Relational Width Collapses

Tomáš Nagy

TU Wien

joint work with
Antoine Mottet, Michael Pinsker and Michał Wrona

AAA 101, Novi Sad, 6th June 2021

Constraint satisfaction problems and minimality

\mathbb{A} - relational structure over finite signature
$\operatorname{CSP}(\mathbb{A})$ is the following computational problem:

Given:

- variable set V,
- pp-formulas $\phi_{1}, \ldots, \phi_{n}$ over the signature of \mathbb{A} (constraints) with free variables from the set V.
Want: Is the instance $\Phi=\bigwedge_{i=1}^{n} \phi_{i}$ satisfiable in \mathbb{A} ?

A - relational structure over finite signature
$\operatorname{CSP}(\mathbb{A})$ is the following computational problem:
Given:

- variable set V,
- pp-formulas $\phi_{1}, \ldots, \phi_{n}$ over the signature of \mathbb{A} (constraints) with free variables from the set V.
Want: Is the instance $\Phi=\bigwedge_{i=1}^{n} \phi_{i}$ satisfiable in \mathbb{A} ?
Let $1 \leq k \leq \ell$.
(k, ℓ)-minimality algorithm (produces a (k, ℓ)-minimal instance):
(1) Adds constraint for every ℓ-element subset of V.
(2) Reduces constraints by comparing projections of constraints on subsets of V of size $\leq k$.

Constraint satisfaction problems and minimality

\mathbb{A} - relational structure over finite signature
$\operatorname{CSP}(\mathbb{A})$ is the following computational problem:
Given:

- variable set V,
- pp-formulas $\phi_{1}, \ldots, \phi_{n}$ over the signature of \mathbb{A} (constraints) with free variables from the set V.
Want: Is the instance $\Phi=\bigwedge_{i=1}^{n} \phi_{i}$ satisfiable in \mathbb{A} ?
Let $1 \leq k \leq \ell$.
(k, ℓ)-minimality algorithm (produces a (k, ℓ)-minimal instance):
(1) Adds constraint for every ℓ-element subset of V.
(2) Reduces constraints by comparing projections of constraints on subsets of V of size $\leq k$.
$\phi(x, y, z) \Rightarrow z \in\{0,1\}, \psi(x, y, z) \Rightarrow z \in\{1,2\}$
\Rightarrow remove $z=0$ from ϕ and $z=2$ from ψ

Definition.

\mathbb{A} has relational width (k, ℓ) if every (k, ℓ)-minimal instance of $\operatorname{CSP}(\mathbb{A})$ with satisfiable constraints is satisfiable. \mathbb{A} has bounded width if \mathbb{A} has relational width (k, ℓ) for some $k \leq \ell$.

Definition.

\mathbb{A} has relational width (k, ℓ) if every (k, ℓ)-minimal instance of $\operatorname{CSP}(\mathbb{A})$ with satisfiable constraints is satisfiable. \mathbb{A} has bounded width if \mathbb{A} has relational width (k, ℓ) for some $k \leq \ell$.
\mathbb{A} has bounded width $\Rightarrow \operatorname{CSP}(\mathbb{A})$ is in P

Bounded width

Definition.

\mathbb{A} has relational width (k, ℓ) if every (k, ℓ)-minimal instance of $\operatorname{CSP}(\mathbb{A})$ with satisfiable constraints is satisfiable.
\mathbb{A} has bounded width if \mathbb{A} has relational width (k, ℓ) for some $k \leq \ell$.
\mathbb{A} has bounded width $\Rightarrow \operatorname{CSP}(\mathbb{A})$ is in P

- $(\{0,1\} ; \neq,=)$ has relational width $(2,3)$ (computing transitivity),

Bounded width

Definition.

\mathbb{A} has relational width (k, ℓ) if every (k, ℓ)-minimal instance of $\operatorname{CSP}(\mathbb{A})$ with satisfiable constraints is satisfiable.
\mathbb{A} has bounded width if \mathbb{A} has relational width (k, ℓ) for some $k \leq \ell$.
\mathbb{A} has bounded width $\Rightarrow \operatorname{CSP}(\mathbb{A})$ is in P

- $(\{0,1\} ; \neq,=)$ has relational width $(2,3)$ (computing transitivity),
- $(\mathbb{Q} ;<)$ has relational width $(2,3)$ as well (transitivity again),

Bounded width

Definition.

