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Abstract  

Recent investigations on foldable structures and particularly foldable tubes, raise the question if they 

can be advantageous for the construction of bridge-like beams. Transporting a flat packed structure on 

site and deploying it there, instead of bringing or constructing the structure on site will have a positive 

impact on the grey energy. Although a straight beam shows a better performance than a folded one with 

identical cross-section, the energy saved in transportation might justify the effort. In order to be able to 

answer this complex question, many steps and investigations need to be done. This paper will answer 

some questions concerning foldable structures and their geometry-related structural performance. 

During the ongoing research on T-hedral tubes, the authors developed a strategy to generate flat-foldable 

tubular beams, on which this particular investigation is based. For the paper at hand a set of these beams, 

with different cross-sections and variable amount of folds will be compared with respect to their 

structural performance. The study will focus on their geometry without exact detailing of the hinges or 

the material thickness. With the help of a parametric model a generic solver [1] and a FEM-module [2] 

the authors developed a method that evaluates the beams based on their weight after optimisation, in 

final unfolded state as well as in different configurations during unfolding. 

Keywords: structural origami, folding, computational design, bridge building.  

1. Introduction 

Recent advancements in the field of technical folding and structural origami have led to numerous 

innovative approaches for various applications. The development and investigation of new folding 

systems [3][4], along with experiments on a larger scale, have led to the assumption that large scale 

folding [5] could become more influential in the building industry. 

Although new folding algorithms are often presented with freeform shell geometries, the building 

industry has often higher interest in simple beams or slabs. Elements that can be unfolded on site are 

often related to disaster relief. One interesting example in this context is the foldable bridge by Ario et 

al. [6]. Foldable plates structures of rigid material that can be folded on site, are not yet known to be 

implemented in the building industry. 

During the research on foldable polyhedral tubes of the T-hedral type [7] the authors developed two 

variations of a flat foldable structure, that have a high potential for a beam-like application, as they can 

be transported in a small package and unfolded on site to their final configuration. Starting from the 

feasibility of foldable models with only one degree-of-freedom (1-DoF), the investigation towards 

realisation requires a validation of different folding concepts concerning their stiffness in relation to 
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their global geometry. In this paper a folded structure is evaluated through its mass after an optimisation 

process, that reduces the cross-sections of each element in the structure to be as light as possible. Doing 

so, we can evaluate the global geometry by its weight after optimisation. If certain boundary conditions 

as e.g. a fixed span are introduced, an algorithm can search for the lightest geometry, and therefore find 

the best variant. 

As geometric and mechanical constraints allow for different geometric solutions, the authors developed 

a parametric set-up for their particular systems, in order to find optima within the corresponding solution 

space. After discussing the chosen geometric constraints, the paper focuses on the evaluation of a series 

of optimisations, to find the best shape for a 20-meter spanning bridge beam.  

2. T-hedral Tubes 

We aim to design a transformable bridge that exploits the potential offered by polyhedral tubes 

composed of planar quads (PQ) connected by rotary joints. PQ-meshes in the combinatorics of a square 

grid with cylindrical topology are generically rigid, but certain geometries allow for a 1-parametric 

change of the dihedral angles without any deformation of the PQ-panels. This rigid-folding of the whole 

tubular structure can be controlled by a single actuated rotary joint. Beside this 1-DoF flexion, which 

can be used for a compact (even flat) folding for transportation, additional properties like a lightweight 

construction, make these structures suitable to be utilized in kinetic architecture and, in general, 

transformable design. A close look at the literature [7] on rigid-foldable tubular structures, composed of 

planar quads where each interior vertex has valence four, reveals that most of the known examples 

belong to the class of T-hedral tubes, which can be generated as follows: 

 

