,m∈Iβ
, a(θ, ϕ) = (a(θj , ϕ))j∈{1,...,mi}

,

a(θ, θ) = (âjm)j,m∈Iβ
.

By these definitions we see, that

Â =

(

a(ϕ̃, ϕ̃) a(ϕ̃, θ)
a(θ, ϕ̃) a(θ, θ)

)

, F̂ =

(

−a(ϕ̃, ϕ)
−a(θ, ϕ)

)

.

Due to symmetry of the bilinear form it holds, that a(ϕ̃, θ) = a(θ, ϕ̃). The entries of the
coefficient matrix Â and the entries of the right hand side vector F̂ can be expressed as

âlm = a(ηl, ηm) =







a(ϕ̃l, ϕ̃m) = ajl,jm − ajl,km
− akl,jm

+ akl,km
, l,m ∈ Iα,

a(ϕ̃l, θm) = ajl,rm − ajl,um − akl,rm
+ akl,um

, l ∈ Iα,m ∈ Iβ,

a(θl, θm) = arl,rm − arl,um − aul,rm + aul,um, l,m ∈ Iβ,

f̂l = −a(ϕ̃l, ϕ) = −

[

(ajl,i − akl,i) +
ni∑

n=1

(ajl,kn
− akl,kn

) + . . . (3.31)

mi∑

m=1

(
5

9
(ajl,um − akl,um

) +
2

9
(ajl,sm − akl,sm

) +
2

9
(ajl,tm − akl,tm)

)]

, l ∈ {1, . . . , ni},

f̂l+ni
= −a(θl, ϕ) = −

[

(arl,i − aul,i) +
ni∑

n=1

(arl,kn
− aul,kn

) + . . .

mi∑

m=1

(
5

9
(arl,um − aul,um) +

2

9
(arl,sm − aul,sm) +

2

9
(arl,tm − aul,tm)

)]

, l ∈ {1, . . . ,mi},

where anm, n,m = 1, . . . , N are the entries of the coefficient matrix A3
h in (3.9). As the

enumeration of θm starts with 1 and not with ni + 1, the indices have to be converted. This
is shown by the use of different indices l,m for l,m. The mapping is given by

l =

{

l if l ∈ Iα,

l− ni if l ∈ Iβ,

and analogous for m and m.
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In the following we describe an algorithm to implement the setup of the linear system (3.23).

A closer inspection of (3.31) shows a pattern in the definition of the entries of matrix Â
and right hand side vector F̂ . We are giving an algorithm which uses this pattern in order
to neglect the distinction of many different cases. By doing so it is possible to alter this
algorithm with very little changes to a general mesh (chapter 3.3.3).

For every element jl, kl where (jl, kl) ∈ S
e12
i and rl, ul where (rl, ∗, ∗, ul) ∈ S

z123
i we define a

mapping from its global index in A3
h to the row l that is influenced by it via formula (3.31).

Additionally it is important to save its current position, i.e. if it is the first or last element.
We will indicate the first position with a positive row-index l and the last position with a
negative row-index l. For this purpose we define the array Mi(j), j = 1, . . . , N . All values
which are not effected are set to zero.

Definition 3.26: For any fixed i ∈ Sa the array Mi(j), j = 1, . . . , N is defined as follows:

(jl, kl) ∈ S
e12
i : Mi(jl) = l and Mi(kl) = −l ∀ l ∈ {1, . . . , ni}

(rl, ∗, ∗, ul) ∈ S
z123
i : Mi(rl) = l + ni and Mi(ul) = −(l + ni) ∀ l ∈ {1, . . . ,mi}

All other indices are set to zero. �

Every entry in Â is defined over a formula like ajl,jm − ajl,km
− akl,jm

+ akl,km
which can also

be written as

(ajl,jm − ajl,km
)− (akl,jm

− akl,km
) . (3.32)

We see that the first and the second term are very similar. In fact, the first term becomes
the second term if we replace jl by kl. We are going to use this symmetry by introducing the
variables p1 and p2 which are defined in the first part of our algorithm 3.7.

Algorithm 3.7 Setup of linear system to compute Se12
i and Sz123

i for p = 3 – Part 1

1: for l ← 1 to Mi do

2: if l ∈ Iα then

3: p1 ← jl; p2 ← kl
4: else ⊲ l ∈ Iβ
5: p1 ← rl; p2 ← ul
6: end if

Now we are able to calculate the actual values, with the following algorithm 3.8. The rep-
resentation (3.32) makes clear what kind of optimizations we have used. The array Mi(j)
determines within each term the sign of the entry, this is done by the if-clause in line 12. The
above defined variables p1 and p2 encode if it is the first, or the second term we are currently
dealing with. This is implemented in line 10, which changes the sign of the entry apk,j .

Lines 16-22 compute the f̂l-values implementing the last formulas of (3.31).

Parallel 3.27: Alike the parallelizations before, algorithm 3.7 is performed for every i ∈ Sa.
All these iterations are independent from each other, which allows a parallel execution. �
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Algorithm 3.8 Setup of linear system to compute Se12
i and Sz123

i for p = 3 – Part 2

7: for k ← 1 to 2 do

8: for all j with apk,j 6= 0 do

9: col← |Mi(j)| ⊲ col ∈ Iα ∪ Iβ
10: val← apk,j · (−1)k+1 ⊲ 1st or 2nd term
11: if Mi(j) 6= 0 then ⊲ j ∈ Se12

i ∪ Sz123
i

12: if Mi(j) > 0 then

13: âl,col ← âl,col + val ⊲ 1st position
14: else

15: âl,col ← âl,col − val ⊲ 2nd position

16: f̂l ←

{

f̂l + val, col ∈ Iα

f̂l + 5
9val, col ∈ Iβ

17: end if

18: else if Iaez(j) == 2 then ⊲ type-z-node of type s or t
19: f̂l ← f̂l + 2

9val
20: else if j == i then

21: f̂l ← f̂l + val
22: end if

23: end for

24: end for

25: end for

By theorem 3.25, we know that the components of the solution vector λ of the linear system
(3.23) can only attain a finite number of values. Particularly the first ni components, which
are α1, . . . , αni

must be equal to 1
3 or 2

3 . The following mi components, which are β1, . . . , βmi

must be equal to 1
9 or 4

9 .

λ =

(
1

3
/

2

3
, . . . ,

1

3
/

2

3
︸ ︷︷ ︸

α1,...,αni

,
1

9
/

4

9
, . . . ,

1

9
/

4

9
︸ ︷︷ ︸

β1,...,βmi

)⊤

∈ R
Mi

Thus we get the following criteria to determine Se12
i and Sz123

i for any fixed i ∈ Sa.

Criterion 3.28: For any fixed i ∈ Sa let λ∗ = (α∗
1, . . . , α

∗
ni
, β∗

1 , . . . , β
∗
mi

)⊤ be the solution
vector of equation (3.23) where the entries of the coefficient matrix and the components of
the right hand side vector are defined by (3.31).

If α∗
l = 2

3 then (jl, kl) ∈ S
e12
i , otherwise (kl, jl) ∈ S

e12
i .

If β∗
l = 4

9 then (rl, sl, tl, ul) ∈ S
z123
i , otherwise (ul, sl, tl, rl) ∈ S

z123
i . �

Using criteria 3.17, 3.20, 3.21, 3.22, 3.24 and 3.28, we can get the Na×N restriction operator
PHh from A3

h to A1
h.
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Defining P hH := (PHh )
⊤

and A1
h := PHh A

3
hP

h
H as in the biquadratic case, we give our algebraic

multigrid algorithm 3.9 to solve the bicubic FEM equation (3.9).

Algorithm 3.9 Modified Algorithm for the bicubic Lagrangian FEM-Equation on squares

1: Setup:

2: Find the flag array Iaez by criteria 3.17 and 3.20
3: Find sets Sei , S

z
i , Rej , R

z
j , E

e
r and Ezr by criterion 3.21

4: Find sets Se12
i and Sz123

i by criteria 3.22, 3.24 and 3.28
5: Construct the restriction operator PHh by (3.13)

6: Construct the prolongation operator P hH =
(

PHh

)⊤

7: Construct the coarse matrix A1
h = P hHA

3
hP

H
h

8: Presmoothing: uh ← uh + S(f −A2
huh), j = 1, . . . ,m1

9: Solving the coarse equation: eh,1 ← A1
h

−1
PHh

(
f −A2

huh
)

10: Correcting: uh ← uh + P hHeh,1
11: Postsmoothing: uh ← uh + S(f −A2

huh), j = 1, . . . ,m2

3.3.3 Differences of the Algorithm for Problem C2 on a general mesh

In chapter 3.3.2 we discussed the algorithm to solve problem C2 on a mesh of squares. In this
chapter we are going to generalize this result to a mesh of arbitrary quadrilateral elements. We
will see that the differences are only of technical nature and that all essential ideas have already
been derived. All results until including criterion 3.22 are the same. The only difference is,
that we are not able to apply criterion 3.24 to identify nodes s and t in (r, s, t, u) ∈ Sz123

i

in order to simplify the minimization problem (3.20). Therefore we need to introduce two
additional unknowns in (3.16) which correspond to nodes s and t with the previous coefficients
2
9 . This makes the minimization problem more technical and complex, but does not change
the general approach.

