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Abstract

In this paper we investigate multivariate integration in reproducing kernel Sobolev
spaces for which the second partial derivatives are square integrable. As quadra-
ture points for our quasi-Monte Carlo algorithm we use digital (t,m, s)-nets over
Z2 which are randomly digitally shifted and then folded using the tent transforma-
tion. For this QMC algorithm we show that the root mean square worst-case error
converges with order 2m(−2+ε) for any ε > 0, where 2m is the number of points. A
similar result for lattice rules has previously been shown by Hickernell.
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1 Introduction

In order to approximate integrals of the form I(h) =
∫
[0,1]s

h(x) dx one often employs

a quasi-Monte Carlo (QMC) algorithm QN,s(h) = N−1
∑N−1

n=0 h(xn), where the points
x0, . . . , xN−1 ∈ [0, 1]s are carefully chosen quadrature points. Especially in higher dimen-
sions one either chooses the quadrature points randomly (in which case QN,s is called
Monte Carlo algorithm) or deterministically. The two most prominent QMC rules are
lattice rules (see [10, 16]) and QMC rules using digital (t, m, s)-nets as point sets (see
[10]). Here we will focus on the latter one.

The advantage of using deterministic point sets lies in the fact that if the function
satisfies some smoothness conditions one can obtain a better convergence rate of the
integration error. It is known that Monte Carlo algorithms typically achieve a convergence
rate of the integration error of order N−1/2 (see [10] for example). In this case one only
needs to assume that the function has finite variance. But by considering smoother
function classes and using deterministic point sets one can obtain better convergence
rates. For example if we consider periodic functions for which all the partial derivatives
up to order α in each variable exist and are square integrable we can obtain a convergence
order of N−α+ε for any ε > 0, see [16]. This convergence rate is known to be best possible.
The quadrature rules used in this case are lattice rules and the analysis is based on the
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Fourier series of the functions. (A lattice rule is a QMC rule which uses the point set
{ng/N} for n = 0, . . . , N − 1, where g ∈ {1, . . . , N − 1}s is the generating vector and for
a real number x we define {x} = x − bxc = x (mod 1).)

For function spaces which do not carry the assumption that the functions must be
periodic the problem is much more difficult. If we assume that all partial derivatives of
order up to one in each variable exist and are square integrable then one can use randomly
shifted lattice rules to do the job, that is, to obtain a convergence rate of order N−1+ε for
any ε > 0, see [18]. (If xn, n = 0, . . . , N − 1, is the point set used in a lattice rule, then a
shifted lattice rule uses the point set {x+∆} where ∆ ∈ [0, 1)s. We speak of a randomly
shifted lattice rule if the shift ∆ is chosen randomly.)

If we assume that all mixed partial derivatives of order up to 2 in each variable exist and
are square integrable then randomly shifted lattice rules do not achieve a convergence order
N−2+ε, instead one obtains only a convergence order of N−1+ε, see [6]. For such function
classes one can of course use some transformation to make the functions periodic and then
apply the theorems for periodic functions which then yields the better convergence rate of
N−2+ε, but as described in [6], this can increase the norm of the function. Hickernell [6]
suggested to look at this problem differently. Namely, instead of periodizing the function
one can transform the point set, that is, change the algorithm, and analyse the discrepancy
of the new point set. This way, Hickernell showed that lattice rules achieve the best
convergence order of N−2+ε. The point set he used can be obtained in the following way:
first one applies a random shift modulo 1 to the lattice rules and then uses the so-called
tent transformation. This transformation is given by the function φ(x) = 1 − |2x − 1|
(in [6] Hickernell called this transformation “baker’s transformation”). So in effect the
point set employed in his QMC algorithm is given by φ({xn + ∆}) for n = 0, . . . , N − 1,
where xn = {ng/N} and ∆ ∈ [0, 1)s is chosen i.i.d. and the function φ is applied to each
coordinate, see [6].