Figure 1. Construction of a T-hedral tube 

We start with a planar, closed polygon 𝑝0 located in the plane π0 and a planar polygon 𝑡0 whose carrier 

plane is denoted by τ0 (Figure 1). Moreover, 𝑝0 and 𝑡0 have a common vertex 𝑉0,0 and the planes π0 

and τ0 are intersecting orthogonally. The remaining vertices of 𝑡0 and 𝑝0 are denoted by 𝑉𝑖,0 and 𝑉0,𝑗, 

respectively, with 𝑖 = 1,… , 𝐼 − 1 and 𝑗 = 1,… , 𝐽 − 1. Through each vertex 𝑉𝑖,0 of 𝑡0 there is a plane π𝑖 

orthogonal to the base plane τ0. By a parallel projection of 𝑝𝑖−1 into the plane π𝑖 along the direction of 

the polygon edge 𝑉𝑖−1,0𝑉𝑖,0 of 𝑡0, we obtain the planar polygon 𝑝𝑖 ∊ π𝑖. Under this projection the vertices 

𝑉𝑖−1,𝑗 are mapped to 𝑉𝑖,𝑗. Iteration of this process (for 𝑖 = 1, . . , 𝐼 − 1) generates the vertices of the 

tubular quad-mesh, which has planar trapezoidal faces as the sides 𝑉𝑖−1,𝑗−1𝑉𝑖,𝑗−1 and 𝑉𝑖−1,𝑗𝑉𝑖,𝑗 of every 

quad are parallel. Note that the letter T, stands for trapezoidal, in the nomenclature T-hedral tube. In 

order that the resulting tube is rigid-foldable the planar closed polygon 𝑝0 has to meet the loop closure 

condition for which we refer to Theorem 3.1 of [7].  

It is well-known [8] that T-hedral tubes reach their flexion limits as soon as either a PQ-loop gets 

completely flat (Figure 2a) or a PQ-strip gets parallel to the base plane (Figure 2c). In the latter case the 

tube can also transition from one working mode to another. As a consequence, the T-hedral tube can 

only flex back in such a bifurcation configuration, but the PQ-strip can flip to the opposite side (Figures 
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2b and 2d). Therefore, this property is also known under the notion of switching [9].  

                                         

Figure 2. Illustration of the flexion limits (a,c) and working modes (b,d) on basis of a T-hedral tube with 

deltoidal cross-section in perspective (top) and top views (bottom) 

2.1. Specifications for the Bridge Design 

To keep the bridge design as simple as possible, we restrict to T-hedral tubes with a quadrilateral cross-

section (Figure 3). It can easily be seen that in this case the above-mentioned loop closure condition is 

only fulfilled if and only if 𝑝0 is  

1. a parallelogram, 

2. a deltoid with a symmetry line orthogonal to the base plane τ0, 

3. an anti-parallelogram with a symmetry line parallel to the base plane τ0. 

 

Figure 3. T-hedral tubes with all types of possible quadrilateral cross-sections; parallelogram (left), deltoid 

(center) and anti-parallelogram (right). (a) unfolded up to the flexion limit, (b) half-folded and (c) flat-folded 

In fact, we only deal with cross-sections of cases 1 and 2, because case 3 results in self-intersections for 

tubular shell models. In addition, we require a repetitive structure of the tubes to ease and cheapen their 

manufacturing, which yields to the assumption that 𝑡0 is a regular zig-zag. In order to meet our last 

request of flat-foldability, the planes π𝑖 have to be angle bisectors of 𝑡0 according to [9]. As a 

consequence, all planes π𝑖 are parallel to the plane π0 implying T-hedral tubes of the so-called 

translational type (as these tubes are generated by a pure translation from 𝑝0 along 𝑡0). 

One can also compose T-hedral tubes by connecting them at PQ-strips in a way that the resulting 

structure is still rigid-foldable. One can distinguish the following two types of this face-sharing coupling 

of T-hedral tubes of the translational type [7]. One can put two such tubes together in a way that the 

corresponding base planes are 

 parallel/identical: This so-called aligned-coupling can easily be constructed by merging two 

closed polygons 𝑝0
+  and 𝑝0

−, which both fulfil the loop closure condition and share (parts of) a 

common edge, to a single polygon 𝑝0. 

 not parallel/identical: This so-called zipper-coupling can be achieved by starting with the face-

sharing PQ-strip, which has to be a discrete cylinder for the translational type, and chose two 

base planes in a way that their line of intersection is orthogonal to the cylinder rulings. Note 

that during the rigid-folding of the zipper tubes the angle enclosed by the base planes changes 

as illustrated in Figure 7. 