We have to choose a more general representation for our linear function ψi(x) than (3.16) by
using four instead of two unknowns. For any fixed i ∈ Sa we have

ψi(x) = γi(x) +
ni∑

n=1

(αnγjn(x) + (1− αn)γkn
(x)) + . . .

(3.33)
mi∑

m=1

(

β1
mγrm(x) + β2

mγsm(x) + β3
mγtm(x) + (1− β1

m − β
2
m − β

3
m)γum(x)

)

,

where (jn, kn) is the n-th index in Seei , (rm, sm, tm, um) is them-th index in Szzi and αl, β
1
m, β

2
m,

β3
m ∈ [0, 1] for n = 1, . . . , ni, m = 1, . . . ,mi are the unknown parameters.

We are interested in the algebraic properties of {αn}
ni
n=1, {β1

m}
mi
m=1, {β2

m}
mi
m=1 and {β3

m}
mi
m=1.
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As a first step we reorder (3.33) by its coefficients

ψi(x) = γi(x) +
ni∑

n=1

γkn
+

mi∑

m=1

γum

︸ ︷︷ ︸

=:ϕ(x)

+
ni∑

n=1

αn (γjn − γkn
)

︸ ︷︷ ︸

=:ϕ̃n(x)

+ . . .

mi∑

m=1

β1
m (γrm − γum)
︸ ︷︷ ︸

=:θ1
m(x)

+β2
m (γsm − γum)
︸ ︷︷ ︸

=:θ2
m(x)

+β3
m (γtm − γum)
︸ ︷︷ ︸

=:θ3
m(x)

= ϕ(x) +
ni∑

n=1

αnϕ̃n(x) +
mi∑

m=1

β1
mθ

1
m(x) + β2

mθ
2
m(x) + β3

mθ
3
m(x) (3.34)

Define λ := (α1, . . . , αni
, β1

1 , . . . , β
1
mi
, β2

1 , . . . , β
2
mi
, β3

1 , . . . , β
3
mi

)
⊤

and recap the functional of
equation (3.18) given by

J(λ) = a(ψi, ψi),

where a(·, ·) is the bilinear form of our model problem (1.1). In a similar way as in the special
case we define Mi := ni + 3mi and the functions

ηj := ϕ̃j j = 1, . . . , ni,

ηj := θ1
j−ni

j = ni + 1, . . . , ni +mi,

ηj := θ2
j−ni−mi

j = ni +mi + 1, . . . , ni + 2mi,

ηj := θ3
j−ni−2mi

j = ni + 2mi + 1, . . . ,Mi.

This results in the following shorter notation for (3.34) which has the same structure as (3.19).

ψi(x) = ϕ(x) +
Mi∑

j=1

λjηj(x) (3.35)

Due to the same representation of (3.35) as in the previous chapter, the definition of the
minimization problem (3.20) and the derivation (3.21) are identical. The only change is a
different number Mi, which however does not influence these results. But we are able to give
a more general result than theorem 3.25.

Theorem 3.29: There exists a unique solution vector

λ∗ = (α∗
1, . . . , α

∗
ni
, β1,∗

1 , . . . , β1,∗
mi
, β2,∗

1 , . . . , β2,∗
mi
, β3,∗

1 , . . . , β3,∗
mi

)
⊤

of the minimization problem (3.20). Moreover, the solution

ψ∗
i (x) = γi(x) +

ni∑

n=1

(α∗
nγjn(x) + (1− α∗

n)γkn
(x)) + . . .

(3.36)
mi∑

m=1

(

β1,∗
m γrm(x) + β2,∗

m γsm(x) + β3,∗
m γtm(x) + (1− β1,∗

m − β
2,∗
m − β

3,∗
m )γum(x)

)

,
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must be the basisfunction ψi(x) of the linear finite element related to the node xi.

Proof: The proof is analogous to the proof of theorem 3.25. �

Theorem 3.29 implies that we have to solve a similar linear system to (3.23)

Âλ = F̂ (3.37)

in order to determine Se12
i and Sz123

i .

The structure of the coefficient matrix Â and the the right hand side vector F̂ is more complex
than in the special case of squares. In the following we will use the index sets Iα := {1, . . . , ni},
I1
β := {ni+1, . . . , ni+mi}, I

2
β := {ni+mi+1, . . . , ni+2mi} and I3

β := {ni+2mi+1, . . . ,Mi}

as a shorthand. Furthermore we define the vectors ϕ̃ = (ϕ̃1, . . . , ϕ̃ni
)⊤, θ1 = (θ1

1, . . . , θ
1
mi

)
⊤

,

θ2 = (θ2
1, . . . , θ

2
mi

)
⊤

and θ3 = (θ3
1, . . . , θ

3
mi

)
⊤

which are used in the following matrix notation:

a(ϕ̃, ϕ̃) = (âjm)j,m∈Iα
,

a(ϕ̃, θ1) = (âjm)j∈Iα,m∈I1
β
,

a(ϕ̃, θ2) = (âjm)j∈Iα,m∈I2
β
,

a(ϕ̃, θ3) = (âjm)j∈Iα,m∈I3
β
, a(ϕ̃, ϕ) = (a(ϕ̃j , ϕ))j∈{1,...,ni}

,

a(θ1, θ1) = (âjm)j,m∈I1
β
, a(θ1, ϕ) =

(

a(θ1
j , ϕ)

)

j∈{1,...,mi}
,

a(θ1, θ2) = (âjm)j∈I1
β
,m∈I2

β
, a(θ2, ϕ) =

(

a(θ2
j , ϕ)

)

j∈{1,...,mi}
,

a(θ1, θ3) = (âjm)j∈I1
β
,m∈I3

β
, a(θ3, ϕ) =

(

a(θ3
j , ϕ)

)

j∈{1,...,mi}
,

a(θ2, θ2) = (âjm)j,m∈I2
β
,

a(θ2, θ3) = (âjm)j∈I2
β
,m∈I3

β
,

a(θ3, θ3) = (âjm)j,m∈I3
β
.

By these definitions we see, that

Â =








a(ϕ̃, ϕ̃) a(ϕ̃, θ1) a(ϕ̃, θ2) a(ϕ̃, θ3)
a(θ1, θ1) a(θ1, θ2) a(θ1, θ3)

a(θ2, θ2) a(θ2, θ3)
a(θ3, θ3)







, F̂ =








−a(ϕ̃, ϕ)
−a(θ1, ϕ)
−a(θ2, ϕ)
−a(θ3, ϕ)







.

Note that the missing gentries in Â can be obtained by symmetry. The entries of the coefficient
matrix Â and the entries of the right hand side vector F̂ can be expressed as
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âlm = a(ηl, ηm) =







a(ϕ̃l, ϕ̃m) = ajl,jm − ajl,km
− akl,jm

+ akl,km
, l,m ∈ Iα,

a(ϕ̃l, θ
1
m) = ajl,rm − ajl,um − akl,rm

+ akl,um
, l ∈ Iα,m ∈ I

1
β,

a(ϕ̃l, θ
2
m) = ajl,sm − ajl,um − akl,sm

+ akl,um
, l ∈ Iα,m ∈ I

2
β,

a(ϕ̃l, θ
3
m) = ajl,tm − ajl,um − akl,tm + akl,um

, l ∈ Iα,m ∈ I
3
β,

a(θ1
l , θ

1
m) = arl,rm − arl,um − aul,rm + aul,um, l,m ∈ I1

β ,

a(θ1
l , θ

2
m) = arl,sm − arl,um − aul,sm + aul,um, l ∈ I1

β,m ∈ I
2
β,

a(θ1
l , θ

3
m) = arl,tm − arl,um − aul,tm + aul,um , l ∈ I1

β,m ∈ I
3
β,

a(θ2
l , θ

2
m) = asl,sm − asl,um − aul,sm + aul,um , l,m ∈ I2

β ,

a(θ2
l , θ

3
m) = asl,tm − asl,um − aul,tm + aul,um, l ∈ I2

β,m ∈ I
3
β,

a(θ3
l , θ

3
m) = atl,tm − atl,um − aul,tm + aul,um, l,m ∈ I3

β ,

l ∈ {1, . . . , ni} : (3.38)

f̂l = −a(ϕ̃l, ϕ) = −

[

(ajl,i − akl,i) +
ni∑

n=1

(ajl,kn
− akl,kn

) +
mi∑

m=1

(ajl,um − akl,um
)

