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Constraint satisfaction problems

A - relational structure over finite signature

CSP(A) is the following computational problem:

Given:
o variable set V,
o pp-formulas ¢4, ..., ¢, over the signature of A (constraints)
with free variables from the set V.

Want: Is the instance ® = A ¢, satisfiable in A?
g=il
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Minimality and bounded width

Letl1 <k <V
(k, £)-minimality algorithm (produces a (&, ¢)-minimal instance):
(D Adds constraint for every ¢-element subset of V.
@ Reduces constraints by comparing projections of constraints
on subsets of V of size < k.
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¢(z,y,2) = 2z € {0,1}, ¥(z,9,2) = 2 € {1,2}
= remove z = 0 from ¢ and z = 2 from ¢
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Definition.

A has relational width (k, ¢) if every (k, ¢)-minimal instance of CSP(A)
with satisfiable constraints is satisfiable.
A has bounded width if A has relational width (k, ¢) for some k < ¢.
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Minimality and bounded width

Letl1 <k <V
(k, £)-minimality algorithm (produces a (&, ¢)-minimal instance):
(D Adds constraint for every ¢-element subset of V.
@ Reduces constraints by comparing projections of constraints
on subsets of V of size < k.

¢(z,y,2) = 2z € {0,1}, ¥(z,9,2) = 2 € {1,2}
= remove z = 0 from ¢ and z = 2 from ¢

Definition.

A has relational width (k, ¢) if every (k, ¢)-minimal instance of CSP(A)
with satisfiable constraints is satisfiable.
A has bounded width if A has relational width (k, ¢) for some k < ¢.

equivalent definitions using e.g.
o logical definability
(Datalog, infinitary logics with bounded number of variables),
o finite model theory (Spoiler-Duplicator games),
o treewidth of relational structures.

3/15 A. Mottet, T. Nagy, M. Pinsker and M. Wrona Relational Width Collapses



Bounded width, examples

A has bounded width = CSP(A) isin P
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o ({0,1}; #, =) has relational width (2, 3) (computing transitivity),
0 (Q; <) has relational width (2, 3) as well (transitivity again),
0 2-SAT has relational width (2, 3),
0 (Za; Ro, R1) where
R; == {(a,b,c) € (Z3)* |a+b+c=1i}

does not have relational width (2, 3).
o Why?

4/15 A. Mottet, T. Nagy, M. Pinsker and M. Wrona Relational Width Collapses



Bounded width, examples

A has bounded width = CSP(A) isin P
o ({0,1}; #, =) has relational width (2, 3) (computing transitivity),
0 (Q; <) has relational width (2, 3) as well (transitivity again),
0 2-SAT has relational width (2, 3),
0 (Za; Ro, R1) where
R; == {(a,b,c) € (Z3)* |a+b+c=1i}
does not have relational width (2, 3).
o Why?

For every i € Z; and for every a,b € Zs
there exists ¢ € Zs such thata + b+ ¢ = 1.
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Bounded width, examples

A has bounded width = CSP(A) isin P
o ({0,1}; #, =) has relational width (2, 3) (computing transitivity),
0 (Q; <) has relational width (2, 3) as well (transitivity again),
0 2-SAT has relational width (2, 3),
0 (Za; Ro, R1) where
R; :={(a,b,c) € (Z2)® |a+b+c=i}
does not have relational width (2, 3).
o Why?
For every i € Z; and for every a,b € Zs
there exists ¢ € Z» such thata + b+ ¢ = i.

= & = Ro(z,y,2) A Ri(z,y, 2) is (2,3)-minimal
and has non-empty constraints but is not satisfiable.
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Collapse in the finite case

Theorem [Barto, 2016; Barto-Kozik, 2014].

Let A be a relational structure on a finite domain. TFAE:
o A has bounded width,
o A has relational width (2, 3),

o A has an m-ary weak near-unanimity (WNU) polymorphism
for all m > 3:

fly,z,... 2) = f(z,y,z,...,2) ~ ...~ f(z,...,2,y).
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Infinite-domain CSPs

Definition.
Letk, ¢ > 1.

