Relational Width Collapses

Tomáš Nagy

TU Wien

joint work with
Antoine Mottet, Michael Pinsker and Michael Wrona

Constraint satisfaction problems and minimality

A - relational structure over finite signature

 $\mathrm{CSP}(\mathbb{A})$ is the following computational problem:

Given:

- variable set V,
- pp-formulas ϕ_1, \dots, ϕ_n over the signature of \mathbb{A} (*constraints*) with free variables from the set V.

Want: Is the *instance* $\Phi = \bigwedge_{i=1}^{n} \phi_i$ satisfiable in \mathbb{A} ?

Constraint satisfaction problems and minimality

 $\ensuremath{\mathbb{A}}$ - relational structure over finite signature

 $\mathrm{CSP}(\mathbb{A})$ is the following computational problem:

Given:

- variable set V,
- pp-formulas ϕ_1, \dots, ϕ_n over the signature of \mathbb{A} (*constraints*) with free variables from the set V.

Want: Is the *instance* $\Phi = \bigwedge_{i=1}^{n} \phi_i$ satisfiable in \mathbb{A} ?

Let $1 \le k \le \ell$.

 (k,ℓ) -minimality algorithm (produces a (k,ℓ) -minimal instance):

- ① Adds constraint for every ℓ -element subset of V.
- 2 Reduces constraints by comparing projections of constraints on subsets of V of size $\leq k$.

Constraint satisfaction problems and minimality

 $\ensuremath{\mathbb{A}}$ - relational structure over finite signature

 $\mathrm{CSP}(\mathbb{A})$ is the following computational problem:

Given:

- variable set V,
- pp-formulas ϕ_1, \dots, ϕ_n over the signature of \mathbb{A} (*constraints*) with free variables from the set V.

Want: Is the *instance* $\Phi = \bigwedge_{i=1}^{n} \phi_i$ satisfiable in \mathbb{A} ?

Let $1 \le k \le \ell$.

 (k,ℓ) -minimality algorithm (produces a (k,ℓ) -minimal instance):

- ① Adds constraint for every ℓ -element subset of V.
- 2 Reduces constraints by comparing projections of constraints on subsets of V of size $\leq k$.

$$\begin{array}{l} \phi(x,y,z) \Rightarrow z \in \{0,1\}, \, \psi(x,y,z) \Rightarrow z \in \{1,2\} \\ \Rightarrow \text{remove } z = 0 \text{ from } \phi \text{ and } z = 2 \text{ from } \psi \end{array}$$

Definition.

 \mathbb{A} has *relational width* (k,ℓ) if every (k,ℓ) -minimal instance of $\mathrm{CSP}(\mathbb{A})$ with satisfiable constraints is satisfiable.

 \mathbb{A} has bounded width if \mathbb{A} has relational width (k,ℓ) for some $k \leq \ell$.

Definition.

 \mathbb{A} has *relational width* (k,ℓ) if every (k,ℓ) -minimal instance of $\mathrm{CSP}(\mathbb{A})$ with satisfiable constraints is satisfiable.

 $\mathbb{A} \text{ has bounded width if } \mathbb{A} \text{ has relational width } (k,\ell) \text{ for some } k \leq \ell.$

 \mathbb{A} has bounded width $\Rightarrow \mathrm{CSP}(\mathbb{A})$ is in P

Definition.

 \mathbb{A} has *relational width* (k,ℓ) if every (k,ℓ) -minimal instance of $\mathrm{CSP}(\mathbb{A})$ with satisfiable constraints is satisfiable.

 \mathbb{A} has bounded width if \mathbb{A} has relational width (k,ℓ) for some $k \leq \ell$.

 \mathbb{A} has bounded width $\Rightarrow \mathrm{CSP}(\mathbb{A})$ is in P

 \bullet ({0,1}; \neq , =) has relational width (2,3) (computing transitivity),

Definition.

 \mathbb{A} has *relational width* (k,ℓ) if every (k,ℓ) -minimal instance of $\mathrm{CSP}(\mathbb{A})$ with satisfiable constraints is satisfiable.

 \mathbb{A} has bounded width if \mathbb{A} has relational width (k,ℓ) for some $k \leq \ell$.

 \mathbb{A} has bounded width $\Rightarrow \mathrm{CSP}(\mathbb{A})$ is in P

- \bullet ({0,1}; \neq , =) has relational width (2,3) (computing transitivity),
- \bullet (Q; <) has relational width (2, 3) as well (transitivity again),

Definition.