In the lattice rule case the shift-and-fold-invariant kernel [6] can be related to a re-
producing kernel for a space of twice differentiable periodic functions. This then permits
to obtain the improved convergence rate. When one uses digital nets on the other hand,
no such relationship can be expected and hence the results in the following come as a
surprise. The secret lies in the behavior of the Walsh coefficients of the digitally shifted-
and-folded kernel, which is different from the one for the Fourier coefficients in the lattice
rule case, but it still allows us to obtain the higher convergence rate. More precisely, we
will show that similar results (compared to the one for lattice rules) hold for digital nets
and polynomial lattice rules over Z2. If the functions have partial derivatives up to order
2 which are square integrable then we can obtain a convergence rate of order 2m(−2+ε) for
any ε > 0. As for lattice rules, our result is obtained by averaging over all generating
matrices of digital nets or generating vectors of polynomial lattice rules. As opposed to
lattice rules, for digital nets a priori constructions with good distribution properties are
known, for example digital nets stemming from Sobol sequences, Niederreiter sequences or
Niederreiter-Xing sequences. If such point sets satisfy similar upper bounds is not known
and remains an interesting open problem.

We conclude the introduction with a brief outline of the paper. In the next section we
introduce digital nets, polynomial lattice rules, digital shifts and Walsh functions. These
definitions and some basic results provide us with the main tools to analyze and prove
upper bounds for the integration error in certain reproducing kernel Sobolev spaces. In
Section 3 we analyse the worst-case error for multivariate integration in reproducing kernel
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Hilbert spaces using randomly digitally shifted and then folded point sets. We prove a
formula for the mean square worst-case error in such spaces using the Walsh-coefficients
of a certain related reproducing kernel. In Section 4 we use those results for the specific
case of certain Sobolev spaces and we obtain an upper bound on the average of the mean
square worst-case error over all digital nets and all polynomial lattice rules. In Section 5
we present numerical experiments. Appendix A contains the calculation of the shifted
and folded kernel, whereas in Appendix B we show a closed form of the shift invariant
kernel, which is related to the shifted and folded kernel. Appendix C contains several
useful lemmas and finally Appendix D contains several pictures of digitally shifted and
then folded digital nets.

2 Preliminary definitions and results

2.1 Digital nets

The construction method considered here builds on the concept of (t, m, s)-nets. A de-
tailed theory on this topic was developed in Niederreiter [9] (see also [10, Chapter 4],
for a recent survey see [13]). Those (t, m, s)-nets in base b provide sets of bm points in
the half open s-dimensional unit-cube, which are extremely well distributed if the quality
parameter t is “small”. The details are given in the following definition.

Definition 1 Let b ≥ 2, s ≥ 1 and 0 ≤ t ≤ m be integers. Then a point set P
consisting of bm points in [0, 1)s forms a (t, m, s)-net in base b, if every subinterval
J =

∏s
j=1[aj b−dj , (aj + 1) b−dj) of [0, 1)s with integers dj ≥ 0 and 0 ≤ aj < bdj for

1 ≤ j ≤ s and of volume bt−m contains exactly bt points of P .

Note that any point set consisting of bm points in [0, 1)s is at least a (m, m, s)-net in
base b. Of course, we wish to have a small value of the quality parameter t. Unfortunately
the optimal value t = 0 is not possible for all parameters s ≥ 1 and b ≥ 2. Niederreiter [9]
proved that if a (0, m, s)-net in base b exists, then we have s−1 ≤ b. Faure [5] provided a
construction of (0, m, s)-nets in prime base p ≥ s−1 and Niederreiter [9] extended Faure’s
construction to prime power bases pr ≥ s − 1. So for example a (0, m, s)-net in base 2
only exists if s = 1, s = 2 or s = 3.

In practice all concrete constructions of (t, m, s)-nets in a base b are based on a general
construction scheme which is the concept of digital point sets. Here in this paper we only
deal with the case b = 2, i.e., we only consider (t, m, s)-nets in base 2 and hence we
introduce the digital construction only for this special case. For a general definition see
for example [10]. (It has been observed that a small base b and higher t-value yields
better point sets than choosing a high base b such that we can achieve t = 0. It appears
therefore that the case b = 2 might actually be the most important one.) In the following
let Z2 denote the finite field with two elements.

