Smooth Approximations and Relational Width Collapses

Antoine Mottet, Tomáš Nagy, Michael Pinsker and Michał Wrona

ICALP 2021, Glasgow, 13th July 2021

 \mathbbm{A} - relational structure over finite signature

 $\mathrm{CSP}(\mathbb{A})$ is the following computational problem:

Given:

- variable set V,
- pp-formulas ϕ_1, \ldots, ϕ_n over the signature of \mathbb{A} (*constraints*) with free variables from the set *V*.

Want: Is the *instance* $\Phi = \bigwedge_{i=1}^{n} \phi_i$ satisfiable in A?

 \mathbbm{A} - relational structure over finite signature

 $\mathrm{CSP}(\mathbb{A})$ is the following computational problem:

Given:

- variable set V,
- pp-formulas ϕ_1, \ldots, ϕ_n over the signature of \mathbb{A} (*constraints*) with free variables from the set *V*.

Want: Is the *instance* $\Phi = \bigwedge_{i=1}^{n} \phi_i$ satisfiable in A?

Let $1 \leq k \leq \ell$.

 (k, ℓ) -minimality algorithm (produces a (k, ℓ) -minimal instance):

- ① Adds constraint for every ℓ -element subset of V.
- ② Reduces constraints by comparing projections of constraints on subsets of V of size ≤ k.

Let $1 \leq k \leq \ell$.

 (k, ℓ) -minimality algorithm (produces a (k, ℓ) -minimal instance):

- (1) Adds constraint for every ℓ -element subset of V.
- ② Reduces constraints by comparing projections of constraints on subsets of V of size ≤ k.

 $\phi(x,y,z) \Rightarrow z \in \{0,1\}, \, \psi(x,y,z) \Rightarrow z \in \{1,2\}$

 \Rightarrow remove z = 0 from ϕ and z = 2 from ψ

Let $1 \leq k \leq \ell$.

 (k, ℓ) -minimality algorithm (produces a (k, ℓ) -minimal instance):

- ① Adds constraint for every ℓ -element subset of V.
- ② Reduces constraints by comparing projections of constraints on subsets of V of size ≤ k.

 $\phi(x,y,z) \Rightarrow z \in \{0,1\}, \, \psi(x,y,z) \Rightarrow z \in \{1,2\}$

 \Rightarrow remove z=0 from ϕ and z=2 from ψ

Definition.

A has *relational width* (k, ℓ) if every (k, ℓ) -minimal instance of $CSP(\mathbb{A})$ with satisfiable constraints is satisfiable. A has *bounded width* if A has relational width (k, ℓ) for some $k < \ell$.

Let $1 \leq k \leq \ell$.

 (k, ℓ) -minimality algorithm (produces a (k, ℓ) -minimal instance):

- ① Adds constraint for every ℓ -element subset of V.
- ② Reduces constraints by comparing projections of constraints on subsets of V of size ≤ k.

 $\phi(x,y,z) \Rightarrow z \in \{0,1\}, \, \psi(x,y,z) \Rightarrow z \in \{1,2\}$

 \Rightarrow remove z=0 from ϕ and z=2 from ψ

Definition.

A has *relational width* (k, ℓ) if every (k, ℓ) -minimal instance of $CSP(\mathbb{A})$ with satisfiable constraints is satisfiable. A has *bounded width* if A has relational width (k, ℓ) for some $k < \ell$.

equivalent definitions using e.g.

- logical definability (Datalog, infinitary logics with bounded number of variables),
- finite model theory (Spoiler-Duplicator games),
- treewidth of relational structures.