 \mathbb{A} has *relational width* (k,ℓ) if every (k,ℓ) -minimal instance of $\mathrm{CSP}(\mathbb{A})$ with satisfiable constraints is satisfiable.

 \mathbb{A} has bounded width if \mathbb{A} has relational width (k,ℓ) for some $k \leq \ell$.

 \mathbb{A} has bounded width $\Rightarrow \mathrm{CSP}(\mathbb{A})$ is in P

- \bullet $(\{0,1\};\neq,=)$ has relational width (2,3) (computing transitivity),
- ullet (\mathbb{Q} ; <) has relational width (2,3) as well (transitivity again),
- \circ $(\mathbb{Z}_2; R_0, R_1)$ where

$$R_i := \{(a, b, c) \in (\mathbb{Z}_2)^3 \mid a + b + c = i\}$$

does not have relational width (2,3).

Why?

Definition.

A has *relational width* (k, ℓ) if every (k, ℓ) -minimal instance of $\mathrm{CSP}(\mathbb{A})$ with satisfiable constraints is satisfiable.

A has bounded width if A has relational width (k, ℓ) for some $k \leq \ell$.

 \mathbb{A} has bounded width $\Rightarrow \mathrm{CSP}(\mathbb{A})$ is in P

- \bullet ({0,1}; \neq , =) has relational width (2,3) (computing transitivity),
- \bullet (Q; <) has relational width (2,3) as well (transitivity again),
- \circ $(\mathbb{Z}_2; R_0, R_1)$ where

$$R_i := \{(a, b, c) \in (\mathbb{Z}_2)^3 \mid a + b + c = i\}$$

does not have relational width (2,3).

Why?

For every $i \in \mathbb{Z}_2$ and for every $a, b \in \mathbb{Z}_2$ there exists $c \in \mathbb{Z}_2$ such that a+b+c=i.

Definition.

 \mathbb{A} has *relational width* (k,ℓ) if every (k,ℓ) -minimal instance of $\mathrm{CSP}(\mathbb{A})$ with satisfiable constraints is satisfiable.

 \mathbb{A} has bounded width if \mathbb{A} has relational width (k,ℓ) for some $k \leq \ell$.

 \mathbb{A} has bounded width $\Rightarrow \mathrm{CSP}(\mathbb{A})$ is in P

- \bullet ({0,1}; \neq , =) has relational width (2,3) (computing transitivity),
- \bullet (Q; <) has relational width (2,3) as well (transitivity again),
- \circ $(\mathbb{Z}_2; R_0, R_1)$ where

$$R_i := \{(a, b, c) \in (\mathbb{Z}_2)^3 \mid a + b + c = i\}$$

does not have relational width (2,3).

Why?

For every $i \in \mathbb{Z}_2$ and for every $a,b \in \mathbb{Z}_2$ there exists $c \in \mathbb{Z}_2$ such that a+b+c=i. $\Rightarrow \Phi = R_0(x,y,z) \wedge R_1(x,y,z)$ is (2,3)-minimal and has non-empty constraints but is not satisfiable.

Collapse in the finite case

Theorem [Barto, 2016; Barto-Kozik, 2014].

Let A be a relational structure on a finite domain. TFAE:

- A has bounded width,
- \bullet A has relational width (2,3),
- A has an m-ary weak near-unanimity (WNU) polymorphism for all $m \geq 3$:

$$f(y, x, \dots, x) \approx f(x, y, x, \dots, x) \approx \dots \approx f(x, \dots, x, y).$$

Infinite-domain CSPs

Definition.

Let $k, \ell \geq 1$.

A relational structure $\mathbb B$ is k-homogeneous : \leftrightarrow for all finite tuples a,b,a,b are in the same $\operatorname{Aut}(\mathbb B)$ -orbit \Leftrightarrow all k-subtuples of a,b are in the same $\operatorname{Aut}(\mathbb B)$ -orbit.

 \mathbb{B} is ℓ -bounded : \leftrightarrow for every finite structure \mathbb{X} ,

 \mathbb{X} embeds to $\mathbb{B} \Leftrightarrow \text{all substructures of } \mathbb{X} \text{ of size at most } \ell \text{ embed to } \mathbb{B}.$

Infinite-domain CSPs

Definition.

Let $k, \ell \geq 1$.

