Hypergraphs in the post-proof era

Tomáš Nagy

TU Wien

joint work with Antoine Mottet and Michael Pinsker

The Constraint Satisfaction Problem: Complexity and Approximability, Dagstuhl $k \ge 3$, X - set, E - k-ary relation on X, injective and fully symmetric $\Rightarrow (X; E)$ is a k-uniform hypergraph $k \ge 3$, X - set, E - k-ary relation on X, injective and fully symmetric $\Rightarrow (X; E)$ is a k-uniform hypergraph

random k-uniform hypergraph \mathbb{H} - the Fraïssé limit of the class of all finite k-uniform hypergraphs

- every finite k-uniform hypergraph is a substructure of \mathbb{H} ,
- Forb $(\mathcal{F}) = \{$ "*E* not symmetric", "*E* not injective" $\}$,
- orbits domains in $\operatorname{FinCSP}(\mathcal{F}, \mathcal{C})$: conjunctions of \neq and =, E, N

 $k \ge 3$, X - set, E - k-ary relation on X, injective and fully symmetric $\Rightarrow (X; E)$ is a k-uniform hypergraph

random k-uniform hypergraph \mathbb{H} - the Fraïssé limit of the class of all finite k-uniform hypergraphs

- every finite k-uniform hypergraph is a substructure of \mathbb{H} ,
- Forb $(\mathcal{F}) = \{$ "*E* not symmetric", "*E* not injective" $\}$,
- orbits domains in $\operatorname{FinCSP}(\mathcal{F}, \mathcal{C})$: conjunctions of \neq and =, E, N
- N :=injective k-tuples $\setminus E \subseteq H^k$

Want: $\mathbb A$ fo-definable in $\mathbb H \Rightarrow \mathrm{CSP}(\mathbb A)$ in $\mathrm P$ or $\mathrm{NP}\text{-complete}$

Want: $\mathbb A$ fo-definable in $\mathbb H \Rightarrow \mathrm{CSP}(\mathbb A)$ in $\mathrm P$ or $\mathrm{NP}\text{-complete}$

Have: One of the following applies:

① $Pol(\mathbb{A})$ has an injective operation, semilattice-op. or majority on $\{E, N\}$

Want: $\mathbb A$ fo-definable in $\mathbb H \Rightarrow \mathrm{CSP}(\mathbb A)$ in $\mathrm P$ or $\mathrm{NP}\text{-complete}$

Have: One of the following applies:

 Pol(A) has an injective operation, semilattice-op. or majority on {*E*, *N*}
 ⇒ injective instances solvable by local-consistency,

Want: $\mathbb A$ fo-definable in $\mathbb H \Rightarrow \mathrm{CSP}(\mathbb A)$ in $\mathrm P$ or $\mathrm{NP}\text{-complete}$

Have: One of the following applies:

- Pol(A) has an injective operation, semilattice-op. or majority on {*E*, *N*}
 ⇒ injective instances solvable by local-consistency,
- 2 $Pol(\mathbb{A})$ has a ternary inj., minority on $\{E, N\}$,

Want: A fo-definable in $\mathbb{H} \Rightarrow CSP(\mathbb{A})$ in P or NP-complete

Have: One of the following applies:

- Pol(A) has an injective operation, semilattice-op. or majority on {*E*, *N*}
 ⇒ injective instances solvable by local-consistency,
- 2 $Pol(\mathbb{A})$ has a ternary inj., minority on $\{E, N\}$,
- ③ CSP(\mathbb{A}) NP-complete.

Want: A fo-definable in $\mathbb{H} \Rightarrow \mathrm{CSP}(\mathbb{A})$ in P or NP-complete

Have: One of the following applies:

- Pol(A) has an injective operation, semilattice-op. or majority on {*E*, *N*}
 ⇒ injective instances solvable by local-consistency,
- 2 $Pol(\mathbb{A})$ has a ternary inj., minority on $\{E, N\}$,
- ③ CSP(\mathbb{A}) NP-complete.

 \Rightarrow can solve injective instances (heaven),

Want: A fo-definable in $\mathbb{H} \Rightarrow \mathrm{CSP}(\mathbb{A})$ in P or NP-complete

Have: One of the following applies:

- Pol(A) has an injective operation, semilattice-op. or majority on {*E*, *N*}
 ⇒ injective instances solvable by local-consistency,
- 2 $Pol(\mathbb{A})$ has a ternary inj., minority on $\{E, N\}$,
- ③ CSP(\mathbb{A}) NP-complete.
- \Rightarrow can solve injective instances (heaven),

How to reduce to the injective case?