Based on these fundamental properties of T-hedral tubes and their couplings, we proceed to explain the 

(𝑎)  (𝑏)  (𝑐)  (𝑑)  

(𝑎)  (𝑏)  (𝑐)  
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ideas behind the proposed two bridge designs.  

2.2. Proposed Two Bridge Designs 

Our goal is to achieve a flat bridge deck in the final unfolded state of the structure, which requires to be 

a flexion limit of at least one involved tube; i.e. the base plane of this tube has to be horizontal. However, 

as previously mentioned, this is also a bifurcation configuration and it is necessary to prevent the bridge 

from flexing back (under load). Our focus is on finding purely geometric solutions for blocking the 

bridge in the final unfolded state.  

 

Figure 4. A zig-zag unit of the core structure (b), the zipper-tube solution (a) and the nested deltoid solution (c) 

close to their final unfolded state 

Both presented solutions have the same core structure, which consists of three aligned-coupled deltoidal 

tubes (see Figure 4b). Note that such an arrangement was also used by Schenk and Guest [10] to 

construct self-locking metamaterial.  

 Nested deltoid solution: In this case the bifurcation is prevented by two inner deltoidal tubes, 

which are aligned-coupled to the outer deltoidal tubes even along two PQ-strips, which is 

possible due to symmetry (see Figure 4c). 

 Zipper-tube solution: We zipper-couple two rhombic tubes to the left and right deltoidal tubes 

of the core structure in a way that in the final unfolded state the rhombic tubes are flat and cover 

(even extend) the bridge deck (see Figure 4a).  

Finally, it should be noted that a flat-foldable bridge structure constructed from zipper-coupled tubes 

was also presented in Figure 6 of [11]. But neither its deck is flat nor the blocking of the bridge in its 

finale state was discussed. The latter can for example be achieved by fixing the cross-sections at the 

bridge end-points to two plates as done in [12]. Moreover, a flat covering of zipper-tubular structures 

can be obtained by using the concept of smooth sheet attachments [13].  

3. Potential Application as a Bridge 

As described above, the T-hedral tubes offer interesting behaviour and potential for the building industry 

as they can be prefabricated in a controlled environment, transported and unfolded into their final spatial 

configuration on site. For this investigation the two different approaches were analysed for their 

performance under load, self-weight and their behaviour during the unfolding process, using the FEM-

Tool Karamba3D [2] in combination with Galapagos [1] in the Rhino/Grasshopper environment. The 

authors decided to reduce complexity in this early investigation, and neglected therefore known 

problems and questions in relation to hinge detailing, material thickness, actuation or materiality.  

3.1. Structural Analysis of the Geometries 

If folding on site for a bridge should become a potential application two related questions need to be 

answered: What is the best geometry for the bridge in its final configuration, and what is the best 

geometry for the unfolding process. In the presented case, the authors also wanted to investigate if rather 

a nested or the zipper version of the bridge has a better structural performance.  

To compare the two options the authors used the FEM-Solver Karamba3D and its ability to optimize 

cross-sections with given parameters as e.g. maximum admissible deformation. In the presented case 

(𝑎)  (𝑏)  (𝑐)  
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the deflection limit is set to span/300 in accordance to European building codes. As a result, the mass 

of the structure is optimized. This serves as a performance indicator for comparing design alternatives. 

The lighter the result the better the geometry. For reducing computational effort, the structures were not 

analysed as shell structures, but as spatial truss assemblies with the truss-members being aligned to the 

foldlines and placed as cross bracing thereby modelling the in-plane stiffness of the PQ-panels.  

For an investigation on the geometry modelled via shell finite elements, the approach would have been 

to assign the same weight to the different bridge geometries by controlling the shell thickness and then 

compare the maximum deflection of the alternative structures. As the folded geometries have in the 

folded state several layers in the same plane, meshing becomes difficult and slow, resulting in inaccurate 

structural calculation results. Especially the zipper tube has a high level of complexity, that will be 

addressed in future investigations. 