Definition 2 Let s, m ≥ 1 be integers and choose s m × m matrices C1, . . . , Cs over
Z2. Consider the following construction principle for point sets consisting of 2m points in
[0, 1)s: represent n, 0 ≤ n < 2m, in base 2, n = n0 + n12 + · · ·+ nm−12

m−1, and multiply
the matrix Cj, 1 ≤ j ≤ s, with the vector ~n = (n0, . . . , nm−1)

> of digits of n in Z2,

Cj~n =: (xj,n,1, . . . , xj,n,m)>.
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Now we set
xj,n :=

xj,n,1

2
+ · · · +

xj,n,m

2m

and

xn = (x1,n, . . . , xs,n).

If for some integer t with 0 ≤ t ≤ m the point set {x0, . . . , x2m−1} is a (t, m, s)-net in
base 2, then it is called a digital (t, m, s)-net over Z2 (or briefly a digital net) and the
matrices C1, . . . , Cs are called the generating matrices of the digital net.

Concerning the determination of the quality parameter t of digital nets we refer to Nieder-
reiter [10, Theorem 4.28]. It is well known that any d-dimensional projection of a digital
(t, m, s)-net over Z2 is a digital (t, m, d)-net over Z2.

In the following we show that digital nets also have a group structure. Let {x0, . . . , x2m−1}
be a digital net over Z2 generated by the m × m matrices C1, . . . , Cs over Z2. For
xn = (x1,n, . . . , xs,n) and xj,n = xj,n,12

−1 + · · · + xj,n,m2−m, 1 ≤ j ≤ s, 0 ≤ n < 2m,
we identify xn with

(x1,n,1, . . . , x1,n,m, . . . , xs,n,1, . . . , xs,n,m) ∈ Z
ms
2

and we define

xn ⊕ xh := (x1,n,1 + x1,h,1, . . . , xs,n,m + xs,h,m) ∈ Z
ms
2 . (1)

The subsequent lemma follows easily from the construction of digital nets.

Lemma 1 Any digital net {x0, . . . , x2m−1} over Z2 is homomorph to a subgroup of (Zms
2 ,⊕).

2.2 Polynomial lattice rules

In [11] (see also [10]) Niederreiter introduced a special construction of digital nets. This
construction is based on rational functions over finite fields. Again we restrict ourselves
to digital nets over Z2.

Let Z2((x
−1)) be the field of formal Laurent series over Z2. Thus elements of Z2((x

−1))
are of the form

L =
∞∑

l=w

tlx
−l,

where w is an arbitrary integer and all tl ∈ Z2. Note that Z2((x
−1)) contains the field of

rational functions over Z2 as a subfield. Further let Z2[x] be the set of all polynomials
over Z2 and let m ≥ 1 be an integer. For a given dimension s ≥ 2, choose f ∈ Z2[x], with
deg(f) = m, and let g1, . . . , gs ∈ Z2[x]. Let ϕm be the map from Z2((x

−1)) to the interval
[0, 1) defined by

ϕm

(
∞∑

l=w

tlx
−l

)
=

m∑

l=max(1,w)

tl2
−l.

For 0 ≤ n < 2m let n = n0 + n12 + · · · + nm−12
m−1 be the base 2 expansion of n. With

each such n we associate the polynomial

n(x) =

m−1∑

r=0

nrx
r ∈ Z2[x].
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Then P (g, f) is the point set consisting of the 2m points

xn =

(
ϕm

(
n(x)g1(x)

f(x)

)
, . . . , ϕm

(
n(x)gs(x)

f(x)