A relational structure B is k-homogeneous :<»
for all tuples a, b of finite length, a, b are in the same Aut(B)-orbit
< all k-subtuples of a, b are in the same Aut(BB)-orbit.

B is ¢-bounded :<+ for every finite structure X,
X embeds to B < all substructures of X of size at most ¢ embed to B.

finitely bounded homogeneous = k-homogeneous /-bounded with
k := maximal arity of a relation, [ := size of the largest bound
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We are interested in structures with first-order definition
in a k-homogeneous ¢-bounded structure B (fo-reducts of B).

If A with domain {a4,...,a,} finite

= Ais afo-reduct of ({a1,...,an};{a1},...,{an})
which is 1-homogeneous and 2-bounded.
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X embeds to B < all substructures of X of size at most ¢ embed to B.

finitely bounded homogeneous = k-homogeneous /-bounded with
k := maximal arity of a relation, [ := size of the largest bound

We are interested in structures with first-order definition
in a k-homogeneous ¢-bounded structure B (fo-reducts of B).

If A with domain {a4,...,a,} finite

= Ais afo-reduct of ({a1,...,an};{a1},...,{an})

which is 1-homogeneous and 2-bounded.

Infinite-domain CSPs: digraph-acyclicity, linear programming,
reasoning problems in Al.
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Pseudo-Maltsev conditions

Let A be finite.
o A has bounded width
< A has WNU polymorphisms of all arities > 3
(Barto, Kozik; 2014);
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Let A be finite.
o A has bounded width
< A has WNU polymorphisms of all arities > 3
(Barto, Kozik; 2014);
o CSP(A) isin P (if P # NP) & A has Siggers polymorphism
(Bulatov, Zhuk; 2017):

s(x? y’ m? z’ y’ Z) ~ s(y’ x’ 2:7 m’ Z7 y)'
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Pseudo-Maltsev conditions

Let A be finite.
o A has bounded width
< A has WNU polymorphisms of all arities > 3
(Barto, Kozik; 2014);
o CSP(A) isin P (if P # NP) & A has Siggers polymorphism
(Bulatov, Zhuk; 2017):

s(x? y’ m? z’ y’ Z) ~ s(y’ x’ 2:7 I’ Z7y)'

Conjecture [Bodirsky-Pinsker, 2011; Barto-Pinsker, 2016].

Let A be a fo-reduct of a k-homogeneous ¢-bounded structure B
that is a core. Suppose that P # NP. TFAE:

o CSP(A)isinP,
o A has a pseudo-Siggers polymorphism modulo Aut(B):

aos(x7y7m’z)y7z) zﬂos(y?x’z’x7z7y)

for some o, 8 € Aut(B).
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Characterization of bounded width

What about bounded width? Can we take pseudo-WNUs,
i.e.e;o f(y,x,...,x)~...~e,o f(y,x,...,z)?
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Characterization of bounded width

What about bounded width? Can we take pseudo-WNUs,
i.e.e;o f(y,x,...,x)~...~e,o f(y,x,...,z)?
Bad news: For fo-reducts of (Q, <), no set of identities

characterizing bounded width exists
(Bodirsky, Pakusa, Rydval, 2020).
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Characterization of bounded width

What about bounded width? Can we take pseudo-WNUs,
i.e.e;o f(y,x,...,x)~...~e,o f(y,x,...,z)?

Bad news: For fo-reducts of (Q, <), no set of identities
characterizing bounded width exists
(Bodirsky, Pakusa, Rydval, 2020).

Good news: For fo-reducts of many other structures,
pseudo-WNUs are sufficient - universal homogeneous graph,
universal homogeneous tournament

(Mottet, Pinsker; 2020 - smooth approximations).

Reason: they have canonical pseudo-WNUs.
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Canonical polymorphisms

Definition.

Let A be a fo-reduct of a k-homogeneous ¢-bounded structure B.
A polymorphism f of A is Aut(B)-canonical
if it preserves the orbit-equivalence modulo Aut(B).

< f induces an operation on the Aut(B)-orbits of n-tuples
for every n > 1.
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Canonical polymorphisms

Definition.