]

,

l ∈ {1, . . . ,mi} :

f̂l+ni
= −a(θ1

l , ϕ) = −

[

(arl,i − aul,i) +
ni∑

n=1

(arl,kn
− aul,kn

) +
mi∑

m=1

(arl,um − aul,um)

]

,

f̂l+ni+mi
= −a(θ2

l , ϕ) = −

[

(asl,i − aul,i) +
ni∑

n=1

(asl,kn
− aul,kn

) +
mi∑

m=1

(asl,um − aul,um)

]

,

f̂l+ni+2mi
= −a(θ3

l , ϕ) = −

[

(atl,i − aul,i) +
ni∑

n=1

(atl,kn
− aul,kn

) +
mi∑

m=1

(atl,um − aul,um)

]

,

where anm, n,m = 1, . . . , N are the entries of the coefficient matrix A3
h in (3.9). As in the

biquadratic case we introduce a mapping between the indices l,m and l,m which is given by

l =







l if l ∈ Iα,

l− ni if l ∈ I1
β,

l− 2ni if l ∈ I2
β,

l− 3ni if l ∈ I3
β,

and analogous for m and m.

By theorem 3.29, the components of the solution vector λ of the linear system (3.37) can
only be out of a finite number of values. The first ni components, which are α1, . . . , αni

must
be equal to 1

3 or 2
3 . The following 3mi components, which are β1

1 , . . . , β
1
mi

, β2
1 , . . . , β

2
mi

and
β3

1 , . . . , β
3
mi

must be equal to 1
9 , 2

9 or 4
9 .

λ =

(
1

3
/

2

3
, . . . ,

1

3
/

2

3
︸ ︷︷ ︸

α1,...,αni

,
1

9
/

2

9
/

4

9
, . . . ,

1
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Thus we get the following criterion to determine Se12
i and Sz123

i for any fixed i ∈ Sa.

Criterion 3.30: For any fixed i ∈ Sa let

λ∗ = (α∗
1, . . . , α

∗
ni
, β1,∗

1 , . . . , β1,∗
mi
, β2,∗

1 , . . . , β2,∗
mi
, β3,∗

1 , . . . , β3,∗
mi

)
⊤

be the solution vector of equation (3.37) where the entries of the coefficient matrix and the
components of the right hand side vector are defined by (3.38).

If α∗
l = 2

3 then (jl, kl) ∈ S
e12
i , otherwise (kl, jl) ∈ S

e12
i .

If β1,∗
l =







1
9 then (rl, ∗, ∗, ∗) ∈ S

z123
i ,

2
9 then (∗, rl, ∗, ∗) ∈ S

z123
i or (∗, ∗, rl, ∗) ∈ S

z123
i ,

4
9 then (∗, ∗, ∗, rl) ∈ S

z123
i .

If β2,∗
l =







1
9 then (sl, ∗, ∗, ∗) ∈ S

z123
i ,

2
9 then (∗, sl, ∗, ∗) ∈ S

z123
i or (∗, ∗, sl, ∗) ∈ S

z123
i ,

4
9 then (∗, ∗, ∗, sl) ∈ S

z123
i .

If β2,∗
l =







1
9 then (tl, ∗, ∗, ∗) ∈ S

z123
i ,

2
9 then (∗, tl, ∗, ∗) ∈ S

z123
i or (∗, ∗, tl, ∗) ∈ S

z123
i ,

4
9 then (∗, ∗, ∗, tl) ∈ S

z123
i .

The value ul takes the last remaining space in the group of βs associated with index l. �

The final algebraic multigrid algorithm for a general quadrilateral mesh is constructed by the
same first four criteria 3.17, 3.20, 3.21 and 3.22 as in the special case with a square mesh.
Criterion 3.24 cannot be used in this case and criterion 3.28 is replaced by 3.30. With these
results we can get the Na ×N restriction operator PHh from A3

h to A1
h.

We define P hH := (PHh )
⊤

and A1
h := PHh A

3
hP

h
H . The changes to algorithm 3.9 in order to solve

(3.9) are only in the setup phase, the solution phase stays the same.

Algorithm 3.10 Setup Phase of Modified Algorithm for the bicubic Lagrangian FEM-
Equation on a general quadrilateral mesh

1: Setup:

2: Find the flag array Iaez by criteria 3.17 and 3.20
3: Find sets Sei , S

z
i , Rej , R

z
j , E

e
r and Ezr by criterion 3.21

4: Find sets Se12
i and Sz123

i by criteria 3.22 and 3.30
5: Construct the restriction operator PHh by (3.13)

6: Construct the prolongation operator P hH =
(

PHh

)⊤

7: Construct the coarse matrix A1
h = P hHA

3
hP

H
h
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Chapter 4

Implementations

In the following chapter we introduce the basic behavior of the implemented codes and give
an overview of the code structure. A detailed documentation can be found on the enclosed
CD at the head of each subprogram, where the input/output-variables and the behavior are
described.

The established theory and the resulting algorithms have been implemented in Fortran 95
[1,8,25,26] in the software package maiprogs which has been developed by Matthias Maischak.
It provides implementations of standard data types like sparse matrices and vectors and
functions for their management, fast and efficient algorithms which are often used in numerical
mathematics and a big variety of FEM and BEM (boundary element method) procedures
which allow personal customizations on an abstract level. For that reason the script language
BCL is used, in which a problem and the solution strategy is defined, while all technical aspects,
like computations and data management is done in the background. The computed results
can be accessed from the BCL-level and used for further computations. For more details we
refer to the following documents: The concept of the software package is described in [20], key
aspects of the technical implementations can be found in [21] and applications with sample
scripts are listed in [22].

The classical multigrid method has already been implemented in the software package in the
subroutine fmg in the module mlfbas, and therefore the classical smoothers like Gauss-Seidel,
Jacobi or SOR-iterations are already available. In our AMG methods which are used in the
numerical experiments of the following chapter 5, these preimplemented routines have been
used. All other parts have been written independently and as an extension to maiprogs and
can be found on the enclosed CD.

The codes are grouped in five different modules which are described in table 4.1. In order
to start the solving process the module amg is used. The core modules are coarsening and
amgip as they implement all necessary algorithms for the setup phase of AMG, whereas the
modules wutil and cdef contain administrative functions and data type definitions.

The setup and solution process is started by calling the subprogram amg22 which is contained
in the module amg. All other functions and programs are called automatically by specifying
the desired parameters. This subprogram is the most important one as well as the only one
that should be called directly by the user. The most important parameters and their values
are described below. More details about the other values can be found on the enclosed CD.
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Module Description

amg Routines for starting the solution process and solving a linear system (aris-
ing from higher-order FEM discretization) with AMG

coarsening Coarsening procedures
amgip Routines which initialize the restriction (interpolation) operator
wutil Utilities for the AMG programs, e.g. bubble sort, error messages, ...
cdef AMG coarsening data type definitions

Table 4.1: Module Structure

The solution process is visualized in figure 4.1 (cf. algorithm 2.2). First amg22 is called
and starts the subprogram iniamg22 which implements the setup phase. After that the
subprogram amg22 starts the solution phase which generally can be done in two different
ways. Either a classical V - or W -cycle is applied by calling the subprogram fmg which is
already part of maiprogs or a special cycle type, a V0(m0)-cycle is started (see figure 5.1),
which has been implemented by our codes. The decision depends on the value of the variable
muf, if it is greater zero a V0(m0)-cycle with m0 = muf is performed, otherwise a V - or W -cycle
is executed.

amg22

iniamg22

solution type
variable "muf"

solve with fmg
solve with own code 

in amg22

V0(m0)-
cycle

V/W-
cycle

muf > 0 muf = 0

Figure 4.1: Implemented AMG solution process

Figure 4.2 represents the intern solution process in a flow chart (cf. algorithm 2.1). The
arrows indicate the order in which the individual routines are called. The choice of the
coarsening/prolongation strategy depends on the variables cstr/pstr. The entire setup phase
is performed by the subprogram coarsenamg22 which is in the center of this figure. First the
system matrix which is stored in a sparse CSR-format is sorted row by row with respect to
the column offsets. In the notation of section 1.2 this means, that the values in AA between
IA(i) and IA(i+ 1)− 1 are sorted with respect to the corresponding entries in JA for every
i = 1, . . . , N . This step can be performed in nearly linear time as the sets are normally
nearly sorted, which is why bubble sort had been chosen. In particular many operations on
sets have been optimized by assuming a sorted ordering (cf. section 1.6.1). After this step
coarsenamg22 generates the coarser levels by calling a coarsening and prolongation routine
iteratively until a stopping criterion is reached. This is either reaching

• a maximum number of levels (variable mnum) or
• less or equal 40 unknowns in the current level or
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• a density of the current system matrix over 60% or
• no change in the coarser system.

amg22 iniamg22 coarsenamg22

bubble_sort

inirs inifemplin inifemp2 inifemp3 iniagg

dirpro dirpro2 stdpro

femplinpro

femp2pro femp2pror

femp3pro femp3pror femp3prorgen

aggpro

Figure 4.2: Implemented AMG Setup Phase

All subprograms contained in the module coarsen are shown in circles, the subroutines of
amgip are depicted by hexagons and the functions in rectangles are either in amg or wutil.
The table 4.2 gives an overview of the available coarsening functions and which value of the
cstr variable chooses this option.