Want: $\mathbb A$ fo-definable in $\mathbb H \Rightarrow \mathrm{CSP}(\mathbb A)$ in $\mathrm P$ or $\mathrm{NP}\text{-complete}$

Have: One of the following applies:

- Pol(A) has an injective operation, semilattice-op. or majority on {*E*, *N*}
 ⇒ injective instances solvable by local-consistency,
- 2 $Pol(\mathbb{A})$ has a ternary inj., minority on $\{E, N\}$,
- (3) $CSP(\mathbb{A})$ NP-complete.
- \Rightarrow can solve injective instances (heaven),

How to reduce to the injective case?

How to come from the purgatory to the heaven?

$\mathbb A$ has bounded width on injective instances $\Rightarrow \mathbb A$ has bounded width

A has bounded width on injective instances \Rightarrow A has bounded width

injective k-tuples are 2-absorbing in H^k ,

 \mathbbm{A} has bounded width \Rightarrow reducing to an absorbing subuniverse possible by a general principle

A has bounded width on injective instances \Rightarrow A has bounded width

injective k-tuples are 2-absorbing in H^k ,

 \mathbbm{A} has bounded width \Rightarrow reducing to an absorbing subuniverse possible by a general principle

A has relational width (2k, 3k) (Mottet, N., Pinsker, Wrona, 2021)

smooth approximations $\Rightarrow Pol(\mathbb{A})$ has a binary injection *f* s.t.

• *f* canonical on ordered orbits,

smooth approximations $\Rightarrow Pol(\mathbb{A})$ has a binary injection f s.t.

- *f* canonical on ordered orbits,
- f is the first projection on $\{E, N\}$,

smooth approximations $\Rightarrow Pol(\mathbb{A})$ has a binary injection f s.t.

- *f* canonical on ordered orbits,
- f is the first projection on $\{E, N\}$,
- for every non-injective *k*-orbit *O*:
 - either f(O, .) is a constant on $\{E, N\}$ for every order on $O \Rightarrow O$ is *deterministic*,

smooth approximations $\Rightarrow Pol(\mathbb{A})$ has a binary injection f s.t.

- f canonical on ordered orbits,
- f is the first projection on $\{E, N\}$,
- for every non-injective *k*-orbit *O*:
 - either f(O, .) is a constant on $\{E, N\}$ for every order on $O \Rightarrow O$ is *deterministic*,
 - or $f(O, E) \neq f(O, N)$ for every order on Oand for every fixed order in the second coordinate $\Rightarrow O$ is *non-deterministic*

expanding by an order - pact with the devil **Price:** the instance \mathcal{I} has to go to the purgatory before coming to heaven (= being injective \rightsquigarrow reduction to finite) expanding by an order - pact with the devil **Price:** the instance \mathcal{I} has to go to the purgatory before coming to heaven (= being injective \rightsquigarrow reduction to finite)

 \Rightarrow purify $\mathcal I$ of its possible sins:

expanding by an order - pact with the devil **Price:** the instance \mathcal{I} has to go to the purgatory before coming to heaven (= being injective \sim reduction to finite)

- \Rightarrow purify ${\mathcal I}$ of its possible sins:
 - ① \mathcal{I} not (2k, 3k)-minimal, eq-irreducible \Rightarrow correct it;

expanding by an order - pact with the devil **Price:** the instance \mathcal{I} has to go to the purgatory before coming to heaven (= being injective \sim reduction to finite)

- \Rightarrow purify ${\mathcal I}$ of its possible sins:
 - ① \mathcal{I} not (2k, 3k)-minimal, eq-irreducible \Rightarrow correct it;
 - 2 *I* cannot be made injective proj_{u,v}(*I*) = {(h, h) | h ∈ H},
 ⇒ identify u and v;

expanding by an order - pact with the devil **Price:** the instance \mathcal{I} has to go to the purgatory before coming to heaven (= being injective \sim reduction to finite)

- \Rightarrow purify ${\mathcal I}$ of its possible sins:
 - ① \mathcal{I} not (2k, 3k)-minimal, eq-irreducible \Rightarrow correct it;
 - 2 \mathcal{I} cannot be made injective $\operatorname{proj}_{u,v}(\mathcal{I}) = \{(h,h) \mid h \in H\},\$ \Rightarrow identify u and v;
 - ③ "bad partitions" on k-tuples of variables
 → some smaller injective instances unsolvable
 ⇒ get rid of some k-orbits

expanding by an order - pact with the devil **Price:** the instance \mathcal{I} has to go to the purgatory before coming to heaven (= being injective \rightsquigarrow reduction to finite)