To have comparable results the bridge spans were defined to be 20 meters having a fixed deck width of 

6 meters. The supports were allowed to freely rotate being movable in the bridge’s axial direction at one 

end-point. As truss material hardwood D30 was chosen. The truss-members to be optimised were chosen 

from a set of cross-sections ranging from 10 to 50 cm edge lengths in 5 cm steps. 

 

Figure 5. Concept sketch of the variable parameters in section of the zipper tube (left) and the nested solution 

(right) in its final folded state  

The design-alternatives of the bridge had different design parameters that were optimised using 

Galapagos. As shown in Figure 5, the zipper bridge was variable in the bridge height h, the number of 

undulations n, the amplitude a of the undulations in x-direction, and the width w of the core structure. 

The nested bridge was variable in the bridge height h, the number of undulations n, the amplitude a of 

the undulations in x-direction, and the upper length lu of the inner deltoid in relation to the total length. 

  

Figure 6. Concept sketch of the two bridge concepts the zipper tube (left) and the nested solution (right) in its 

final folded state  

The structures were optimised for different load cases and in different folding states. The bridges in final 

state where optimised under self-weight and for a live load of 6kN/m² on the bridge deck. During the 

(un)folding process the structures were only optimised for self-weight. It was assumed that the bridge 

would not be folded as a cantilever, but rather as a simply supported beam. This can be achieved with 

cranes on each side.   
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3.2. Optimisation Results 

As the cross-section optimisation in combination with the Galapagos solver necessitates long 

computation times the maximum amount of undulations was limited to four, and the deviation was 

limited to the range 0.25 to 7.5 meters, with a step size of 0.25 meters.  

Under live load both solutions converge to the maximum allowed height of the system that was limited 

to two meters, having a maximum number of 4 undulations, using the minimum allowed deviation of 

0.25 meters. The ten best results of both geometries have heights in the upper bound of the height domain 

and feature the maximum number of undulations. The high number of undulations is linked to the 

reduction of buckling lengths of the truss members, that result in better structural performance. The 

nested bridge is 1.4 tons heavier, and therefore less performative under live load as compared to the 

zipper geometry (cf. Table 1 and Figure 8). 

Table 1. The best results of the two systems under live load 

 

Under self-weight the total mass difference between the best results of the nested and zipper variant 

remains constant. Similar to the calculation with live load the mass difference amounts to 1.4 tons. Both 

systems tend towards the lower end of the possible predefined height range. The number of undulations 

switches from 4 to 2, but the amplitude is kept at the absolute minimum allowed (cf. Table 2).  

Table 2. The best results of the two systems under self-weight 

 

According to the intended eraction method of unfolding of the structure on site, one investigation was 

focusing on the optimisation with regards to the series of folding states. As different configurations 

feature different speeds of folding and unfolding, the folding ratio is defined to be between 0 and 1, 

where 1 corresponds to the fully unfolded state, and 0 to the fully folded package that has a total 