Subprogram Description cstr Details Section

inirs Classical RS-Coarsening 0/1 normal/weaker form 2.4.2
inifemplin Hierarchical Basis, arb. p 11/21 triangles/rectangles 5.3
inifemp2 Higher-Order FEM for p = 2 12/22 triangles/rectangles 3.2
inifemp3 Higher-Order FEM for p = 3 13/23 triangles/rectangles 3.3
iniagg Smoothed Aggregation −2 — 2.4.1

Table 4.2: Coarsening options and their subprograms

Analogously, table 4.3 describes the available restriction/prolongation functions and which
values of the pstr variable choose these options.

In the case of a hierarchical basis an arbitrary degree p for the FEM-basis can be chosen, but
it has to be specified in the variable p. Experiments in section 5.3 have been undertaken up
to degree 8 and show the applicability and efficiency of the theory even for higher degrees
than p = 3.

At the end we provide a list of all algorithms, which were developed in the previous chapters,
including the details of where they can be found. A detailed description of the behavior is
included before every subprogram on the enclosed CD.

Table 4.4 states the implementations of all mentioned algorithms, and table 4.5 completes the
list of all theoretically discussed topics which were not mentioned explicitly as algorithms,
but still resulted in implementations.
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Subprogram Description pstr Details Section

dirpro Direct Interpolation 1 no difference for +/− [45, p. 222]
dirpro2 Direct Interpolation 2 pos./neg. connections 2.5.2
stdpro Standard Interpolation 3 fastest of the 3 2.5.3

femplinpro Hierarchical Basis, arb. p 11/21 triangles/rectangles 5.3
femp2pro HO FEM for p = 2 12 triangles [31, pp. 355]
femp2pror HO FEM for p = 2 22 rectangles 3.2
femp3pro HO FEM for p = 3 13 triangles [31, pp. 361]
femp3pror HO FEM for p = 3 231 squares 3.3

femp3prorgen HO FEM for p = 3 23 rectangles 3.3.3
aggpro Smoothed Aggregation −1 — 2.5.1

Table 4.3: Restriction/Prolongation options and their subprograms

Alg. Description Module Subprogram

2.1 AMG Setup Phase amg iniamg22

2.2 AMG Solve Phase amg amg22

2.3 One step of a general iterative solution
method used in the smoothing process

amg smooth

2.4 Aggregation coarsening aggregate

2.5 RS Coarsening, First pass coarsening rs1pass

2.6 RS Coarsening, Second pass coarsening rscolor

2.7 Construction of tentative prolongator amgip aggpro

2.8 Setup of filtered matrix AFh amgip createah

2.9 Matrix-Matrix product AFh Y
k
k+1 to setup

restriction operator Rk

amgip smoothpro

3.1 Two-Level Algorithm for the biquadratic
Lagrangian FEM-Equation (theoretical)

— —

3.2 Generate Rbcj and Ebck for p = 2 coarsening setnbp2

3.3 Generate Sb1
i for p = 2 for triangular and

rectangular case, respectively
amgip femp2pro/femp2pror

3.4 Final AMG algorithm for the biquadratic coarsening inifemp2 and
Lagrangian FEM-Equation femp2pro/femp2pror

3.5 Generate Seei for p = 3

amgip femp3pro
3.6 Generate Szzi for p = 3

3.7/3.8 Setup of linear system to compute Se12
i and

Sz123
i for p = 3

3.9 Final AMG algorithm for the bicubic La- coarsening inifemp3 and
grangian FEM-Equation on squares femp3pror

3.10 Final AMG algorithm for the bicubic La- coarsening inifemp3 and
grangian FEM-Equation on a general mesh femp3prorgen

Table 4.4: Implementations of developed algorithms
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Subprogram Module Called by Description Theory

amgcomp amg amg22 Computes grid and operator com-
plexity

Table 2.1

inistrongcon coarsening inirs Initializes strong connections by
generating sets Si and S⊤

i for i =
1, . . . , N

Def. 2.7

inistrongcoup coarsening iniagg Initializes strongly coupled neigh-
borhoods Nk

i (θ)
Def. 2.4

setnbp3 coarsening inifemp3 Creates Rej , R
z
j , E

e
r and Ezr for j ∈

Se and r ∈ Sz

Crit. 3.21

validneigh coarsening setnbp3 Checks general assumptions for
triangulations; used on unstruc-
tured grid for croissant-like do-
main in section 5.5

Ass. 3.4

Table 4.5: Other used subprograms with theoretical connections

72



Chapter 5

Numerical Experiments

In the previous chapters we developed the theory for several algebraic multigrid methods.
We will apply it to several model problems and present the results in the following chapter.
The implementation was done in Fortran 95 [1,8,25,26] and is based on the software package
maiprogs by Matthias Maischak [20,22]. For more details see chapter 4.

5.1 Hardware

The developed programs were written and benchmarked on two independent platforms.

1. A personal notebook equipped with an Intel Core i7-2630QM (2.00 GHz) CPU and 8
GB RAM memory on Ubuntu Linux 12.04 LTS (64 bit) was used. The processor has
four physical cores and is able to run up to eight threads via OpenMP.

2. A server equipped with two Intel Xeon E5630 (2.53 GHz) CPUs and 24 GB RAM
memory on OpenSUSE 11.4 (64 bit) was used. Each processor has four physical cores
and is able to run up to eight threads via OpenMP.

All following experiments, except the last one in section 5.5, were carried out on the server
system.

5.2 Performance of New AMG Algorithm

We consider the model problem (1.1) on the domain Ω = [−1, 1]2 \ [0, 1]2, called the L-shape.
In particular, we are going to deal with a discontinuous coefficient problem, with

f(x1, x2) = 2π2 sin(πx1) sin(πx2),

a(x1, x2) =

{

c, x2 > 0,

1, x2 ≤ 0.

The AMG algorithm used for this experiment is a parallel variant of [37] and introduced in
chapters 2.4.1 and 2.5.1. For simplicity of presentation, we will call this method Algorithm SA.
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The used algorithm in [31] is called Algorithm V and is based on an energy minimizing ap-
proach (developed in [23], see also [32,42]). If we want to point out similarities and differences
to our Algorithm SA we will mention it as Algorithm V. In the following investigations the
details of this algorithm are not crucial, and it could be replaced by any AMG algorithm.
We are mainly interested in how any of these algorithms can by improved by the techniques
developed in chapter 3. The new algorithm will be called new (higher-order) AMG method
or Algorithm HO, where these two terms will be used synonymously.

The investigated cases are the bilinear (p = 1), the biquadratic (p = 2) and the bicubic (p = 3)
one. The domain Ω was discretized on a uniform mesh of quadrilaterals and we always use
the SOR iteration with relaxation factor ω = 4/3 as a pre- and postsmoothing operator with
the number of m1 = 3 pre- and m2 = 3 postsmoothing steps. As iteration control precision
‖xk − xk−1‖/‖xk‖ < 10−8 we measure the relative change in the solution vector, where xk is
the solution vector after the k-th iteration.

The performance of Algorithm SA is measured in terms of the number of V−cycle iterations
and CPU wall times in seconds. Our experiments in tables 5.1 and 5.2 show, that the choice
of the discontinuous coefficient nearly does not influence the performance of Algorithm SA.
A similar experiment in [42, p. 1644] leads to the same result: AMG methods in general do
not depend on the size of the jump. Additionally we see that Algorithm SA performs best
on bilinear Lagrangian finite elements. This robust and efficient properties hold as well if
Algorithm SA is replaced by a different method and also if triangular elements are chosen
instead of rectangular ones (see [31, pp. 352]).

With increasing order of the finite element functions, the stiffness matrices become denser,
which is the reason why coarsening techniques become more complicated and it is more
difficult to control the coarse grid degrees of freedom. However, Algorithm SA possesses good
properties for FEM functions of higher degrees, as its CPU times and iteration numbers are
far lower than the ones of Algorithm V. This is still true when applying Algorithm SA to a
uniform triangulation and results in similar results which are omitted for brevity.