))
∈ [0, 1)s,

for 0 ≤ n ≤ 2m − 1. Due to the construction principle, a QMC rule using the point set
P (g, f) is often called a polynomial lattice rule. The vector g is called the generating
vector of P (g, f) or the generating vector of the polynomial lattice rule, depending on the
context. For 1 ≤ j ≤ s consider the expansion

gj(x)

f(x)
=

∞∑

l=wj

u
(j)
l x−l ∈ Z2((x

−1)),

where wj ≤ 1. Then it can be shown (see [12]) that the point set P (g, f) is a digital net

with generating matrices C1, . . . , Cs where the elements c
(j)
i,r of the matrix Cj are given by

c
(j)
i,r = u

(j)
r+i ∈ Z2

for 1 ≤ j ≤ s, 1 ≤ i ≤ m and 0 ≤ r ≤ m − 1

2.3 Digital shift

For practical applications it is often useful to have a random element in the point set
used (see [8]). On the other hand we wish to preserve the structure which a point set
already has. That is, in this case we wish to randomize a (t, m, s)-net such that the
resulting point set is again a (t, m, s)-net with the same quality parameter t. Several
randomization methods for (t, m, s)-nets have been introduced (see [8], [14], [20]).

In this paper we consider point sets which are digitally shifted. First we introduce
some notation which we will use frequently throughout the paper. By ⊕ we denote the
digit-wise addition modulo 2 , i.e., for x =

∑∞
i=w

xi

2i and y =
∑∞

i=w
yi

2i we have

x ⊕ y :=
∞∑

i=w

zi

2i
, where zi := xi + yi (mod 2).

For vectors x = (x1, . . . , xs) and y = (y1, . . . , ys) we define the digit-wise addition modulo
2 coordinate-wise, i.e. x ⊕ y = (x1 ⊕ y1, . . . , xs ⊕ ys).

Let σ ∈ [0, 1)s and let x0, . . . , xN−1 ∈ [0, 1)s. The digitally shifted point set y0, . . . , yN−1 ∈
[0, 1)s is then given by yn = xn ⊕ σ for n = 0, . . . , N − 1. This randomization method is
the digital analogue of the shift used for lattice rules.

The point set which we consider in this paper are digital nets over Z2, which are
randomly shifted by a digital shift, with the shift σ i.i.d. in [0, 1)s, and then folded using
the tent transformation. More precisely, let x0, . . . , x2m−1 be a digital net over Z2 and
σ ∈ [0, 1)s be an i.i.d. random number then the randomly digitally shifted and then
folded point set is given by

yn = φ(xn ⊕ σ) for n = 0, . . . , 2m − 1,

where φ(xn ⊕ σ) = (φ(x1,n ⊕ σ1), . . . , φ(xs,n ⊕ σs)).
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2.4 Walsh functions

In this section we introduce Walsh functions, which will be the main tool in our analysis.
Again we confine ourselves to base 2 (for more information see [1], [19]). In the following
let N0 denote the set of non-negative integers.

Definition 3 For a non-negative integer k with base 2 representation

k = κa−12
a−1 + · · ·+ κ12 + κ0,

with κi ∈ {0, 1}, we define the Walsh function walk : [0, 1) −→ {−1, 1} by

walk(x) := (−1)x1κ0+···+xaκa−1,

for x ∈ [0, 1) with base 2 representation x = x1

2
+ x2

22 + · · · (unique in the sense that
infinitely many of the xi must be zero).

Definition 4 For dimension s ≥ 2, x1, . . . , xs ∈ [0, 1) and k1, . . . , ks ∈ N0 we define
walk1,...,ks

: [0, 1)s −→ {−1, 1} by

walk1,...,ks
(x1, . . . , xs) :=

s∏

j=1

walkj
(xj).

For vectors k = (k1, . . . , ks) ∈ N
s
0 and x = (x1, . . . , xs) ∈ [0, 1)s we write

walk(x) := walk1,...,ks
(x1, . . . , xs).

We call x ∈ [0, 1) a dyadic rational if x can be represented by a finite base 2 expansion.
In the following proposition we summarize some basic properties of Walsh functions.

Proposition 1 1. For all k, l ∈ N0 and all x, y ∈ [0, 1), with the restriction that if x, y
are not dyadic rationals then x ⊕ y is not allowed to be a dyadic rational, we have

walk(x) · wall(x) = walk⊕l(x), walk(x) · walk(y) = walk(x ⊕ y).

2. We have ∫ 1

0

wal0(x) dx = 1 and

∫ 1

0

walk(x) dx = 0 if k > 0.

3. For all k, l ∈ N
s
0 we have the following orthogonality properties:

∫

[0,1]s
walk(x)wall(x) dx =

{
1 if k = l,
0 otherwise.