live load : 6 kN / m2

1 2 3 4 5 6 7 8 9 10

FinalStateHeight [m] 2.0 1.9 1.8 2.0 2.0 1.9 1.9 1.9 1.8 1.8

lu 0,25 0,25 0,25 0,33 0,08 0,33 0,17 0,08 0,33 0,08

a - amplitude [m] 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25

n - undulation 4 4 4 4 4 4 4 4 4 4

Mass [kg] 10748 10789 10838 10845 10889 10896 10913 10918 10949 10987

live load : 6 kN / m2

1 2 3 4 5 6 7 8 9 10

FinalStateHeight [m] 2.0 2 1,9 2 1,9 1,9 2 1,9 1.9 2,0

w - width [m] 4,1 4 4 4,2 4,1 4,2 3,7 3,9 4,3 3,6

a - amplitude [m] 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25

n - undulation 4 4 4 4 4 4 4 4 4 4

Mass [kg] 9367 9399 9431 9461 9466 9566 9571 9580 9590 9592

NESTED BRIDGE 

ZIPPER BRIDGE 

self-weight

1 2 3 4 5 6 7 8 9 10

FinalStateHeight [m] 1 1 1 1.0 1.8 1.3 1.3 1.8 1.3 1.4

lu 0,08 0,17 0,25 0,17 0,25 0,75 0,83 0,33 0,50 0,58

a - amplitude [m] 0,25 0,25 0,25 0,25 0,5 0,25 0,25 0,75 0,75 0,5

n - undulation 2 2 2 2 2 2 2 2 2 2

Mass [kg] 7183 7197 7214 7442 7463 7502 7526 7547 7551 7561

self-weight

1 2 3 4 5 6 7 8 9 10

FinalStateHeight [m] 1,2 1 1,3 2 1,5 1,5 2 1.5 1.9 1,7

w - width [m] 2 2 2,5 2,1 2,7 2,6 2,3 2,5 2,3 2,7

a - amplitude [m] 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25

n - undulation 2 2 2 2 2 2 2 2 2 2

Mass [kg] 5806 5806 5903 5904 5905 5908 5912 5912 5916 5917

ZIPPER BRIDGE 

NESTED BRIDGE 
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thickness of 1.5 meters. This number constitutes an estimation, since material thickness and hinge 

detailing will probably not allow for smaller package sizes.  

 

Figure 7. The unfolding sequence from top to bottom of the zipper bridge (left) and the nested bridge (right) with 

the correspondent angles of the deltoid’s base planes. From top to bottom the configurations correspond to the 

folding ratios 0, 0.25, 0.5, 0.75 and 1. 

The folding sequence was split into 4 steps: 0.75, 0.50, 0.25 and 0, respectively. As the entire system is 

rigidly foldable, the position of each planar quad is exactly defined.  Each step has been optimised as a 

single state, with the endpoints being simply supported. 

The results show (cf. Tables 3 and 4), that for the motion states the structural height converges towards 

the lowest third of the allowable range, whereas for the three best results the optimised height takes on 

the minimum height possible. The number of undulations is in almost all cases two, its amplitude being 

0.25 for most variants. The total mass of both structures is similar and ranges from 7350 kg to 8650 kg. 

The extreme undulation in the smallest possible folded state leads to an increase in weight for both 

structures. While the nested bridge has a similar weight in all states, the zipper bridge features a weight 

increase of 1/3 compared to the case of only self-weight applied. As the folded package represents the 

transportation case, the latter results are not considered to govern the actual design. For transportation 

and placement on site necessitate additional manipulation tools which depend on the available technical 

means. 

 

 

 

 

 



Proceedings of the IASS Annual Symposium 2023 

Integration of Design and Fabrication 
 

 
 

8 

Table 3. The best results of the nested bridge during motion states 

 

Table 4. The best results of the zipper bridge during motion states 

 

3.2. Additional Comparisons 

If we compare the individual optimised solutions in all states, it turns out that we can differentiate 

between two sets of results: All variants optimised under self-weight have varying but comparable 

outcomes in all considered states (during folding under self-weight). When adding live loads to the 

structural models the optimized mass doubles or triples. Comparing solutions under live load to the 

states during unfolding, one sees, that the optimised mass is only in the fully folded, initial state higher.  

Tables 5 and 6 show mass and displacement values calculated via Karamba3D before and after the cross-

section optimisation. 