The above discussion motivates the idea of the new AMG algorithms: Use the bilinear finite
element space as the first coarser level, then apply a classical AMG method on the bilinear
finite element space. By this method the first coarser matrix is the stiffness matrix which
corresponds to the bilinear finite element functions. This leads to a very aggressive first
coarsening step, as all functions of degree p ≥ 2 are interpolated by functions of degree p = 1.

From tables 5.3 and 5.4 we see, that our new AMG algorithm is more efficient than the
classical AMG Algorithm SA. It is on average 2 times faster than the classical Algorithm SA
which is applied directly to the linear system.

Experiments have shown, that the performance of Algorithm SA can be further increased by
a specially chosen AMG cycle. The first coarsening step is always the most expensive one,
which motivates the idea of performing it less often than the others. This is achieved by
repeating the V -cycles of levels 1 −M m0 times, where 0 is the finest and M the coarsest
level (see Fig. 5.1). We call this type V0(m0)-cycle. The tables 5.5 and 5.6 show the results
of the tables 5.3 and 5.4 with m0 = 4.

If one multiplies the iteration numbers of the tables 5.5 and 5.6 by m0 = 4 the numbers
are roughly of the same magnitude as the iteration numbers of performed V -cycles. Hence,
loosely speaking, one V0(m0)-cycle consists of approximately m0 V-cycles. But the CPU times
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p = 1 p = 2 p = 3
Elements CPU times Iterations CPU times Iterations CPU times Iterations

16× 16 0.00 6 0.01 15 0.04 22
32× 32 0.01 11 0.05 19 0.17 27
64× 64 0.03 12 0.18 23 0.70 33

128× 128 0.13 19 0.74 29 3.34 41
256× 256 0.43 18 3.25 33 13.29 41
512× 512 2.02 22 15.16 42 59.70 48

1024 × 1024 8.99 28 70.96 51 277.93 58

Table 5.1: Performance in CPU times [s] and V -cycles of Algorithm SA with c = 1

p = 1 p = 2 p = 3
Elements CPU times Iterations CPU times Iterations CPU times Iterations

16× 16 0.00 6 0.01 15 0.04 23
32× 32 0.01 11 0.05 19 0.19 31
64× 64 0.03 12 0.18 24 0.67 31

128× 128 0.13 21 0.75 31 3.81 48
256× 256 0.43 18 3.24 33 13.72 43
512× 512 1.94 22 14.92 41 64.93 53

1024 × 1024 9.75 32 71.00 51 274.14 57

Table 5.2: Performance in CPU times [s] and V -cycles of Algorithm SA with c = 1000

c = 1 c = 1000
Elements DOF CPU times Iterations CPU times Iterations

16× 16 705 0.01 6 0.01 6
32× 32 2945 0.03 10 0.03 10
64× 64 12033 0.13 12 0.13 12

128× 128 48641 0.60 19 0.64 21
256× 256 195585 2.32 18 2.26 17
512× 512 784385 10.62 22 10.61 22

1024 × 1024 3141633 49.69 28 50.08 28

Table 5.3: Performance in CPU times [s] and V -cycles of the new AMG method for p = 2
(see algorithm 3.4)
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c = 1 c = 1000
Elements DOF CPU times Iterations CPU times Iterations

16× 16 1633 0.02 7 0.02 6
32× 32 6721 0.10 11 0.10 11
64× 64 27265 0.39 12 0.39 12

128× 128 109825 2.09 19 2.14 21
256× 256 440833 7.80 18 7.58 17
512× 512 1766401 35.24 22 35.31 22

1024 × 1024 7071745 164.39 28 164.58 28

Table 5.4: Performance in CPU times [s] and V -cycles of the new AMG method for p = 3
(see algorithm 3.10)

0

1

2

3

4

Figure 5.1: V0(m0)-cycle for m0 = 4 and M = 4

are far lower than in the tables above. This variant is on average 2− 3 times faster than the
original Algorithm SA.

Figures 5.2 and 5.3 combine the last results for c = 1. The graphs for c = 1000 are very similar,
as the numbers are nearly the same. In figure 5.2 the x-axis only is scaled logarithmically
whereas in figure 5.3 this applies for both axes in order to visualize the entire range of values.
The abbreviation SA denotes Algorithm SA, HO stands for Algorithm HO and V4-cylce is
short for V0(4)-cycle.

The left plot in figure 5.2 presents the number of iterations if a V-cycle is used whereas the
right plot deals with the V0(4)-cycle variant. Additionally to the tables above, the right plot
contains the results for Algorithm SA combined with a V0(4)-cycle. Both figures show clearly

c = 1 c = 1000
Elements DOF CPU times Iterations CPU times Iterations

16× 16 705 0.01 6 0.01 6
32× 32 2945 0.03 5 0.03 5
64× 64 12033 0.09 4 0.09 4

128× 128 48641 0.42 6 0.45 7
256× 256 195585 1.61 6 1.49 5
512× 512 784385 6.94 7 6.91 7

1024 × 1024 3141633 29.71 8 33.09 9

Table 5.5: Performance in CPU times [s] and V0(4)-cycles of the new AMG method for p = 2
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c = 1 c = 1000
Elements DOF CPU times Iterations CPU times Iterations

16× 16 1633 0.02 6 0.02 6
32× 32 6721 0.08 5 0.08 5
64× 64 27265 0.30 5 0.30 5

128× 128 109825 1.31 6 1.36 7
256× 256 440833 5.09 6 4.84 5
512× 512 1766401 22.16 7 22.28 7

1024 × 1024 7071745 91.62 8 95.91 9

Table 5.6: Performance in CPU times [s] and V0(4)-cycles of the new AMG method for p = 3

that the new Algorithm HO suffices with far less iterations than the classical Algorithm SA.
Furthermore the left plot is a very good presentation of how the new method works: The
graphs of Algorithm SA for p = 1 and the new Algorithm HO for p = 2 and p = 3 have nearly
the same shape, but are shifted along the axis of the degrees of freedom. This can be best
explained by the basis behavior of Algorithm HO, if we interpret it as a two-level method.
First the method coarsens onto the bilinear finite element space (which shifts the graph HO,
p = 2 or p = 3 to the right) and then applies Algorithm SA on this space (which corresponds
to graph SA, p = 1).

The right plot shows, that V0-cylces are of no big advantage in the early stage of Algorithm
SA, as they correspond to 4 V -cycles. It is interesting to discover, that despite increasing
degrees of freedom, the amount of V0-cycles is nearly constant. We can draw the conclusion
that the most efficiency can be obtained by combining Algorithm HO with V0-cycles.

The comparison of the CPU times in figure 5.3 shows a similar picture. If we fix p = 2
or p = 3 and compare the corresponding graphs we see, that Algorithm SA using V-cycles
is always the slowest and Algorithm HO using V0-cycles is always the fastest method. The
magnitude of the times for Algorithm HO using V-cycles and Algorithm SA using V0-cycles
are the same, but they are always between the previously mentioned methods. This implies
that an optimization of the cycle-type or the algorithm brings the same boost in performance.
Hence we come to the same conclusion, that the combination of both ideas leads to the most
efficient method.

At the end of this section we want to investigate the V0(m0)-cycle for different choices of m0.
For this purpose we compare in the tables 5.7 and 5.8 solution times without setup times for
the smoothed aggregation algorithm (SA) using a V -cycle with our new AMG method for
increasing values m0 using a V0(m0)-cycle, where a hyphen denotes a classical V -cycle. As
a model problem we choose the above L-shape with c = 1 and p = 3. The tables show the
results for a triangular and quadrilateral mesh, respectively and iteration control precision
equal to 10−8 as before.

The solution times show clearly that the V0(m0)-cycle is of advantage for this kind of solution
strategies. Taking into account that the coarsening process from a bicubic to a bilinear finite
element space decreases the degrees of freedom immensely, the restriction and prolongation
between these two levels are by far the most expensive operations of the entire cycle. By
applying a V0(m0)-cycle, the linear system of level 1 is solved more accurately which results
in possibly more total iterations, but as the iterations from level 1 to M are very fast, because
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they deal with a far lower number of unknowns, this leads to remarkably lower solution times.
The tables show additionally that this effect can be achieved on quadrilateral as well as on
triangular meshes. Moreover, we see a decrease of the solution times even for bigger values
than m0 = 4. On some point more cycles on the coarser levels are not of advantage anymore,
but this effect is only visible for the coarser meshes. The times on the finest mesh decrease
in every step. Thus, the optimal value of m0 depends on the number of unknowns and the
complexity of the problem, but is not known in advance. In consequence of this fact the value
m0 = 4 was chosen for the computations above, as it leads to very good solution times in all
investigated cases.