\mathbb{A} has relational width (k, ℓ) if every (k, ℓ)-minimal instance of $\operatorname{CSP}(\mathbb{A})$ with satisfiable constraints is satisfiable.
\mathbb{A} has bounded width if \mathbb{A} has relational width (k, ℓ) for some $k \leq \ell$.
\mathbb{A} has bounded width $\Rightarrow \operatorname{CSP}(\mathbb{A})$ is in P

- $(\{0,1\} ; \neq,=)$ has relational width $(2,3)$ (computing transitivity),
- $(\mathbb{Q} ;<)$ has relational width $(2,3)$ as well (transitivity again),
- $\left(\mathbb{Z}_{2} ; R_{0}, R_{1}\right)$ where

$$
R_{i}:=\left\{(a, b, c) \in\left(\mathbb{Z}_{2}\right)^{3} \mid a+b+c=i\right\}
$$

does not have relational width $(2,3)$.

- Why?

Bounded width

Definition.

\mathbb{A} has relational width (k, ℓ) if every (k, ℓ)-minimal instance of $\operatorname{CSP}(\mathbb{A})$ with satisfiable constraints is satisfiable.
\mathbb{A} has bounded width if \mathbb{A} has relational width (k, ℓ) for some $k \leq \ell$.
\mathbb{A} has bounded width $\Rightarrow \operatorname{CSP}(\mathbb{A})$ is in P

- $(\{0,1\} ; \neq,=)$ has relational width $(2,3)$ (computing transitivity),
- $(\mathbb{Q} ;<)$ has relational width $(2,3)$ as well (transitivity again),
- $\left(\mathbb{Z}_{2} ; R_{0}, R_{1}\right)$ where

$$
R_{i}:=\left\{(a, b, c) \in\left(\mathbb{Z}_{2}\right)^{3} \mid a+b+c=i\right\}
$$

does not have relational width $(2,3)$.

- Why?

For every $i \in \mathbb{Z}_{2}$ and for every $a, b \in \mathbb{Z}_{2}$ there exists $c \in \mathbb{Z}_{2}$ such that $a+b+c=i$.

Bounded width

Definition.

\mathbb{A} has relational width (k, ℓ) if every (k, ℓ)-minimal instance of $\operatorname{CSP}(\mathbb{A})$ with satisfiable constraints is satisfiable.
\mathbb{A} has bounded width if \mathbb{A} has relational width (k, ℓ) for some $k \leq \ell$.
\mathbb{A} has bounded width $\Rightarrow \operatorname{CSP}(\mathbb{A})$ is in P

- $(\{0,1\} ; \neq,=)$ has relational width $(2,3)$ (computing transitivity),
- $(\mathbb{Q} ;<)$ has relational width $(2,3)$ as well (transitivity again),
- $\left(\mathbb{Z}_{2} ; R_{0}, R_{1}\right)$ where

$$
R_{i}:=\left\{(a, b, c) \in\left(\mathbb{Z}_{2}\right)^{3} \mid a+b+c=i\right\}
$$

does not have relational width $(2,3)$.

- Why?

For every $i \in \mathbb{Z}_{2}$ and for every $a, b \in \mathbb{Z}_{2}$
there exists $c \in \mathbb{Z}_{2}$ such that $a+b+c=i$.
$\Rightarrow \Phi=R_{0}(x, y, z) \wedge R_{1}(x, y, z)$ is (2,3)-minimal
and has non-empty constraints but is not satisfiable.

Theorem [Barto, 2016; Barto-Kozik, 2014].

Let \mathbb{A} be a relational structure on a finite domain. TFAE:

- \mathbb{A} has bounded width,
- \mathbb{A} has relational width $(2,3)$,
- \mathbb{A} has an m-ary weak near-unanimity (WNU) polymorphism for all $m \geq 3$:

$$
f(y, x, \ldots, x) \approx f(x, y, x, \ldots, x) \approx \ldots \approx f(x, \ldots, x, y)
$$

Definition.

Let $k, \ell \geq 1$.
A relational structure \mathbb{B} is k-homogeneous $: \leftrightarrow$ for all finite tuples a, b, a, b are in the same Aut (\mathbb{B})-orbit \Leftrightarrow all k-subtuples of a, b are in the same $\operatorname{Aut}(\mathbb{B})$-orbit.
\mathbb{B} is ℓ-bounded $: \leftrightarrow$ for every finite structure \mathbb{X}, \mathbb{X} embeds to $\mathbb{B} \Leftrightarrow$ all substructures of \mathbb{X} of size at most ℓ embed to \mathbb{B}.

Definition.

Let $k, \ell \geq 1$.
A relational structure \mathbb{B} is k-homogeneous : \leftrightarrow for all finite tuples a, b, a, b are in the same Aut (\mathbb{B})-orbit
\Leftrightarrow all k-subtuples of a, b are in the same $\operatorname{Aut}(\mathbb{B})$-orbit.
\mathbb{B} is ℓ-bounded $: \leftrightarrow$ for every finite structure \mathbb{X}, \mathbb{X} embeds to $\mathbb{B} \Leftrightarrow$ all substructures of \mathbb{X} of size at most ℓ embed to \mathbb{B}.