4. For any h ∈ L2([0, 1)s) and any σ ∈ [0, 1)s we have
∫

[0,1)s

h(x) dx =

∫

[0,1)s

h(x ⊕ σ) dx.

5. For any integer s ≥ 1 the system {walk1,...,ks
: k1, . . . , ks ≥ 0} is a complete or-

thonormal system in L2([0, 1)s).
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Proof. The proofs of 1.-3. are straightforward. For item 4. see [1, Lemma 1] and for item
5. see [1]. 2

The following lemma will be very useful for our investigation. A proof of this result
can be found in [3, 4, 15].

Lemma 2 Let {x0, . . . , x2m−1} be a digital (t, m, s)-net over Z2 generated by the m × m
matrices C1, . . . , Cs over Z2. Then for all integers 0 ≤ k1, . . . , ks < 2m we have

2m−1∑

n=0

walk1,...,ks
(xn) =

{
2m if C>

1
~k1 + · · · + C>

s
~ks = ~0,

0 otherwise,

where for 0 ≤ k < 2m with k = κ0 +κ12+ · · ·+κm−12
m−1 we write ~k = (κ0, . . . , κm−1)

> ∈
Z

m
2 and ~0 denotes the zero vector in Z

m
2 .

3 Worst-case error in reproducing kernel Hilbert spaces

using randomly shifted and then folded point sets

In general we are interested in approximating the integrals of functions h from a repro-
ducing kernel Hilbert space H,

Is(h) =

∫

[0,1]s
h(x) dx.

We approximate the integral Is(h) by QMC algorithms, which are equal weight quadrature
rules of the form

QN,s(h) =
1

N

N−1∑

n=0

h(xn), (2)

with a deterministically chosen point set PN = {x0, . . . , xN−1} ⊆ [0, 1]s.
The worst-case error of a QMC rule QN,s for integration in the space H with repro-

ducing kernel K and norm ‖ · ‖ is defined by

e(PN , K) := sup
h∈H,‖h‖≤1

|Is(h) − QN,s(h)|,

and the initial error is
e0,s := sup

h∈H,‖h‖≤1

|Is(h)|.

It is known that (see for example [17]) the worst-case error for multivariate integration
in a reproducing kernel Hilbert space with reproducing kernel K using a point set PN is
given by

e2(PN , K) =

∫

[0,1]2s

K(x, y) dxdy −
2

N

∑

x∈PN

∫

[0,1]s
K(x, y) dy +

1

N2

∑

x,y∈PN

K(x, y). (3)

Let PN be a point set consisting of N points in [0, 1]s and let P̃N,σ,φ denote the point
set PN which is first randomized by a digital shift σ and then folded component wise by
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φ. Define the mean square worst-case error for integration in a reproducing kernel Hilbert
space with reproducing kernel K by

ê2
sh,φ(PN , K) := E[e2(P̃N,σ,φ, K)], (4)

where the expectation value is with respect to the random digital shift σ. Further, for
a reproducing kernel K ∈ L2([0, 1]2s) let the digitally shifted and folded kernel Ksh,φ be
given by

Ksh,φ(x, y) =

∫

[0,1]s
K(φ(x ⊕ σ), φ(y ⊕ σ)) dσ,

where for vectors x ∈ R
s the tent transformation φ(x) is defined component wise.

As done by Hickernell in [6] we can apply the random digital shift and the tent trans-
formation to the reproducing kernel and then use (3) to obtain the mean square worst-case
error as shown in the following theorem.

Theorem 1 Let K ∈ L2([0, 1]2s) be a reproducing kernel, let PN ⊆ [0, 1]s be a point set

consisting of N points and let P̃N,σ,φ be the point set PN first randomized by a digital shift
and then transformed by φ. Then we have

ê2
sh,φ(PN , K) = e2(PN , Ksh,φ).

Proof. In order to calculate ê2
sh,φ(PN , K) we use (3) and

E[e2(P̃N,σ,φ)] =

∫

[0,1]s
e2(P̃N,σ,φ, K) dσ.