Algorithm m0 128× 128 256 × 256 512× 512 1024 × 1024

SA — 3.33 16.50 72.81 310.86
HO — 0.83 3.90 22.72 90.68
HO 2 0.49 2.38 12.92 53.26
HO 3 0.40 1.79 10.59 40.61
HO 4 0.36 1.63 9.01 34.75
HO 5 0.38 1.44 7.17 33.78
HO 6 0.40 1.52 7.55 30.22
HO 7 0.43 1.61 6.65 26.54

Table 5.7: Comparing solution times of V0(m0) for p = 3 and c = 1 on triangular mesh

Algorithm m0 128× 128 256 × 256 512× 512 1024 × 1024

SA — 3.37 12.59 59.19 292.67
HO — 1.56 5.65 27.75 142.20
HO 2 0.88 3.34 16.11 81.20
HO 3 0.65 2.54 11.30 64.04
HO 4 0.58 2.27 10.35 49.45
HO 5 0.51 1.99 9.27 45.28
HO 6 0.54 1.60 8.09 40.28
HO 7 0.56 1.67 6.75 34.91

Table 5.8: Comparing solution times of V0(m0) for p = 3 and c = 1 on quadrilateral mesh

5.3 A Bound for the Polynomial Degree p – A Hierarchical

Basis

The methods developed in the previous chapters are restricted to a Lagrangian finite element
basis. We consider now a straightforward adaption to the case of a hierarchical basis and we
will use this case to analyze the behavior of the main idea, the interpolation of grid points
corresponding to basis functions of degree p ≥ 2 by grid points corresponding to bilinear basis
function (p = 1), on degrees p ≥ 4. For more information about a hierarchical basis we refer
to [21].

Our new AMG algorithm basically consists of two levels. First, we have to identify grid points
i ∈ Sa among all grid points S associated with bilinear basis functions ψi(x). Second, the
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remaining points have to be sorted according to their geometry in relation to the nodes in
Sa. This process involves the distinguishing between grid points on edges and on elements,
followed by the possible (re)ordering, i.e. solving a minimization problem like (3.20). Finally,
the first coarse matrix, which is the one of the bilinear finite element space, is constructed
and the intergrid transfer operators are initialized. This ends level 1, the setup of the bilinear
finite element space. In level 2 a classical AMG algorithm, like Algorithm SA, is applied to
solve the problem.

The main effort in phase 1 is the construction of the bilinear basis functions ψi(x) in (3.6)
and (3.13). This step is necessary, due to the fact that ψi(x) is neither a member of {φi}i∈S
nor of {γi}i∈S , the families of basis functions for Lagrangian finite elements in the cases p = 2
or p = 3, respectively. But if we use a hierarchical basis, the bilinear basis functions will be
part of the family of basis functions for any degree p ≥ 1. Hence, the only necessary step
in level 1 is the identification of grid points i ∈ Sa which is achieved by a simple counting
argument.

We have always distinguished three types of nodes:

1. Points on a vertex
2. Points on an edge
3. Points in an element

The first ones, are the ones we are looking for, represented in the set Sa. To find them we
analyze their interaction with other points in the stiffness matrix Aph. By compact support
arguments it holds, that rows in Aph associated with points of type 2 or 3 always have less
entries than rows corresponding to points of type 1 (compare criteria 3.6 and 3.17). These
entries are called neighbors of the node or basis function i.

In the construction of basis functions in two dimensions, the x- and y-axis of the reference
triangle or rectangle is split into p+1 distinct nodes each. The interpolation points are defined
as the Cartesian product of these nodes. A function of degree p is completely determined
by its values at these (p+1)(p+2)

2 nodes on a triangle or (p + 1)2 nodes on a rectangle. After
transforming and combining these reference basis functions to global basis functions, we
obtain three distinct types given in table 5.9. For a more detailed description and derivation
see chapter 1.4.

Nodal Type Associated with Name Nr. Elements in Support

1 Vertex Nodal Function ≥ 3
2 Edge Edge Function 2
3 Element Bubble Function 1

Table 5.9: Basis Function Types

This allows us to uniquely identify type-a nodes, by computing the maximum number of
possible neighbors of type 2, as type-a nodes have more neighbors than that. Note, that
because of the restricted support, points of type 3 will always have less neighbors than points
of type 2. Thus, we have derived the general result of criteria 3.6 and 3.17.

Criterion 5.1: For any p ≥ 1 and any index i ∈ S, if there are more than (p + 1)2 nonzero
entries on a mesh of triangles or more than (2p+ 1)(p+ 1) on a mesh of quadrilaterals in the
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row i of the matrix Aph, then the node xi related to the index i is a type-a node. �

With these results we are going to solve the following specification of problem (1.1) on the
Square Ω = [−1, 1]2 with

f(x1, x2) = −2(1− x2
1)− 2(1 − x2

2),

a(x1, x2) ≡ 1.

The domain Ω is discretized on a uniform mesh of triangles and quadrilaterals and we always
use the point Gauss-Seidel iterations as a pre- and postsmoothing operator with the number
of m1 = 3 pre- and m2 = 3 postsmoothing steps. The iteration control precision is chosen
bigger than before as ‖xk −xk−1‖/‖xk‖ < 10−6. Iterations are measured in classical V -cycles
of the respective algorithm and are aborted after a maximum of 1000.

The tables arise from a uniform discretization of the square [−1, 1]2 in 32 or 64 parts in each
dimension. All tables clearly illustrate the high efficiency of the classical AMG Algorithm SA
on a stiffness matrix associated with a bilinear finite element space. Comparing Algorithm
SA for p = 1 with the cases for p ≥ 2 in the tables 5.10, 5.11, 5.12 and 5.13 shows, that 10−20
times less iterations than in the higher dimensional cases are necessary and that the solution
times are much lower. On the one hand this is due to a smaller finite element space, which
implies less degrees of freedom in the linear system, but on the other hand is the difference
to the other cases in no relation to the increase in degrees of freedom.

All tables reflect the increase of complexity in the stiffness matrix for higher degrees p. Algo-
rithm SA has difficulties to handle these more complex structures, as the iteration numbers
are increasing dramatically for p ≥ 2. They nearly stay on a constant level for a quadrilateral
mesh, whereas they increase again substantially on triangular meshes for p ≥ 6. The exper-
iments with an iteration count of 1000 have been aborted, and are therefore of no value for
our interpretation.

Algorithm HO shows some robust features for even higher degrees than p = 3. It is interesting
to note, that the number of iterations is nearly constant for two consecutive values of p. This
could be explained by a similar structure in the corresponding stiffness matrix. In contrast to
Algorithm SA, the iterations do not remain on a constant level for increasing p. This can be
explained by the need to interpolate more and more fine grid points from the same amount
of coarse grid points on the first level. The tables 5.14 and 5.15 give details of the coarse
levels for the quadrilateral cases. The first step of coarsening for every higher-order problem,
is done onto the bilinear space. Hence, the levels 1−M (coarsest level: M) are identical for
all values of p. Only the finest level is different and shows the increasing degrees of freedom.

Moreover, the algorithm seems to be more efficient on quadrilateral meshes, than on triangular
ones. This is due to the current implementation of a hierarchical basis on triangles, which is
not optimized in the sense, that it is an energy minimizing basis, which in contrast is done
for the hierarchical basis on quadrilaterals.

Despite a very aggressive coarsening, the new AMG method still seems to be more efficient
than the classical method as the solution times in all cases are 2 − 10 times smaller. The
setup times of Algorithm HO are just stated for completeness, as knowledge of a hierarchical
basis simplifies this phase dramatically.
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Algorithm HO Algorithm SA
p Iterations Setup Times Solve Times Iterations Setup Times Solve Times

1 9 0.01 0.01 9 0.00 0.00
2 11 0.01 0.03 83 0.04 0.20
3 11 0.01 0.06 84 0.24 0.50
4 25 0.02 0.29 86 0.57 1.13
5 25 0.03 0.58 86 1.49 2.34
6 47 0.05 1.98 89 3.85 4.77
7 47 0.09 3.41 90 8.09 7.77
8 77 0.15 8.79 99 12.82 13.43

Table 5.10: Performance on hierarchical basis for uniform rec. mesh 32× 32 on [−1, 1]2

Algorithm HO Algorithm SA
p Iterations Setup Times Solve Times Iterations Setup Times Solve Times

1 16 0.02 0.03 16 0.02 0.02
2 16 0.03 0.11 287 0.17 1.88
3 16 0.04 0.33 292 1.06 6.38
4 24 0.07 1.12 295 2.49 15.71
5 24 0.13 2.25 295 6.68 32.40
6 44 0.22 7.36 296 17.45 60.37
7 44 0.36 12.47 296 36.89 107.83
8 70 0.60 31.61 298 58.52 168.00

Table 5.11: Performance on hierarchical basis for uniform rec. mesh 64× 64 on [−1, 1]2

All in all, the new AMG algorithm proves to be also very efficient for higher degrees than
p = 3. The question arises, how expensive the setup phase for these cases might be, as the
investigated structures are definitively more complicated than before. It is the question of
future investigations, if the advantage of a faster solution phase compensates for the costs of
a more complex setup phase.