 $\mathbb A$ has bounded width $\Rightarrow \mathrm{CSP}(\mathbb A)$ is in $\mathrm P$

 $\mathbb A$ has bounded width $\Rightarrow \mathrm{CSP}(\mathbb A)$ is in $\mathrm P$

• $(\{0,1\};\neq,=)$ has relational width (2,3) (computing transitivity),

- $\mathbb A$ has bounded width $\Rightarrow \mathrm{CSP}(\mathbb A)$ is in $\mathrm P$
 - $(\{0,1\};\neq,=)$ has relational width (2,3) (computing transitivity),
 - $(\mathbb{Q}; <)$ has relational width (2, 3) as well (transitivity again),

- $\mathbb A$ has bounded width $\Rightarrow \mathrm{CSP}(\mathbb A)$ is in $\mathrm P$
 - $(\{0,1\};\neq,=)$ has relational width (2,3) (computing transitivity),
 - $(\mathbb{Q}; <)$ has relational width (2, 3) as well (transitivity again),
 - 2-SAT has relational width (2,3),

- $\mathbb A$ has bounded width $\Rightarrow \mathrm{CSP}(\mathbb A)$ is in $\mathrm P$
 - $(\{0,1\};\neq,=)$ has relational width (2,3) (computing transitivity),
 - $(\mathbb{Q}; <)$ has relational width (2, 3) as well (transitivity again),
 - 2-SAT has relational width (2,3),
 - $(\mathbb{Z}_2; R_0, R_1)$ where

$$R_i := \{ (a, b, c) \in (\mathbb{Z}_2)^3 \mid a + b + c = i \}$$

does not have relational width (2,3).Why?

- $\mathbb A$ has bounded width $\Rightarrow \mathrm{CSP}(\mathbb A)$ is in $\mathrm P$
 - $(\{0,1\};\neq,=)$ has relational width (2,3) (computing transitivity),
 - $(\mathbb{Q}; <)$ has relational width (2, 3) as well (transitivity again),
 - 2-SAT has relational width (2,3),
 - $(\mathbb{Z}_2; R_0, R_1)$ where

$$R_i := \{ (a, b, c) \in (\mathbb{Z}_2)^3 \mid a + b + c = i \}$$

does not have relational width (2,3).

Why?

For every $i \in \mathbb{Z}_2$ and for every $a, b \in \mathbb{Z}_2$ there exists $c \in \mathbb{Z}_2$ such that a + b + c = i.

- $\mathbb A$ has bounded width $\Rightarrow \mathrm{CSP}(\mathbb A)$ is in $\mathrm P$
 - $(\{0,1\};\neq,=)$ has relational width (2,3) (computing transitivity),
 - $(\mathbb{Q}; <)$ has relational width (2, 3) as well (transitivity again),
 - 2-SAT has relational width (2,3),
 - $(\mathbb{Z}_2; R_0, R_1)$ where

$$R_i := \{ (a, b, c) \in (\mathbb{Z}_2)^3 \mid a + b + c = i \}$$

does not have relational width (2,3).

• Why? For every $i \in \mathbb{Z}_2$ and for every $a, b \in \mathbb{Z}_2$ there exists $c \in \mathbb{Z}_2$ such that a + b + c = i. $\Rightarrow \Phi = R_0(x, y, z) \land R_1(x, y, z)$ is (2, 3)-minimal and has non-empty constraints but is not satisfiable.

Theorem [Barto, 2016; Barto-Kozik, 2014].

Let \mathbb{A} be a relational structure on a finite domain. TFAE:

- A has bounded width,
- A has relational width (2,3),
- A has an *m*-ary weak near-unanimity (WNU) polymorphism for all *m* ≥ 3:

 $f(y, x, \dots, x) \approx f(x, y, x, \dots, x) \approx \dots \approx f(x, \dots, x, y).$

Infinite-domain CSPs

Definition.