A relational structure $\mathbb B$ is k-homogeneous: \leftrightarrow for all finite tuples a,b,a,b are in the same $\operatorname{Aut}(\mathbb B)$ -orbit \Leftrightarrow all k-subtuples of a,b are in the same $\operatorname{Aut}(\mathbb B)$ -orbit.

 \mathbb{B} is ℓ -bounded : \leftrightarrow for every finite structure \mathbb{X} , \mathbb{X} embeds to \mathbb{B} \Leftrightarrow all substructures of \mathbb{X} of size at most ℓ embed to \mathbb{B} .

We are interested in structures with first-order definition in a k-homogeneous ℓ -bounded structure \mathbb{B} (fo-reducts of \mathbb{B}).

If \mathbb{A} with domain $\{a_1,\ldots,a_n\}$ finite $\Rightarrow \mathbb{A}$ is a fo-reduct of $(\{a_1,\ldots,a_n\};\{a_1\},\ldots,\{a_n\})$ which is 1-homogeneous and 2-bounded.

Pseudo-Maltsev conditions

Let A be finite.

• \mathbb{A} has bounded width $\Leftrightarrow \mathbb{A}$ has WNU polymorphisms of all arities ≥ 3 (Barto, Kozik; 2014);

Pseudo-Maltsev conditions

Let A be finite.

- A has bounded width
 ⇔ A has WNU polymorphisms of all arities ≥ 3
 (Barto, Kozik; 2014);
- CSP(A) is in P (if $P \neq NP$) $\Leftrightarrow A$ has Siggers polymorphism (Bulatov, Zhuk; 2017):

$$s(x, y, x, z, y, z) \approx s(y, x, z, x, z, y).$$

Pseudo-Maltsev conditions

Let \mathbb{A} be finite.

- A has bounded width \Leftrightarrow A has WNU polymorphisms of all arities ≥ 3 (Barto, Kozik; 2014);
- CSP(A) is in P (if $P \neq NP$) $\Leftrightarrow A$ has Siggers polymorphism (Bulatov, Zhuk; 2017):

$$s(x, y, x, z, y, z) \approx s(y, x, z, x, z, y).$$

Conjecture [Bodirsky-Pinsker, 2011; Barto-Pinsker, 2016].

Let \mathbb{A} be a fo-reduct of a k-homogeneous ℓ -bounded structure \mathbb{B} that is a core. Suppose that $P \neq NP$. TFAE:

- CSP(A) is in P,
- ullet A has a pseudo-Siggers polymorphism modulo $\overline{\operatorname{Aut}(\mathbb{B})}$:

$$\alpha \circ s(x, y, x, z, y, z) \approx \beta \circ s(y, x, z, x, z, y)$$

for some $\alpha, \beta \in \overline{\operatorname{Aut}(\mathbb{B})}$.

Characterization of bounded width

What about bounded width? Can we take pseudo-WNUs, i.e. $e_1 \circ f(y, x, ..., x) \approx ... \approx e_n \circ f(y, x, ..., x)$?

Characterization of bounded width

What about bounded width? Can we take pseudo-WNUs, i.e. $e_1 \circ f(y, x, ..., x) \approx ... \approx e_n \circ f(y, x, ..., x)$?

Bad news: For fo-reducts of $(\mathbb{Q}, <)$, no set of identities characterizing bounded width exists (Bodirsky, Pakusa, Rydval, 2020).

Characterization of bounded width

What about bounded width? Can we take pseudo-WNUs, i.e. $e_1 \circ f(y, x, ..., x) \approx ... \approx e_n \circ f(y, x, ..., x)$?

Bad news: For fo-reducts of $(\mathbb{Q},<)$, no set of identities characterizing bounded width exists (Bodirsky, Pakusa, Rydval, 2020).

Good news: For fo-reducts of many other structures, pseudo-WNUs are sufficient - universal homogeneous graph, universal homogeneous tournament (Mottet, Pinsker; 2020 - smooth approximations). Reason: they have *canonical* pseudo-WNUs.

Canonical polymorphisms

Definition.

Let $\mathbb A$ be a fo-reduct of a k-homogeneous ℓ -bounded structure $\mathbb B$. A polymorphism f of $\mathbb A$ is $\operatorname{Aut}(\mathbb B)$ -canonical if it preserves the orbit-equivalence modulo $\operatorname{Aut}(\mathbb B)$.

 $\Leftrightarrow f$ induces an operation on the $\mathrm{Aut}(\mathbb{B})$ -orbits of n-tuples for every $n\geq 1$.

Canonical polymorphisms

Definition.