Let A be a fo-reduct of a k-homogeneous ¢-bounded structure B.
A polymorphism f of A is Aut(B)-canonical
if it preserves the orbit-equivalence modulo Aut(B).

< f induces an operation on the Aut(B)-orbits of n-tuples
for every n > 1.

Canonical polymorphisms play a key role in all known
complexity classifications of infinite-domain CSPs.
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Relational width collapses

There is no collapse of the relational width hierarchy
for fo-reducts of k-homogeneous ¢-bounded structures (Grohe, 1994).
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Relational width collapses

There is no collapse of the relational width hierarchy
for fo-reducts of k-homogeneous ¢-bounded structures (Grohe, 1994).

Theorem. [Mottet, N., Pinsker, Wrona, 2021]

Let k£, > 1, and let A be a fo-reduct

of a k-homogeneous ¢-bounded structure B.

If A has canonical pseudo-WNU polymorphisms modulo Aut(B)
of all arities n > 3 then A has relational width (2k, max(3k, ¢)).

stronger variant for pseudo-totally symmetric canonical
polymorphisms
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Collapses for particular structures

Collapse of relational width hierarchy for fo-reducts of:
o the universal homogeneous graph (relational width (4, 6));

11/15 A. Mottet, T. Nagy, M. Pinsker and M. Wrona Relational Width Collapses



Collapses for particular structures

Collapse of relational width hierarchy for fo-reducts of:
o the universal homogeneous graph (relational width (4, 6));
o the universal homogeneous tournament ((4, 6));

11/15 A. Mottet, T. Nagy, M. Pinsker and M. Wrona Relational Width Collapses



Collapses for particular structures

Collapse of relational width hierarchy for fo-reducts of:
o the universal homogeneous graph (relational width (4, 6));
o the universal homogeneous tournament ((4, 6));
o the universal homogeneous K,,-free graph, where n > 3 ((2,n));

11/15 A. Mottet, T. Nagy, M. Pinsker and M. Wrona Relational Width Collapses



Collapses for particular structures

Collapse of relational width hierarchy for fo-reducts of:
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° (N;=) ((2,3));
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o the countably infinite equivalence relation with infinitely many
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Collapses for particular structures

Collapse of relational width hierarchy for fo-reducts of:
o the universal homogeneous graph (relational width (4, 6));
o the universal homogeneous tournament ((4, 6));
o the universal homogeneous K,,-free graph, where n > 3 ((2,n));
o (N;=) ((2,3);
o the countably infinite equivalence relation with infinitely many
equivalence classes ((2, 3));

o the universal homogeneous partial order ((2, 3)).
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Let B := (A; F) be the universal homogeneous graph
and let N be the non-edge relation.
Let A := (A4; R=, Rx) be a fo-reduct of B with quaternary R—, R.:

R-
a b [ d
OR
a b c d
Ry
a b G d
OR
a b E d

R_(a,b,c,d) N Rx(a,b,c,d) is (3, k)-minimal for k£ > 3.
The exact relational width of A is (4,6).
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Further resulis

o Fo-reducts of a unary structure B that are cores:
Bounded width is characterized by canonical pseudo-WNUs
modulo Aut(B), relational width at most (4, 6).
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Further resulis

o Fo-reducts of a unary structure B that are cores:
Bounded width is characterized by canonical pseudo-WNUs
modulo Aut(B), relational width at most (4, 6).

o The same for CSPs modeling model-checking problem
for MMSNP-sentences.
= Datalog rewritability problem for MMSNP is decidable
and 2NExpTime-complete.
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Open questions

o Does the "collapse” hold for all fo-reducts
of k-homogeneous, ¢-bounded structures?
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Open questions

o Does the "collapse” hold for all fo-reducts
of k-homogeneous, ¢-bounded structures?

o Which intermediate relational widths are possible for fo-reducts
of a particular k-homogeneous ¢-bounded structure?

o For which k-homogeneous ¢-bounded structures the
characterization of bounded width
by (canonical) pseudo-WNUs applies?
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Thank you for your attention!



	

