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Constraint satisfaction problems and minimality
A - relational structure over finite signature

CSP(A) is the following computational problem:

Given:
variable set V ,
pp-formulas φ1, . . . , φn over the signature of A (constraints)
with free variables from the set V .

Want: Is the instance Φ =
n∧

i=1

φi satisfiable in A?

Let 1 ≤ k ≤ `.
(k, `)-minimality algorithm (produces a (k, `)-minimal instance):

1 Adds constraint for every `-element subset of V .
2 Reduces constraints by comparing projections of constraints

on subsets of V of size ≤ k.

φ(x, y, z)⇒ z ∈ {0, 1}, ψ(x, y, z)⇒ z ∈ {1, 2}
⇒ remove z = 0 from φ and z = 2 from ψ
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Bounded width
Definition.

A has relational width (k, `) if every (k, `)-minimal instance of CSP(A)
with satisfiable constraints is satisfiable.
A has bounded width if A has relational width (k, `) for some k ≤ `.

A has bounded width⇒ CSP(A) is in P

({0, 1}; 6=,=) has relational width (2, 3) (computing transitivity),

(Q;<) has relational width (2, 3) as well (transitivity again),

(Z2;R0, R1) where

Ri := {(a, b, c) ∈ (Z2)3 | a+ b+ c = i}

does not have relational width (2, 3).
Why?
For every i ∈ Z2 and for every a, b ∈ Z2

there exists c ∈ Z2 such that a + b + c = i.
⇒ Φ = R0(x, y, z) ∧R1(x, y, z) is (2, 3)-minimal
and has non-empty constraints but is not satisfiable.
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Collapse in the finite case

Theorem [Barto, 2016; Barto-Kozik, 2014].

Let A be a relational structure on a finite domain. TFAE:
A has bounded width,
A has relational width (2, 3),
A has an m-ary weak near-unanimity (WNU) polymorphism
for all m ≥ 3:

f(y, x, . . . , x) ≈ f(x, y, x, . . . , x) ≈ . . . ≈ f(x, . . . , x, y).
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Infinite-domain CSPs

Definition.
Let k, ` ≥ 1.

A relational structure B is k-homogeneous :↔
for all finite tuples a, b, a, b are in the same Aut(B)-orbit
⇔ all k-subtuples of a, b are in the same Aut(B)-orbit.

B is `-bounded :↔ for every finite structure X,
X embeds to B⇔ all substructures of X of size at most ` embed to B.

We are interested in structures with first-order definition
in a k-homogeneous `-bounded structure B (fo-reducts of B).

If A with domain {a1, . . . , an} finite
⇒ A is a fo-reduct of ({a1, . . . , an}; {a1}, . . . , {an})
which is 1-homogeneous and 2-bounded.
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Pseudo-Maltsev conditions
Let A be finite.

A has bounded width
⇔ A has WNU polymorphisms of all arities ≥ 3
(Barto, Kozik; 2014);

CSP(A) is in P (if P 6= NP)⇔ A has Siggers polymorphism
(Bulatov, Zhuk; 2017):

s(x, y, x, z, y, z) ≈ s(y, x, z, x, z, y).

Conjecture [Bodirsky-Pinsker, 2011; Barto-Pinsker, 2016].

Let A be a fo-reduct of a k-homogeneous `-bounded structure B
that is a core. Suppose that P 6= NP. TFAE:

CSP(A) is in P,
A has a pseudo-Siggers polymorphism modulo Aut(B):

α ◦ s(x, y, x, z, y, z) ≈ β ◦ s(y, x, z, x, z, y)

for some α, β ∈ Aut(B).
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Characterization of bounded width

What about bounded width? Can we take pseudo-WNUs,
i.e. e1 ◦ f(y, x, . . . , x) ≈ . . . ≈ en ◦ f(y, x, . . . , x)?

Bad news: For fo-reducts of (Q, <), no set of identities
characterizing bounded width exists
(Bodirsky, Pakusa, Rydval, 2020).

Good news: For fo-reducts of many other structures,
pseudo-WNUs are sufficient - universal homogeneous graph,
universal homogeneous tournament
(Mottet, Pinsker; 2020 - smooth approximations).
Reason: they have canonical pseudo-WNUs.
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Canonical polymorphisms

Definition.
Let A be a fo-reduct of a k-homogeneous `-bounded structure B.
A polymorphism f of A is Aut(B)-canonical
if it preserves the orbit-equivalence modulo Aut(B).

⇔ f induces an operation on the Aut(B)-orbits of n-tuples
for every n ≥ 1.

Canonical polymorphisms play a key role in all known
complexity classification of infinite-domain CSPs.
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Relational width collapses

There is no collapse of the relational width hierarchy
for fo-reducts of k-homogeneous `-bounded structures (Grohe, 1994).

Theorem. [Mottet, N., Pinsker, Wrona, 2021]

Let k, ` ≥ 1, and let A be a fo-reduct
of a k-homogeneous `-bounded structure B.
If A has canonical pseudo-WNU polymorphisms modulo Aut(B)
of all arities n ≥ 3 then A has relational width (2k,max(3k, `)).

stronger variant for pseudo-totally symmetric canonical
polymorphisms
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Collapses for particular structures

Collapse of relational width hierarchy for fo-reducts of:
the universal homogeneous graph (relational width (4, 6));

the universal homogeneous tournament ((4, 6));
the universal homogeneous Kn-free graph, where n ≥ 3 ((2, n));
(N; =) ((2, 3));
the countably infinite equivalence relation with infinitely many
equivalence classes ((2, 3));
the universal homogeneous partial order ((2, 3)).
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Example
Let B := (A;E) be the universal homogeneous graph and let N be
the non-edge relation.
Let A := (A;R=, R6=) be a fo-reduct of B
with quaternary relations R=, R6=, where:

⇒ the exact relational width of A is (4, 6).
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Further results

Fo-reducts of a unary structure B that are cores:
Bounded width is characterized by canonical pseudo-WNUs
modulo Aut(B), relational width at most (4, 6).

The same for CSPs modeling model-checking problem
for MMSNP-sentences.
⇒ Datalog rewritability problem for MMSNP is decidable
and 2NExpTime-complete.
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Open questions

Does the ”collapse” hold for all fo-reducts
of k-homogeneous, `-bounded structures?

Which intermediate relational widths are possible for fo-reducts
of a particular k-homogeneous `-bounded structure?

For which k-homogeneous `-bounded structures the
characterization of bounded width
by (canonical) pseudo-WNUs applies?
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Thank you for your attention!


	

