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Infinite-domain CSPs
B - finitely bounded, homogeneous
A - first-order definable in B

CSP(A):
Input: Φ = ϕ1 ∧ . . . ∧ ϕk - conjunction of atomic formulas
over the signature of A
Question: Φ satisfiable?

Finite formulation:
maxarity(B) = k, τ - signature of B

Given:
”values“: O1, . . . , Om - k-orbits under Aut(B),
”constraints“: constraints given by Φ (quantifier-free τ -formulas) +
F = {F1, . . . , Fn} - finite forbidden τ -structures

Want: assign to every k-tuple of free variables of Φ an orbit Oi

s.t. no Fi ∈ F embeds to the resulting structure
and s.t. Φ is satisfied
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Bodirsky-Pinsker conjecture

Conjecture [Bodirsky-Pinsker, 2011].

B - finitely bounded homogeneous structure,
A - first-order definable in B
⇒ CSP(A) is in P or NP-complete.

B = ({b1, . . . , bn}; {b1}, . . . , {bn}) ⇒ Feder-Vardi conjecture

F-V conjecture:
classification of CSPs over 2-element domain (Schaefer, 1978),
. . .,
proof of the conjecture (Bulatov, Zhuk, 2017)

B-P conjecture:
B with 2 injective k-orbits:

almost (?) done for k = 1, 2
(unary structures, graphs, random tournament, Q),
k ≥ 3 ; hypergraphs
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Tomáš Nagy Between heaven and hell



Bodirsky-Pinsker conjecture

Conjecture [Bodirsky-Pinsker, 2011].

B - finitely bounded homogeneous structure,
A - first-order definable in B
⇒ CSP(A) is in P or NP-complete.

B = ({b1, . . . , bn}; {b1}, . . . , {bn}) ⇒ Feder-Vardi conjecture

F-V conjecture:
classification of CSPs over 2-element domain (Schaefer, 1978),
. . .,
proof of the conjecture (Bulatov, Zhuk, 2017)

B-P conjecture:
B with 2 injective k-orbits:

almost (?) done for k = 1, 2
(unary structures, graphs, random tournament, Q),
k ≥ 3 ; hypergraphs
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k-uniform hypergraphs, 1/2

k ≥ 3,
X - set,
E - k-ary relation on X, injective and fully symmetric
⇒ (X;E) is a k-uniform hypergraph

the random k-uniform hypergraph H - the Fraı̈ssé limit
of the class of all finite k-uniform hypergraphs

every finite k-uniform hypergraph is a substructure of H,
F = {”E not symmetric“, ”E not injective“},
k-orbits: conjunctions of ̸= and =, E, N

N := injective k-tuples \E ⊆ Hk
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k-uniform hypergraphs, 2/2

Theorem [Mottet, N., Pinsker, 2023].
k ≥ 3,
H - the random k-uniform hypergraph,
A - first-order definable in H
⇒ CSP(A) is in P or NP-complete.
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k-uniform hypergraphs, 2/2

Theorem [Mottet, N., Pinsker, 2024].
k ≥ 3,
H - the ?????? k-uniform hypergraph,
A - first-order definable in H
⇒ CSP(A) is in P or NP-complete.
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Heaven and hell

How to confirm the BP-conjecture?

”Unordered“ B
unary structures, graphs, tournaments, MMSNP,...
canonical polymorphisms - preserving orbit-equivalence,
i.e. f(E,=) = N makes sense
; if CSP(A) not NP-complete, they satisfy nice identities
; reduction to finite (Bodirsky, Mottet, 2017)
⇒ Heaven!

”Ordered B“
(Q, <),
canonical polymorphisms satisfy NO identities!
; ad hoc algorithms
⇒ Hell!

”This could be heaven or this could be hell.“

(Eagles, Hotel California, 1976)
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Smooth approximations for the structures in heaven

A - fo-definable in unordered B, does not construct 3− SAT

⇒ A has a pseudo-Siggers polymorphism

e ◦ f(x, y, x, z, y, z) = g ◦ f(y, x, z, x, z, y)

Smooth approximations ⇒ A has a canonical pseudo-Siggers

⇒ reduction to finite

⇒ CSP(A) in P
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Pact with the devil

A - fo-definable in an unordered B, does not construct 3-SAT

Given: f ∈ Pol(A)
Want: f behaves canonically
often not possible to obtain this directly

Pact with the devil:
extend B by a linear order ; f canonical on ordered orbits
⇒ does not satisfy any identities

How to get a canonical polymorphism satisfying identities?

Compose with polymorphisms destroying the order
; obtain canonical polymorphisms

Is it always possible?
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Surprise!

Is it always possible to destroy the order?

Why should an order that is not in there matter?

A - fo-definable in the random k-uniform hypergraph H,
does not construct 3-SAT,
has pseudo-Siggers

Smooth approximations + pact with the devil
⇒ A has a pseudo-Siggers canonical on injective tuples

f(E,N,E,E,E,N) makes sense, f(= ̸=, E,N, ̸==, E,E) doesn’t
But: A does not necessarily have a canonical pseudo-Siggers

”Oh, I wish you well... a little bit of heaven, but a little bit of hell.“

(Mika, Happy Ending, 2007)
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Purgatory!

⇒ have to pay for the pact with the devil

Have:
can solve an injective instance by a reduction to the finite,
smooth approximations ⇒ binary injection g

Want: Solve a general instance!

Distinguish two cases:

injective instances solvable by local consistency
; general instances solvable by local consistency,
since injective k-tuples binary absorb Ak - witnessed by g

solving injective instances ; linear equations
; new algorithmic techniques needed
have to study the behaviour of some polymorphisms
on ordered orbits
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The future

Understand what is wrong with the order...
when can’t it be destroyed?

When can the CSP be reduced to solving injective instances?
does a reduction to a binary absorbing subuniverse always work?
under which assumptions?

More than 2 injective orbits ⇒ can’t use Post’s classification
⇒ need to mix local consistency and linear equations

New algorithmic techniques to get out of the purgatory
generalization of Zhuk’s algorithm?
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Thank you
for your 

attention!

Graphs

Random tournament

Rationals

Unary 
structures


	