Note that for any h ∈ L2([0, 1]) we have
∫ 1

0

h(φ(x)) dx =

∫ 1

0

h(x) dx.

Hence together with Proposition 1 it follows that
∫

[0,1]s

∫

[0,1]2s

K(x, y) dxdy dσ =

∫

[0,1]s

∫

[0,1]2s

K(φ(x ⊕ σ), φ(y ⊕ σ)) dxdy dσ

=

∫

[0,1]2s

Ksh,φ(x, y) dxdy.

In the same way, we obtain
∫

[0,1]s

2

N

∑

x∈ ePN,σ,φ

∫

[0,1]s
K(x, y) dy dσ =

∫

[0,1]s

2

N

∑

x∈PN

∫

[0,1]s
K(φ(x ⊕ σ), y) dy dσ

=
2

N

∑

x∈PN

∫

[0,1]s
Ksh,φ(x, y) dy.

For the right-hand sum in (3) we obtain
∫

[0,1]s

1

N2

∑

x,y∈ ePN,σ,φ

K(x, y) dσ =
1

N2

∑

x,y∈PN

∫

[0,1]s
K(φ(x ⊕ σ), φ(y ⊕ σ)) dσ

=
1

N2

∑

x,y∈PN

Ksh,φ(x, y).

The result now follows from (3) and (4). 2
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The above theorem shows that the mean square worst-case error can be obtained via
(3) and the digitally shifted and folded kernel. We will show a theorem how this kernel
can be calculated using Walsh functions. Before we state this result we introduce the
following function: for k = κ0 + κ12 + κ22

2 + · · · denote the sum-of-digits function as
σ(k) = κ0 +κ1 +κ2 + · · · . Further, the following lemma will be required for the promised
result.

Lemma 3 Let k = κ0 +κ12+ · · ·+κa−12
a−1 with κa−1 6= 0. Let the base 2 representation

of x ∈ [0, 1) be given by x = x1

2
+ x2

22 + · · · where we assume that xi = 0 for infinitely many
i ∈ N. Further let xe = 1 for some e ≥ a + 1. Then we have

walk(1 − x) = (−1)σ(k)walk(x).

Proof. We have

1 − x =
1 − x1

2
+ · · · +

1 − xa

2a
+ · · ·

and therefore

walk(1 − x) = (−1)κ0(1−x1)+···+κa−1(1−xa)

= (−1)κ0+···+κa−1(−1)κ0x1+···+κa−1xa = (−1)σ(k)walk(x).

2

The following theorem is useful for the calculation of the digitally shifted and folded
kernel.

Theorem 2 Let K ∈ L2([0, 1]2s) be a reproducing kernel. Then the digitally shifted and
then folded kernel Ksh,φ is given by

Ksh,φ(x, y) =
∑

k∈E

K̂sh,φ(k, k)walk(x)walk(y),

where E = {k = (k1, . . . , ks) ∈ N
s
0 : σ(kj) ≡ 0 (mod 2) for all j = 1, . . . , s} and

K̂sh,φ(k, k) =

∫

[0,1]s

∫

[0,1]s
K(x, y)walbk/2c(x)walbk/2c(y) dxdy

with bk/2c = (bk1/2c, . . . , bks/2c) and for kj = κj,0 + 2κj,1 + · · · we have bkj/2c =
κj,1 + 2κj,1 + · · · .

Remark 1 Note that bkj/2c is independent of κj,0, but the condition σ(kj) ≡ 0 (mod 2)
implies that for given κj,1, κj,2, . . . there is only one choice for κj,0 such that σ(kj) ≡
0 (mod 2). Further it is obvious that for any choice of κj,1, κj,2, . . . there is exactly one
κj,0 ∈ {0, 1} such that σ(kj) ≡ 0 (mod 2).

Remark 2 Let the digital shift invariant kernel, as defined in [3], be given by

Ksh(x, y) =

∫

[0,1]s
K(x ⊕ σ, y ⊕ σ) dσ,
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then we can write
Ksh(x, y) =

∑

k∈Ns
0

K̂sh(k, k)walk(x)walk(y),

where

K̂sh(k, k) =

∫

[0,1]s

∫

[0,1]s
K(x, y)walk(x)walk(y) dxdy.