Let $k, \ell \geq 1$.

```
A relational structure \mathbb{B} is k-homogeneous :\leftrightarrow
for all tuples a, b of finite length, a, b are in the same Aut(\mathbb{B})-orbit
\Leftrightarrow all k-subtuples of a, b are in the same Aut(\mathbb{B})-orbit.
```

 $\label{eq:started} \begin{array}{l} \mathbb{B} \text{ is } \ell\text{-bounded}: \leftrightarrow \text{ for every finite structure } \mathbb{X}, \\ \mathbb{X} \text{ embeds to } \mathbb{B} \Leftrightarrow \text{ all substructures of } \mathbb{X} \text{ of size at most } \ell \text{ embed to } \mathbb{B}. \end{array}$

finitely bounded homogeneous \Rightarrow *k*-homogeneous *l*-bounded with k := maximal arity of a relation, l := size of the largest bound

Infinite-domain CSPs

Definition.

Let $k, \ell \geq 1$.

A relational structure \mathbb{B} is *k*-homogeneous : \leftrightarrow for all tuples *a*, *b* of finite length, *a*, *b* are in the same Aut(\mathbb{B})-orbit \Leftrightarrow all *k*-subtuples of *a*, *b* are in the same Aut(\mathbb{B})-orbit.

 $\label{eq:started} \begin{array}{l} \mathbb{B} \text{ is } \ell\text{-bounded}: \leftrightarrow \text{ for every finite structure } \mathbb{X}, \\ \mathbb{X} \text{ embeds to } \mathbb{B} \Leftrightarrow \text{ all substructures of } \mathbb{X} \text{ of size at most } \ell \text{ embed to } \mathbb{B}. \end{array}$

finitely bounded homogeneous \Rightarrow *k*-homogeneous *l*-bounded with k := maximal arity of a relation, l := size of the largest bound

We are interested in structures with first-order definition in a *k*-homogeneous ℓ -bounded structure \mathbb{B} (*fo-reducts of* \mathbb{B}).

If \mathbb{A} with domain $\{a_1, \ldots, a_n\}$ finite $\Rightarrow \mathbb{A}$ is a fo-reduct of $(\{a_1, \ldots, a_n\}; \{a_1\}, \ldots, \{a_n\})$ which is 1-homogeneous and 2-bounded.

Infinite-domain CSPs

Definition.

Let $k, \ell \geq 1$.

A relational structure \mathbb{B} is *k*-homogeneous : \leftrightarrow for all tuples a, b of finite length, a, b are in the same $\operatorname{Aut}(\mathbb{B})$ -orbit \Leftrightarrow all *k*-subtuples of a, b are in the same $\operatorname{Aut}(\mathbb{B})$ -orbit.

 $\label{eq:started} \begin{array}{l} \mathbb{B} \text{ is } \ell\text{-bounded}: \leftrightarrow \text{ for every finite structure } \mathbb{X}, \\ \mathbb{X} \text{ embeds to } \mathbb{B} \Leftrightarrow \text{ all substructures of } \mathbb{X} \text{ of size at most } \ell \text{ embed to } \mathbb{B}. \end{array}$

finitely bounded homogeneous \Rightarrow *k*-homogeneous *l*-bounded with k := maximal arity of a relation, l := size of the largest bound

We are interested in structures with first-order definition in a *k*-homogeneous ℓ -bounded structure \mathbb{B} (*fo-reducts of* \mathbb{B}).

If \mathbb{A} with domain $\{a_1, \ldots, a_n\}$ finite $\Rightarrow \mathbb{A}$ is a fo-reduct of $(\{a_1, \ldots, a_n\}; \{a_1\}, \ldots, \{a_n\})$ which is 1-homogeneous and 2-bounded.

Infinite-domain CSPs : digraph-acyclicity, linear programming, reasoning problems in AI.

Pseudo-Maltsev conditions

Let \mathbbm{A} be finite.

 A has bounded width
 ⇔ A has WNU polymorphisms of all arities ≥ 3 (Barto, Kozik; 2014);

Pseudo-Maltsev conditions

Let \mathbbm{A} be finite.