We are interested in structures with first-order definition in a k-homogeneous ℓ-bounded structure \mathbb{B} (fo-reducts of \mathbb{B}).

If \mathbb{A} with domain $\left\{a_{1}, \ldots, a_{n}\right\}$ finite
$\Rightarrow \mathbb{A}$ is a fo-reduct of $\left(\left\{a_{1}, \ldots, a_{n}\right\} ;\left\{a_{1}\right\}, \ldots,\left\{a_{n}\right\}\right)$
which is 1 -homogeneous and 2 -bounded.

Let \mathbb{A} be finite.

- \mathbb{A} has bounded width
$\Leftrightarrow \mathbb{A}$ has WNU polymorphisms of all arities ≥ 3 (Barto, Kozik; 2014);

Let \mathbb{A} be finite.

- \mathbb{A} has bounded width
$\Leftrightarrow \mathbb{A}$ has WNU polymorphisms of all arities ≥ 3
(Barto, Kozik; 2014);
- $\operatorname{CSP}(\mathbb{A})$ is in $\mathrm{P}($ if $\mathrm{P} \neq \mathrm{NP}) \Leftrightarrow \mathbb{A}$ has Siggers polymorphism (Bulatov, Zhuk; 2017):

$$
s(x, y, x, z, y, z) \approx s(y, x, z, x, z, y)
$$

Let \mathbb{A} be finite.

- \mathbb{A} has bounded width
$\Leftrightarrow \mathbb{A}$ has WNU polymorphisms of all arities ≥ 3
(Barto, Kozik; 2014);
- $\operatorname{CSP}(\mathbb{A})$ is in P (if $\mathrm{P} \neq \mathrm{NP}) \Leftrightarrow \mathbb{A}$ has Siggers polymorphism (Bulatov, Zhuk; 2017):

$$
s(x, y, x, z, y, z) \approx s(y, x, z, x, z, y)
$$

Conjecture [Bodirsky-Pinsker, 2011; Barto-Pinsker, 2016].

Let \mathbb{A} be a fo-reduct of a k-homogeneous ℓ-bounded structure \mathbb{B} that is a core. Suppose that $\mathrm{P} \neq \mathrm{NP}$. TFAE:

- $\operatorname{CSP}(\mathbb{A})$ is in P ,
- \mathbb{A} has a pseudo-Siggers polymorphism modulo $\overline{\text { Aut(} \mathbb{B})}$:

$$
\alpha \circ s(x, y, x, z, y, z) \approx \beta \circ s(y, x, z, x, z, y)
$$

for some $\alpha, \beta \in \overline{\operatorname{Aut}(\mathbb{B})}$.

Characterization of bounded width

What about bounded width? Can we take pseudo-WNUs,
i.e. $e_{1} \circ f(y, x, \ldots, x) \approx \ldots \approx e_{n} \circ f(y, x, \ldots, x)$?

What about bounded width? Can we take pseudo-WNUs,
i.e. $e_{1} \circ f(y, x, \ldots, x) \approx \ldots \approx e_{n} \circ f(y, x, \ldots, x)$?

Bad news: For fo-reducts of $(\mathbb{Q},<)$, no set of identities characterizing bounded width exists (Bodirsky, Pakusa, Rydval, 2020).

What about bounded width? Can we take pseudo-WNUs,
i.e. $e_{1} \circ f(y, x, \ldots, x) \approx \ldots \approx e_{n} \circ f(y, x, \ldots, x)$?

Bad news: For fo-reducts of $(\mathbb{Q},<)$, no set of identities characterizing bounded width exists (Bodirsky, Pakusa, Rydval, 2020).

Good news: For fo-reducts of many other structures, pseudo-WNUs are sufficient - universal homogeneous graph, universal homogeneous tournament
(Mottet, Pinsker; 2020-smooth approximations).
Reason: they have canonical pseudo-WNUs.

Definition.

Let \mathbb{A} be a fo-reduct of a k-homogeneous ℓ-bounded structure \mathbb{B}. A polymorphism f of \mathbb{A} is $\operatorname{Aut}(\mathbb{B})$-canonical if it preserves the orbit-equivalence modulo $\operatorname{Aut}(\mathbb{B})$.
$\Leftrightarrow f$ induces an operation on the $\operatorname{Aut}(\mathbb{B})$-orbits of n-tuples for every $n \geq 1$.

Definition.