At the end of this chapter, we want to compare parameters of the coarse grid hierarchies of
Algorithm SA with the one’s of other classical AMG methods, shown in table 5.16. In par-
ticular the weaker Ruge-Stüben (RS) algorithm in combination with standard interpolation,
the classical RS algorithm with standard interpolation and the classical RS algorithm with
direct interpolation are analyzed. As characteristic for the coarse grid hierarchy, we consider
the grid complexity (Grid C.) and the operator complexity (Op. C.) (see section 2.1).

The experiments are performed on the square [−1, 1]2 with a uniform discretization of 16×16
squares. We chose a smaller scale, as the presented algorithms are slower in the execution than
Algorithm SA. This is due to a less aggressive coarsening and denser coarse grid matrices.
This results in a more complex matrix chain product of the type RAP , which consumes here
more than 50% of the required setup time. If this problem could be solved, the algorithms are
more competetive to Algorithm SA than with the current implemenation. Most parts have
already been parallelized, but as mentioned before, is the matrix chain product the main
problem. A possible solution of a parallel matrix chain product using MPI is presented in [6]
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Algorithm HO Algorithm SA
p Iterations Setup Times Solve Times Iterations Setup Times Solve Times

1 11 0.01 0.01 11 0.00 0.01
2 10 0.01 0.02 139 0.02 0.24
3 11 0.01 0.05 136 0.11 0.58
4 13 0.01 0.11 132 0.39 1.22
5 53 0.02 0.83 138 0.60 2.29
6 261 0.04 7.32 651 0.96 18.92
7 433 0.07 19.76 1000 2.17 47.60
8 247 0.09 17.54 1000 4.54 76.64

Table 5.12: Performance on hierarchical basis for uniform tri. mesh 32× 32 on [−1, 1]2

Algorithm HO Algorithm SA
p Iterations Setup Times Solve Times Iterations Setup Times Solve Times

1 13 0.02 0.02 13 0.02 0.02
2 12 0.03 0.07 480 0.10 2.53
3 12 0.04 0.16 471 0.46 6.57
4 13 0.06 0.44 455 1.66 16.63
5 45 0.09 2.91 479 2.51 32.38
6 171 0.15 19.27 713 4.07 87.93
7 117 0.23 21.21 1000 9.21 186.45
8 176 0.35 48.85 1000 19.41 292.30

Table 5.13: Performance on hierarchical basis for uniform tri. mesh 64× 64 on [−1, 1]2

Number Number Density Average entries
p Level of rows of nonzeros (% full) per row

8 3 65025 6385729 0.002 98.20

7 3 49729 3948169 0.002 79.39

6 3 36481 2283121 0.002 62.58

5 3 25281 1207801 0.002 47.78

4 3 16129 564001 0.002 34.97

3 3 9025 218089 0.003 24.16

2 3 3969 61009 0.004 15.37

1 2 961 8281 0.009 8.62
1 1 121 961 0.066 7.94
1 0 16 116 0.453 7.25

Table 5.14: Coarsening for hierarchical basis on 32× 32 quadrilateral mesh of [0, 1]2

83



Number Number Density Average entries
p Level of rows of nonzeros (% full) per row

8 4 261121 25877569 0.000 99.10

7 4 199809 16024009 0.000 80.20

6 4 146689 9284209 0.000 63.29

5 4 101761 4923961 0.000 48.39

4 4 65025 2307361 0.001 35.48

3 4 36481 896809 0.001 24.58

2 4 16129 253009 0.001 15.69

1 3 3969 34969 0.002 8.81
1 2 441 3797 0.020 8.61
1 1 49 421 0.175 8.59
1 0 9 61 0.753 6.78

Table 5.15: Coarsening for hierarchical basis on 64× 64 quadrilateral mesh of [0, 1]2

where an extension for matrix tripple products of the form RAP is suggested. This problem
presents an interesting basis for future research.

The table shows, that Algorithm SA possess a very good coarsening strategy. This implies in
general the requirement of more V -cycles than the other methods, but saves time in the setup
phase. In contrary are the classical methods much more expensive in terms of computation as
well as memory consumption. But these methods converge in far less V -cycles than Algorithm
SA. Therefore one has to decide if fast convergence or low computation time is more preferable.
But unless the matrix chain product is implemented in a reasonable way, big problems should
be solved with Algorithm SA. On the other hand if a similar problem has to be solved for
varying right hand side, it is maybe worth considering to use a faster converging algorithm.

Algorithm SA WRS & Std. IP CRS & Std. IP CRS & Direct IP
p Grid C. Op. C. Grid C. Op. C. Grid C. Op. C. Grid C. Op. C.

1 1.11 1.10 1.11 1.10 1.26 1.51 1.28 1.56
2 1.26 1.14 1.09 1.09 1.44 3.04 1.71 6.13
3 1.11 1.04 1.10 1.14 1.38 3.27 1.81 8.49
4 1.06 1.02 1.11 1.15 1.57 3.58 1.97 9.26
5 1.04 1.01 1.13 1.17 1.51 2.80 2.08 8.74
6 1.03 1.00 1.15 1.19 1.55 2.59 2.00 6.47

Table 5.16: Grid and Operator Complexity depending on p on hierarchical basis for uniform
quadrilateral Mesh 16× 16 on [−1, 1]2

5.4 Parallel vs. Serial

In the following we compare the advantage of our parallel implementations over serial ones.
We consider the same problem from the previous experiment, but focus on the setup times
only as we have tried to optimize this step by parallel variations of serial algorithms. All

84



performed experiments show, that the matrix chain product of the form RAP which is used
in the generation of the coarse system matrix, represents the slowest part of the coarsening
process. In our codes the preimplemented routine from maiprogs has been used, which is in
the current version a serial algorithm. This process consumes up to 80% of the total setup
time and hence gives rise for future research. Therefore the next step of optimization should
be an attempt to parallelize this part.

Due to the above reasons, the CPU times of the setup phase are analyzed without all matrix
chain products used in the construction of coarser matrices. The following figures compare
the efficiency of the smoothed aggregation algorithm (SA) and the new higher-order AMG
method (HO) by limiting the total number of parallel executed threads. Figures 5.4 and 5.5
compare the algorithms for different numbers of degrees of freedom, in particular the square
is split in a uniform mesh of 128 × 128, 256 × 256, 512 × 512 or 1024 × 1024 elements. The
times were measured for 1, 2, 4, 8 and 16 threads on the Xeon server consisting of two CPUs
with 4 cores each and allowing a maximum of 16 parallel threads.

Both figures show a similar pattern. The smoothed aggregation algorithm is slower than the
new AMG method for p = 2 as well as for p = 3. For 2 threads both routines are slower for
p = 2, than executed only with one thread. This can be explained by the additional overhead
in parallel computation and the fact, that the times are all very small as this part of the
setup phase is already quite fast. In contrast for p = 3 the new AMG method improves its
performance steadily all the time which can be explained by a more complex structure of the
system matrix. But on the long term an increasing number of threads leads in both methods
and in both cases to an increasing performance.

CPU Times [s] for the Setup Phase without RAP, p=2
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Figure 5.4: Setup times without matrix chain product, p = 2, quadrilaterals, square
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CPU Times [s] for the Setup Phase without RAP, p=3
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Figure 5.5: Setup times without matrix chain product, p = 3, quadrilaterals, square

At the end of this experiment we want to demonstrate the bottle neck, the matrix chain
product RAP, in numbers. This time is nearly independent of the used method and the
number of threads, as it is a serial implementation. Table 5.17 shows the approximately
consumed time for each degree of freedom. Comparing these numbers with the graphs it is
evident that this part is the slowest one of the coarsening process and possesses the most
optimization potential.

Total time RAP
DOF Elements p = 2 p = 3

146689 128× 128 0.28 1.05
588289 256× 256 1.15 4.27
2356225 512× 512 4.67 17.25
9431041 1024 × 1024 18.78 69.42

Table 5.17: Time consumption of matrix chain product RAP in setup phase

5.5 Delaunay Triangulation

All above experiments have been carried out on structured meshes. In this chapter we will
show, that the algorithms work on unstructured meshes and more complicated domains as
well. For this purpose we will use the theory of Delaunay mesh generation introduced in
section 1.5 on a “croissant” like domain shown in figure 5.6. As a model problem we choose
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Figure 5.6: Croissant-like domain

−∆u = 1 in Ω and homogeneous Dirichlet boundary conditions. Remark, that the following
computations were performed on the personal notebook and not on the server system.