- A has bounded width \Leftrightarrow A has WNU polymorphisms of all arities ≥ 3 (Barto, Kozik; 2014);
- $CSP(\mathbb{A})$ is in P (if $P \neq NP$) $\Leftrightarrow \mathbb{A}$ has Siggers polymorphism (Bulatov, Zhuk; 2017):

 $s(x,y,x,z,y,z)\approx s(y,x,z,x,z,y).$

Pseudo-Maltsev conditions

Let \mathbbm{A} be finite.

- A has bounded width
 ⇔ A has WNU polymorphisms of all arities ≥ 3 (Barto, Kozik; 2014);
- $CSP(\mathbb{A})$ is in P (if $P \neq NP$) $\Leftrightarrow \mathbb{A}$ has Siggers polymorphism (Bulatov, Zhuk; 2017):

 $s(x,y,x,z,y,z)\approx s(y,x,z,x,z,y).$

Conjecture [Bodirsky-Pinsker, 2011; Barto-Pinsker, 2016].

Let A be a fo-reduct of a k-homogeneous ℓ -bounded structure $\mathbb B$ that is a core. Suppose that $\mathrm P\neq\mathrm{NP}.$ TFAE:

- $CSP(\mathbb{A})$ is in P,
- A has a pseudo-Siggers polymorphism modulo $\overline{\operatorname{Aut}(\mathbb{B})}$:

$$\alpha \circ s(x,y,x,z,y,z) \approx \beta \circ s(y,x,z,x,z,y)$$

for some $\alpha, \beta \in \overline{Aut}(\mathbb{B})$.

Characterization of bounded width

What about bounded width? Can we take pseudo-WNUs, i.e. $e_1 \circ f(y, x, ..., x) \approx ... \approx e_n \circ f(y, x, ..., x)$?

What about bounded width? Can we take pseudo-WNUs, i.e. $e_1 \circ f(y, x, ..., x) \approx ... \approx e_n \circ f(y, x, ..., x)$?

Bad news: For fo-reducts of $(\mathbb{Q}, <)$, no set of identities characterizing bounded width exists (Bodirsky, Pakusa, Rydval, 2020).

What about bounded width? Can we take pseudo-WNUs, i.e. $e_1 \circ f(y, x, ..., x) \approx ... \approx e_n \circ f(y, x, ..., x)$?

Bad news: For fo-reducts of $(\mathbb{Q}, <)$, no set of identities characterizing bounded width exists (Bodirsky, Pakusa, Rydval, 2020).

Good news: For fo-reducts of many other structures, pseudo-WNUs are sufficient - universal homogeneous graph, universal homogeneous tournament (Mottet, Pinsker; 2020 - smooth approximations). Reason: they have *canonical* pseudo-WNUs.

Definition.

Let \mathbb{A} be a fo-reduct of a *k*-homogeneous ℓ -bounded structure \mathbb{B} . A polymorphism *f* of \mathbb{A} is $\operatorname{Aut}(\mathbb{B})$ -canonical if it preserves the orbit-equivalence modulo $\operatorname{Aut}(\mathbb{B})$.

 $\Leftrightarrow f$ induces an operation on the $Aut(\mathbb{B})$ -orbits of n-tuples for every $n \ge 1$.

Definition.

Let \mathbb{A} be a fo-reduct of a *k*-homogeneous ℓ -bounded structure \mathbb{B} . A polymorphism *f* of \mathbb{A} is $\operatorname{Aut}(\mathbb{B})$ -canonical if it preserves the orbit-equivalence modulo $\operatorname{Aut}(\mathbb{B})$.

 $\Leftrightarrow f$ induces an operation on the $Aut(\mathbb{B})$ -orbits of *n*-tuples for every $n \ge 1$.

Canonical polymorphisms play a key role in all known complexity classifications of infinite-domain CSPs.

There is no collapse of the relational width hierarchy for fo-reducts of *k*-homogeneous ℓ -bounded structures (Grohe, 1994).