Let $\mathbb A$ be a fo-reduct of a k-homogeneous ℓ -bounded structure $\mathbb B$. A polymorphism f of $\mathbb A$ is $\operatorname{Aut}(\mathbb B)$ -canonical if it preserves the orbit-equivalence modulo $\operatorname{Aut}(\mathbb B)$.

 $\Leftrightarrow f$ induces an operation on the $\operatorname{Aut}(\mathbb{B})\text{-orbits}$ of n-tuples for every $n\geq 1.$

Canonical polymorphisms play a key role in all known complexity classification of infinite-domain CSPs.

Relational width collapses

There is no collapse of the relational width hierarchy for fo-reducts of k-homogeneous ℓ -bounded structures (Grohe, 1994).

Relational width collapses

There is no collapse of the relational width hierarchy for fo-reducts of k-homogeneous ℓ -bounded structures (Grohe, 1994).

Theorem. [Mottet, N., Pinsker, Wrona, 2021]

Let $k,\ell \geq 1$, and let $\mathbb A$ be a fo-reduct of a k-homogeneous ℓ -bounded structure $\mathbb B$. If $\mathbb A$ has canonical pseudo-WNU polymorphisms modulo $\overline{\operatorname{Aut}(\mathbb B)}$ of all arities $n\geq 3$ then $\mathbb A$ has relational width $(2k,\max(3k,\ell))$.

stronger variant for pseudo-totally symmetric canonical polymorphisms

Collapse of relational width hierarchy for fo-reducts of:

 \circ the universal homogeneous graph (relational width (4,6));

- the universal homogeneous graph (relational width (4,6));
- the universal homogeneous tournament ((4,6));

- the universal homogeneous graph (relational width (4,6));
- the universal homogeneous tournament ((4,6));
- the universal homogeneous K_n -free graph, where $n \geq 3$ ((2, n));

- the universal homogeneous graph (relational width (4,6));
- the universal homogeneous tournament ((4,6));
- the universal homogeneous K_n -free graph, where $n \geq 3$ ((2, n));
- \circ (N; =) ((2,3));

- the universal homogeneous graph (relational width (4,6));
- the universal homogeneous tournament ((4,6));
- the universal homogeneous K_n -free graph, where $n \geq 3$ ((2, n));
- \circ (N; =) ((2,3));
- the countably infinite equivalence relation with infinitely many equivalence classes ((2,3));

- the universal homogeneous graph (relational width (4,6));
- the universal homogeneous tournament ((4,6));
- the universal homogeneous K_n -free graph, where $n \geq 3$ ((2, n));
- \circ (N; =) ((2,3));
- the countably infinite equivalence relation with infinitely many equivalence classes ((2,3));
- the universal homogeneous partial order ((2,3)).

Example

Let $\mathbb{B}:=(A;\underline{E})$ be the universal homogeneous graph and let N be the non-edge relation.

Let $\mathbb{A}:=(A;R_=,R_{\neq})$ be a fo-reduct of \mathbb{B} with quaternary relations $R_=,R_{\neq}$, where:

 \Rightarrow the exact relational width of A is (4,6).

Further results

ullet Fo-reducts of a unary structure $\Bbb B$ that are cores: Bounded width is characterized by canonical pseudo-WNUs modulo $\overline{\operatorname{Aut}(\Bbb B)}$, relational width at most (4,6).

Further results

- Fo-reducts of a unary structure $\mathbb B$ that are cores: Bounded width is characterized by canonical pseudo-WNUs modulo $\overline{\operatorname{Aut}(\mathbb B)}$, relational width at most (4,6).
- The same for CSPs modeling model-checking problem for MMSNP-sentences.
 - ⇒ Datalog rewritability problem for MMSNP is decidable and 2NExpTime-complete.

Open questions

Does the "collapse" hold for all fo-reducts of k-homogeneous, ℓ-bounded structures?

Open questions

- Does the "collapse" hold for all fo-reducts of k-homogeneous, ℓ-bounded structures?
- Which intermediate relational widths are possible for fo-reducts of a particular k-homogeneous ℓ -bounded structure?

Open questions

- Does the "collapse" hold for all fo-reducts of k-homogeneous, \ell-bounded structures?
- Which intermediate relational widths are possible for fo-reducts of a particular k-homogeneous ℓ -bounded structure?
- For which k-homogeneous ℓ-bounded structures the characterization of bounded width by (canonical) pseudo-WNUs applies?

Thank you for your attention!