 

self-weight [0.75]

1 2 3 4 5 6 7 8 9 10

FinalStateHeight 1 1 1 1 1,1 1,1 1 1,1 1,1 1,2

inner lu 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8

Deviation 0,25 0,33333 0,41667 0,5 0,25 0,33333 0,58333 0,41667 0,5 0,25

n-undulation 2 2 2 2 2 2 2 2 2 2

Mass 7352,49 7330,07 7337,11 7346,39 7351,18 7355,35 7357,74 7361,95 7370,8 7378,36

self-weight [0.50]

1 2 3 4 5 6 7 8 9 10

FinalStateHeight 1 1.1 1.0 1.2 1.0 1 1.2 1.1 1.1 1.0

inner lu 0,1 0,1 0,2 0,1 0,2 0,1 0,2 0,2 0,1 0,2

Deviation 0,25 0,5 0,25 0,25 0,25 0,5 0,25 0,25 0,5 0,5

n-undulation 2 2 2 2 2 2 2 2 2 2

Mass 7379 7405 7406 7433 7438 7444 7463 7466 7468 7470

self-weight [0.25]

1 2 3 4 5 6 7 8 9 10

FinalStateHeight 1 1 1.6 1.2 1.3 1.4 1 1.1 1 1.2

inner lu 0,1 1,1 0,5 0,8 0,8 0,7 0,9 0,8 0,8 0,8

Deviation 0,25 0,25 0,25 0,5 0,5 0,5 0,25 0,25 0,5 0,75

n-undulation 2 2 2 2 2 2 3 3 3 2

Mass 7402 7421 7741 8056 8068 8126 8343 8350 8463 8643

NESTED BRIDGE

NESTED BRIDGE

NESTED BRIDGE

self-weight [0.75]

1 2 3 4 5 6 7 8 9 10

FinalStateHeight 1 1.,1 1,2 1 1,3 1,1 1 1,2 1 1

DriveThrough 5,0 5,0 5,0 4,9 5,0 4,9 5,1 4,9 4,3 5,2

Deviation 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25

num undulation 2 2 2 2 2 2 2 2 2 2

Mass 7505,31 7514,64 7526,52 7530,98 7537,18 7540,18 7551,05 7553,15 7554,67 7558,7

self-weight [0.50]

1 2 3 4 5 6 7 8 9 10

FinalStateHeight 1 1 1 1 1,1 1 1,1 1,1 1,1 1,2

DriveThrough 4,20 4,1 4 3,9 4,2 3,8 4,1 4 3,9 4,2

Deviation 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25

num undulation 2 2 2 2 2 2 2 2 2 2

Mass 7587,49 7590,78 7593,05 7597,15 7600,38 7601,9 7603,77 7606,17 7610,37 7614,06

self-weight [0.25]

1 2 3 4 5 6 7 8 9 10

FinalStateHeight 1,2 1,1 1 1,2 1,3 1,4 1 1.1 1,2 1

DriveThrough 2,70 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,3

Deviation 0,25 0,75 0,75 0,75 0,75 0,75 1,5 1,5 1,5 0,25

num undulation 2 2 2 2 2 2 2 2 2 3

Mass 7773,32 7878,28 7889.5867890,35 7906,21 7922,26 8007,02 8019,59 8030,62 8082,65

ZIPPER BRIDGE 

ZIPPER BRIDGE 

ZIPPER BRIDGE 
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Table 5. The best result of each state (red), investigated in all other states of the nested bridge 

   

Table 6. The best result of each state (red), investigated in all other states of the zipper bridge  

 

 Best Load Best Eigen Best 0,75 Best 0,5 Best 0,25 Best 0,00

FinalStateHeight 2,00 1 1 1 1 1,70

lu 0,25 0,08 0,25 0,08 0,08 0,83

a -Amplitude 0,25 0,25 0,25 0,25 0,25 0,75

n-undulation 4,00 2,00 2,00 2,00 2,00 2,00

Load [1]

Mass 10 462,95 19 728,45 18 898,83 19 728,45 19 728,45 16 348,59

disp orig 5,58 9,53 9,31 9,53 9,53 7,74

disp 3,80 6,48 6,34 6,48 6,48 5,25

Self [1]

Mass 8 782,70 7 183,00 7 089,88 7 076,07 7 076,07 7 449,59

disp orig 0,90 2,16 2,17 2,15 2,15 1,43

disp 0,66 1,60 1,61 1,59 1,59 1,06

Self [0.75]