- \Rightarrow purify ${\mathcal I}$ of its possible sins:
 - ① \mathcal{I} not (2k, 3k)-minimal, eq-irreducible \Rightarrow correct it;
 - 2 \mathcal{I} cannot be made injective $\operatorname{proj}_{u,v}(\mathcal{I}) = \{(h,h) \mid h \in H\},\$ \Rightarrow identify u and v;
 - ③ "bad partitions" on k-tuples of variables
 → some smaller injective instances unsolvable
 ⇒ get rid of some k-orbits

purify ${\cal I}$ until it has no sins \Rightarrow make ${\cal I}$ injective and send it to heaven - reduce to finite

$$\mathcal{I} = (V, D, \mathcal{C}) \rightsquigarrow \mathcal{I}_{eq} = (V, D_{eq}, \mathcal{C}_{eq})$$

 $C_{eq} = \{ \alpha \mathbf{t} \mid \mathbf{t} \in C, \alpha \in \operatorname{Sym}(H) \}$

"in every constraint, replace E, N by all injective k-tuples"

 $\mathcal{I} = (V, D, \mathcal{C}) \rightsquigarrow \mathcal{I}_{eq} = (V, D_{eq}, \mathcal{C}_{eq})$

 $C_{eq} = \{ \alpha \mathbf{t} \mid \mathbf{t} \in C, \alpha \in \operatorname{Sym}(H) \}$

"in every constraint, replace E, N by all injective k-tuples"

 \mathcal{I} *eq-irreducible* if the solution set of \mathcal{I}_{eq} subdirect on *k*-tuples i.e., if $\mathbf{t} \in H^k$, $\mathbf{t} \in \operatorname{proj}_{\mathbf{v}}(\mathcal{I}_{eq}) \Rightarrow$ exists a solution *s* to \mathcal{I}_{eq} , $s(\mathbf{v}) = \mathbf{t}$

 $\mathcal{I} = (V, D, \mathcal{C}) \rightsquigarrow \mathcal{I}_{eq} = (V, D_{eq}, \mathcal{C}_{eq})$

 $C_{eq} = \{ \alpha \mathbf{t} \mid \mathbf{t} \in C, \alpha \in \operatorname{Sym}(H) \}$

"in every constraint, replace E, N by all injective k-tuples"

 \mathcal{I} *eq-irreducible* if the solution set of \mathcal{I}_{eq} subdirect on *k*-tuples i.e., if $\mathbf{t} \in H^k$, $\mathbf{t} \in \operatorname{proj}_{\mathbf{v}}(\mathcal{I}_{eq}) \Rightarrow$ exists a solution *s* to \mathcal{I}_{eq} , $s(\mathbf{v}) = \mathbf{t}$

 \rightsquigarrow solving equality- CSP

Bad partitions, 1/2

 ${\cal I}$ - without sins (1), (2)

 $\mathbf{v}^1,\ldots,\mathbf{v}^n$ - k-tuples of variables,

partitions on $\operatorname{proj}_{\mathbf{v}^{i}}(\mathcal{I})$ with pp-definable classes $E_{1}^{i}, \ldots, E_{t}^{i}$ s.t.

 E_1^i contains all injective orbits in $\mathrm{proj}_{\mathbf{V}^i}(\mathcal{I}),$ no non-deterministic one

Bad partitions, 1/2

 ${\cal I}$ - without sins (1), (2)

 $\mathbf{v}^1, \ldots, \mathbf{v}^n$ - *k*-tuples of variables, partitions on $\operatorname{proj}_{\mathbf{v}^i}(\mathcal{I})$ with pp-definable classes E_1^i, \ldots, E_t^i s.t. E_1^i contains all injective orbits in $\operatorname{proj}_{\mathbf{v}^i}(\mathcal{I})$, no non-deterministic one and s.t. for every C

Hypergraphs in the post-proof era

Bad partitions, 2/2

 \mathcal{J} - injectivisation of \mathcal{I} (constrain all variables u, v by \neq)

Bad partitions, 2/2

 \mathcal{J} - injectivisation of \mathcal{I} (constrain all variables u, v by \neq) reduce \mathcal{J} to finite, project to variables corresponding to $\mathbf{v}^1, \ldots, \mathbf{v}^n$

Bad partitions, 2/2

 \mathcal{J} - injectivisation of \mathcal{I} (constrain all variables u, v by \neq) reduce \mathcal{J} to finite, project to variables corresponding to $\mathbf{v}^1, \ldots, \mathbf{v}^n$ not solvable? \Rightarrow constrain every \mathbf{v}^i by $\operatorname{proj}_{\mathbf{v}^i}(\mathcal{I}) \setminus E_1^i$

Thank you for your attention!

...and thank God for purifying the instances of their sins