Let \mathbb{A} be a fo-reduct of a k-homogeneous ℓ-bounded structure \mathbb{B}. A polymorphism f of \mathbb{A} is $\operatorname{Aut}(\mathbb{B})$-canonical if it preserves the orbit-equivalence modulo $\operatorname{Aut}(\mathbb{B})$.
$\Leftrightarrow f$ induces an operation on the $\operatorname{Aut}(\mathbb{B})$-orbits of n-tuples for every $n \geq 1$.

Canonical polymorphisms play a key role in all known complexity classification of infinite-domain CSPs.

There is no collapse of the relational width hierarchy for fo-reducts of k-homogeneous ℓ-bounded structures (Grohe, 1994).

There is no collapse of the relational width hierarchy for fo-reducts of k-homogeneous ℓ-bounded structures (Grohe, 1994).

Theorem. [Mottet, N., Pinsker, Wrona, 2021]

Let $k, \ell \geq 1$, and let \mathbb{A} be a fo-reduct of a k-homogeneous ℓ-bounded structure \mathbb{B}. If \mathbb{A} has canonical pseudo-WNU polymorphisms modulo $\overline{\mathrm{Aut}(\mathbb{B})}$ of all arities $n \geq 3$ then \mathbb{A} has relational width $(2 k, \max (3 k, \ell))$.
stronger variant for pseudo-totally symmetric canonical polymorphisms

Collapses for particular structures

Collapse of relational width hierarchy for fo-reducts of:

- the universal homogeneous graph (relational width $(4,6)$);

Collapses for particular structures

Collapse of relational width hierarchy for fo-reducts of:

- the universal homogeneous graph (relational width $(4,6)$);
- the universal homogeneous tournament $((4,6))$;

Collapse of relational width hierarchy for fo-reducts of:

- the universal homogeneous graph (relational width $(4,6)$);
- the universal homogeneous tournament ((4,6));
- the universal homogeneous K_{n}-free graph, where $n \geq 3((2, n))$;

Collapse of relational width hierarchy for fo-reducts of:

- the universal homogeneous graph (relational width $(4,6)$);
- the universal homogeneous tournament ((4,6));
- the universal homogeneous K_{n}-free graph, where $n \geq 3((2, n))$;
- $(\mathbb{N} ;=)((2,3))$;

Collapse of relational width hierarchy for fo-reducts of:

- the universal homogeneous graph (relational width $(4,6)$);
- the universal homogeneous tournament ((4,6));
- the universal homogeneous K_{n}-free graph, where $n \geq 3((2, n))$;
- $(\mathbb{N} ;=)((2,3))$;
- the countably infinite equivalence relation with infinitely many equivalence classes ((2,3));

Collapse of relational width hierarchy for fo-reducts of:

- the universal homogeneous graph (relational width $(4,6)$);
- the universal homogeneous tournament ((4,6));
- the universal homogeneous K_{n}-free graph, where $n \geq 3((2, n))$;
- $(\mathbb{N} ;=)((2,3))$;
- the countably infinite equivalence relation with infinitely many equivalence classes ((2,3));
- the universal homogeneous partial order $((2,3))$.

Let $\mathbb{B}:=(A ; E)$ be the universal homogeneous graph and let N be the non-edge relation.
Let $\mathbb{A}:=\left(A ; R_{=}, R_{\neq}\right)$be a fo-reduct of \mathbb{B} with quaternary relations $R_{=}, R_{\neq}$, where:

\Rightarrow the exact relational width of \mathbb{A} is $(4,6)$.

- Fo-reducts of a unary structure \mathbb{B} that are cores: Bounded width is characterized by canonical pseudo-WNUs modulo $\overline{\operatorname{Aut}(\mathbb{B})}$, relational width at most $(4,6)$.
- Fo-reducts of a unary structure \mathbb{B} that are cores: Bounded width is characterized by canonical pseudo-WNUs modulo $\overline{\operatorname{Aut}(\mathbb{B})}$, relational width at most $(4,6)$.
- The same for CSPs modeling model-checking problem for MMSNP-sentences.
\Rightarrow Datalog rewritability problem for MMSNP is decidable and 2NExpTime-complete.
- Does the "collapse" hold for all fo-reducts of k-homogeneous, ℓ-bounded structures?
- Does the "collapse" hold for all fo-reducts of k-homogeneous, ℓ-bounded structures?
- Which intermediate relational widths are possible for fo-reducts of a particular k-homogeneous ℓ-bounded structure?
- Does the "collapse" hold for all fo-reducts of k-homogeneous, ℓ-bounded structures?
- Which intermediate relational widths are possible for fo-reducts of a particular k-homogeneous ℓ-bounded structure?
- For which k-homogeneous ℓ-bounded structures the characterization of bounded width by (canonical) pseudo-WNUs applies?

Thank you for your attention!