The mesh was generated in Matlab using the built-in function delaunay in the self-pro-
grammed function kipferldel.m. This function distributes a certain number of random
points on the boundary and in the interior of the domain which are then connected via the
delaunay function. At the end the mesh is checked for edges which do not fully lie in the
interior of the domain and triangles of such edges are deleted. The only exception are triangles
which intersect with the concave part of the domain in the vicinity of the origin. These are
only deleted if at least one edge intersects with the x-axis or at least one of the starting points
of at least one edge does not lie in a small vicinity of the Dirichlet boundary. This special
treatment prevents spikes of the mesh in this area around the origin. The idea is to get a
“proper” mesh for our “wildly” shaped domain. For more details see the script files in the
folder Matlab Meshes on the enclosed CD. The mesh generation is started with the script file
genKipferlDel.m and two created triangulations are shown in figure 5.8. Figure 5.8a consists
of 1928 elements which corresponds to 3737 or 8596 unknowns for p = 2 or p = 3, respectively,
and figure 5.8b contains 7945 elements which corresponds to 15639 or 35728 unknowns for
p = 2 or p = 3, respectively. These two meshes amongst others have been used to compute
the experiments below. Figure 5.9 shows the solutions for these discretizations.

Note, that the above method of generating an unstructured mesh is a very naive one, but for
the sake of presenting our developed theory on non-uniform meshes, it is as good as any other
method as we are only interested in the comparison of our method with the classical one.

As smoother we apply SOR iterations with relaxation factor ω = 4/3 with a number of m1 = 1
pre- and m2 = 1 postsmoothing steps. This choice led to the best results in the following
experiments. In the same manner as in the second experiment we choose the iteration control
precision ‖xk − xk−1‖/‖xk‖ < 10−6. Iterations are measured in the number of V -cycles.

We compare our developed AMG algorithms using the smoothed aggregation approach (SA)
and our new algorithm for higher-order finite elements (HO) with a classical CG method
combined with diagonal preconditioning (CG) which is available in maiprogs [20].

The tables 5.18 and 5.19 show the superiority of our new AMG method over the AMG
algorithm SA and the classical CG method. For an easier interpretation the data of these two
tables is plotted in figure 5.7. Algorithm HO is nearly twice as fast as algorithm SA but even
ten times faster than the CG method. This is due to a higher number of iterations in the
latter method. Both AMG methods are more efficient on the unstructured mesh, since they
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are able to use the structural information of the stiffness matrix much better. But comparing
the results of the unstructured mesh to the structured one of the tables 5.3 and 5.4 which
have a similar number of unknowns, we still see an increase in iterations and CPU times.

HO SA CG
DOF Iterations CPU times Iterations CPU times Iterations CPU times

3737 37 0.19 24 0.04 208 0.04
15639 26 0.15 51 0.28 386 0.34
64389 42 0.78 56 1.03 725 2.73
259854 39 2.67 76 5.09 1143 15.84
1043027 57 14.22 101 26.04 2190 123.59

Table 5.18: Performance on croissant-like domain for p = 2

HO SA CG
DOF Iterations CPU times Iterations CPU times Iterations CPU times

8596 52 0.16 122 0.41 346 0.17
35728 108 1.04 126 1.34 1602 3.82
144898 60 2.31 135 5.60 1323 12.32
585199 62 10.16 266 36.12 2072 74.54
2348982 83 50.77 206 114.66 3992 555.29

Table 5.19: Performance on croissant-like domain for p = 3

Performance using Delaunay mesh generation
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(a) elements=1928 (b) elements=7945

Figure 5.8: Delaunay triangulations of croissant-like domain
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Figure 5.9: Solutions of croissant-like domain
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Conclusion and Further Work

In the present work, we gave an introduction into algebraic multigrid (AMG) and motivated
its applicability over the concept of algebraic smoothness which lies at the center of this
approach. The method of smoothed aggregation by Vaněk, Mandel and Brezina [34] was
presented and adapted for parallel execution on a multi-core CPU by the use of several
independent threads. Moreover the classical method of Ruge-Stüben was briefly presented.
The main chapter of this work was dedicated to the development of a hybrid AMG method
using additional input in order to utilize hidden geometrical information in the linear system.
In particular we retrieved the (bi-)linear finite element subspace and its associated stiffness
matrix from a given stiffness matrix arising from discretization by higher-order Lagrangian
finite elements in two dimensions. The retrieved stiffness matrix of (bi-)linear elements was
solved by a classical algebraic multigrid method together with a standard smoother, such
as the Gauss-Seidel or SOR method. The current work was developed for discretizations
with quadrilaterals and continues the work of Shu et al. [31] who introduced the algorithms
for triangulations. Furthermore we proved the correctness of our new AMG method for a
certain class of elliptic partial differential equations and a discretization on quadrilaterals
using polynomials of degree 2 and 3.

The developed method is less algebraic than classical AMG, as it needs the a-priori knowledge
of the type of the used finite element space (i.e. (bi-)quadratic, (bi-)cubic, ...) and of the type
of used basis functions. But all other geometrical information stays unknown.

In several numerical experiments we have proven, that our new AMG method is significantly
more efficient than classical AMG methods which are applied directly to the high-order sys-
tem. A speedup between 2 and 4 times was measured in all experiments when compared to
the classical AMG methods. Moreover, we introduced the V0(m0)-cycle which proved to be
very efficient in combination with our solution strategy, as it reduces the most expensive op-
erations during the solution process. Furthermore, we also tested our main idea with degrees
up to p = 8 on a hierarchical basis. It has been shown, that it is still very efficient, despite
a very aggressive first coarsening step. The efficiency of AMG on problems discretized by
(bi-)linear finite elements, which represents the first coarsening step, outweighs the loss of
precision.

Due to the fact that all developed algorithms have been developed with special focus on
their parallelization potential, we also compared our parallel implementations with respect
to different numbers of simultaneously executed threads. With an increasing amount of com-
plexity, which is represented by more degrees of freedom or rising degrees of basis functions,
the advantage of a parallel setup became more and more noticeable. Therein an increase
from 1 to 2 threads even led to longer computing times in our new method in the case of
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p = 2. In contrast an increase of threads in the case of p = 3 nearly always led to a faster
execution. Our parallel variant of the smoothed aggregation approach yielded similar results,
but with the difference that the choice of 2 threads always gave the slowest computations.
We can conclude, that the profit of a parallel implementation is the higher, the bigger the
underlying complexity is but there exists a minimum number of threads which is necessary
to compensate the additional overhead of parallel algorithms.

Besides we demonstrated the efficiency of our new algorithm on unstructured meshes created
by Delaunay triangulations and a more complicated domain. It was also compared with a
CG method where it confirmed its efficiency yet again.

During the development we discovered some issues which would require a separate investi-
gation. The bottle neck of the entire algorithm is definitively the matrix chain product of
the type RAP which appears during the generation of the coarse linear systems. In more
complex problems it can consume more than 80% of the total setup time. This problem is
not specific to our problem class but is inherently coupled with many AMG methods. A par-
allelization of this operation could boost the computing times significantly and would form a
very interesting topic for further research. A good starting point could be found in [6] as it
mentions a possible extension of the therein developed algorithm to matrix tripple products
of such specific form.

All performed parallelizations were focused on multi-core CPUs and performed via OpenMP.
As a next step an integration into cluster systems via MPI could be considered in order to
utilize the positive effects of parallel computing even more.

The smoothed aggregation approach in the used configuration possesses a very aggressive
coarsening which leads to low memory consumption and low complexities in the coarser
levels. This comes with the disadvantage of slower convergence in terms of more cycles.
Other methods like the ones from Ruge-Stüben use less aggressive coarsening, which leads to
longer setup times but faster convergence. The parallel potential of these methods could be
analyzed to utilize the advantages of lower solution times.

Another issue which is part of any (algebraic) multigrid method is the used smoother. The
current implementation in maiprogs is a serial one, but a parallelization of this part could
also result in a significant speed up.

Finally, our main algorithms for discretizations of Lagrangian finite elements only consider
biquadratic and bicubic ones in two dimensions. Experiments on a hierarchical basis showed
the potential of extensions of the developed theory to elements of even higher order or in
three spacial dimensions. But as we saw in the extension from degree 2 to degree 3, these
enhancements require a more careful analysis of the underlying geometry, which, however,
does not necessarily result in much more expensive algorithms.
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