There is no collapse of the relational width hierarchy for fo-reducts of k-homogeneous ℓ -bounded structures (Grohe, 1994).

Theorem. [Mottet, N., Pinsker, Wrona, 2021]

Let $k, \ell \geq 1$, and let \mathbb{A} be a fo-reduct of a k-homogeneous ℓ -bounded structure \mathbb{B} . If \mathbb{A} has canonical pseudo-WNU polymorphisms modulo $\overline{\operatorname{Aut}(\mathbb{B})}$ of all arities $n \geq 3$ then \mathbb{A} has relational width $(2k, \max(3k, \ell))$.

stronger variant for pseudo-totally symmetric canonical polymorphisms

Collapse of relational width hierarchy for fo-reducts of:

• the universal homogeneous graph (relational width (4, 6));

- the universal homogeneous graph (relational width (4,6));
- the universal homogeneous tournament ((4, 6));

Collapses for particular structures

- the universal homogeneous graph (relational width (4, 6));
- the universal homogeneous tournament ((4, 6));
- the universal homogeneous K_n -free graph, where $n \ge 3$ ((2, n));

Collapses for particular structures

- the universal homogeneous graph (relational width (4, 6));
- the universal homogeneous tournament ((4, 6));
- the universal homogeneous K_n -free graph, where $n \ge 3$ ((2, n));
- $(\mathbb{N}; =)$ ((2, 3));

Collapses for particular structures

- the universal homogeneous graph (relational width (4, 6));
- the universal homogeneous tournament ((4, 6));
- the universal homogeneous K_n -free graph, where $n \ge 3$ ((2, n));
- $(\mathbb{N}; =)$ ((2, 3));
- the countably infinite equivalence relation with infinitely many equivalence classes ((2,3));

- the universal homogeneous graph (relational width (4,6));
- the universal homogeneous tournament ((4, 6));
- the universal homogeneous K_n -free graph, where $n \ge 3$ ((2, n));
- $(\mathbb{N}; =)$ ((2, 3));
- the countably infinite equivalence relation with infinitely many equivalence classes ((2,3));
- the universal homogeneous partial order ((2,3)).

Example

Let $\mathbb{B} := (A; E)$ be the universal homogeneous graph and let N be the non-edge relation.

Let $\mathbb{A} := (A; R_{=}, R_{\neq})$ be a fo-reduct of \mathbb{B} with quaternary $R_{=}, R_{\neq}$:

$$\begin{split} R_{=}(a,b,c,d) \wedge R_{\neq}(a,b,c,d) \text{ is } (3,k)\text{-minimal for } k \geq 3. \\ \text{The exact relational width of } \mathbb{A} \text{ is } (4,6). \end{split}$$

 Fo-reducts of a unary structure B that are cores: Bounded width is characterized by canonical pseudo-WNUs modulo Aut(B), relational width at most (4,6).

- Fo-reducts of a unary structure B that are cores: Bounded width is characterized by canonical pseudo-WNUs modulo Aut(B), relational width at most (4,6).
- The same for CSPs modeling model-checking problem for MMSNP-sentences.

 \Rightarrow Datalog rewritability problem for MMSNP is decidable and 2NExpTime-complete.

■ Does the "collapse" hold for all fo-reducts of k-homogeneous, ℓ-bounded structures?

- Does the "collapse" hold for all fo-reducts of k-homogeneous, ℓ-bounded structures?
- Which intermediate relational widths are possible for fo-reducts of a particular k-homogeneous ℓ-bounded structure?

- Does the "collapse" hold for all fo-reducts of k-homogeneous, ℓ-bounded structures?
- Which intermediate relational widths are possible for fo-reducts of a particular k-homogeneous ℓ-bounded structure?
- For which k-homogeneous l-bounded structures the characterization of bounded width by (canonical) pseudo-WNUs applies?

Thank you for your attention!