Mass 9 155,70 7 437,20 7 325,49 7 437,20 7 437,20 7 726,34

disp orig 0,40 0,66 0,68 0,66 0,66 1,20

disp 0,29 0,49 0,51 0,49 0,49 0,89

Self [0.5]

Mass 9 388,39 7 362,91 7 385,19 7 362,91 7 362,91 7 743,81

disp orig 0,43 0,92 0,79 0,92 0,92 1,50

disp 0,32 0,68 0,58 0,68 0,68 1,11

Self [0.25]

Mass 9 238,39 7 385,82 7 382,45 7 385,82 7 385,82 8 453,49

disp orig 1,83 1,28 1,25 1,28 1,28 4,93

disp 1,36 0,95 0,93 0,95 0,95 3,65

NESTED BRIDGE

Best Load Best Eigen Best 0,75 Best 0,5 Best 0,25 Best 0,00

FinalStateHeight 2,0 1,2 1 1 1 1

w - width 4,1 2 5 4,2 2,7 5,7

a - Amplitude 0,25 0,25 0,25 0,25 0,25 0,25

n-undulation 4 2 2 2 2 2Index Ondulation0 0 0 0 0 0

Load [1]

Mass 9 366,88 18 534,53 19 767,91 19 052,24 21 119,28 20 187,31

disp orig 6,15 11,61 9,71 9,50 12,48 9,33

disp 4,14 7,88 6,41 6,46 8,49 6,36

Self [1]

Mass 6 843,16 5 805,52 6 016,25 6 026,54 5 881,13 6 091,97

disp orig 0,74 5,43 2,45 2,36 4,34 2,55

disp 0,55 4,02 1,81 1,75 3,22 1,89

Self [0.75]

Mass 9 040,99 7 846,78 7 505,31 7 596,45 7 636,65 7 629,54

disp orig 0,58 2,58 1,41 1,32 2,21 1,95

disp 0,43 1,91 1,04 0,98 1,64 1,45

Self [0.5]

Mass 9 031,67 7 619,46 7 632,51 7 587,49 7 682,78 7 659,92

disp orig 0,56 6,00 0,98 1,00 3,00 1,11

disp 0,42 4,44 0,73 0,74 2,22 0,82

Self [0.25]

Mass 9 008,20 7 779,17 7 656,30 7 615,00 7 807,11 7 801,47

disp orig 1,39 7,21 1,01 1,84 1,94 2,00

disp 1,03 5,34 0,75 1,36 1,43 1,48

ZIPPER BRIDGE
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Figure 8. The zipper solution (left) and the nested solution (right) and their deformation under live load 

 4. Conclusion  

The investigation shows that the zipper bridge option has advantages over the nested one in unfolded 

and final state. Although the zipper tubes are more rigid during the unfolding motion, the nested solution 

is in some states more efficient. The better performance seems to be linked to the fact that the zipper 

geometry allows for a slight cantilever of the bridge deck, that reduces the entire surface area and 

therefore the weight of the core structure. 

The investigation shows that the bridge in its smallest possible package state behaves unstable. The 

reason for this behaviour requires additional investigations, to assess possible solutions to this problem. 

It can be assumed, that this small transportable package will require special treatment in the course of 

the erection process. 

5. Outlook 

This investigation constitutes a starting point for more detailed investigations on bridges based on T-

hedral tubes. The presented results are promising and will be followed up by additional research. 

In a further study the focus will be on the support conditions during unfolding. Using cantilevering 

instead of simply supported conditions, one has to control vertical deflections similarly to the analysis 

presented in [14]. This approach will require multi-objective optimisation to include additional objective 

functions as e.g. introduced by hinge design, support method, and positioning during unfolding. Another 

focus is the change from a repetitive pattern of the structural elements to a non-repetitive one that might 

be adapted for better motion and structural behaviour. 

Obviously, future investigations should be refined by using shell elements instead of a simplified beam? 

model. The simulation problems encountered for the smallest foldable package state suggest a more 

detailed investigation in relation to the panel thickness, hinge solution, actuation and the temporary 

support during motion. If these problems can be solved, it is planned to build scaled demonstrators in a 

consecutive step. 
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