Let now ν(k) = (ν(k1), . . . , ν(ks)) ∈ {0, 1}s be defined by ν(kj) ≡ κj,0 +κj,1 + · · · ( mod 2)

for j = 1, . . . , s. It then follows from the above theorem that K̂sh(k, k) = K̂sh,φ(2k +
ν(k), 2k + ν(k)) and hence we can write

Ksh(x, y) =
∑

k∈Ns
0

K̂sh,φ(2k + ν(k), 2k + ν(k))walk(x)walk(y).

We can of course also do the opposite and write

Ksh,φ(x, y) =
∑

k∈Ns
0

K̂sh(k, k)wal2k+ν(k)(x)wal2k+ν(k)(y)

=
∑

k∈E

K̂sh(bk/2c, bk/2c)walk(x)walk(y).

Proof. Let Kφ(x, y) = K(φ(x), φ(y)). Then as K ∈ L2([0, 1]2s) it follows that Kφ ∈
L2([0, 1]2s) and hence by Proposition 1 we can write

Kφ(x, y) =
∑

k∈Ns
0

∑

k′∈Ns
0

K̂φ(k, k′)walk(x)walk′(y), (5)

with

K̂φ(k, k′) =

∫

[0,1]s

∫

[0,1]s
Kφ(x, y)walk(x)walk′(y) dxdy.

Note that
∫

[0,1]s
walk(x ⊕ σ)walk′(y ⊕ σ) dσ = walk(x)walk′(y)

∫

[0,1]s
walk(σ)walk′(σ) dσ

=

{
0 if k 6= k′,
walk(x)walk′(y) if k = k′.

(6)

As Ksh,φ(x, y) =
∫
[0,1]s

Kφ(x⊕σ, y⊕σ) dσ it follows from Proposition 1, (5) and (6) that

Ksh,φ(x, y) =
∑

k∈Ns
0

K̂φ(k, k)walk(x)walk(y).

Hence it remains to show that K̂φ(k, k) = K̂sh,φ(k, k) for all k ∈ E and K̂φ(k, k) = 0 for
all k ∈ N

s
0 \ E . As

K̂φ(k, k) =

∫

[0,1]s

∫

[0,1]s
K(φ(x), φ(y))walk(x)walk(y) dxdy

10



we can divide each integral from 0 to 1 into
∫ 1/2

0
+
∫ 1

1/2
. Note that φ(x) = 2x for x ∈ [0, 1/2]

and φ(x) = 2 − 2x for x ∈ [1/2, 1] and hence by a transformation of variables we obtain
two integrals from 0 to 1. Doing this we get

K̂φ(k, k) =

∫

[0,1]s

∫

[0,1]s
K(x, y)

s∏

j=1

Akj
(xj, yj) dxdy,

where

Akj
(xj, yj) =

1

4

[
walkj

(xj

2

)
walkj

(yj

2

)
+ walkj

(
1 −

xj

2

)
walkj

(yj

2

)

+walkj

(xj

2

)
walkj

(
1 −

yj

2

)
+ walkj

(
1 −

xj

2

)
walkj

(
1 −

yj

2

)]
.

To simplify the above expression we use Lemma 3 and obtain for almost all x, y ∈ [0, 1)
that

Ak(x, y)

=
1

4

[
walk

(x

2

)
walk

(y

2

)
(1 + (−1)σ(k)) + walk

(
1 −

x

2

)
walk

(
1 −

y

2

)
(1 + (−1)σ(k))

]

=
1 + (−1)σ(k)

2
walk

(x

2

)
walk

(y

2

)
.

As Ak(x, y) = 0 if σ(k) ≡ 1 (mod2), Ak(x, y) = walk
(

x
2

)
walk

(
y
2

)
if σ(k) ≡ 0 (mod 2)

and walk
(

x
2

)
= walbk/2c(x) the result follows. 2

In order to obtain a formula for the worst-case error we can now use (3), Theorem 1
and Theorem 2.

Theorem 3 Let K ∈ L2([0, 1]2s) be a reproducing kernel and let Ksh,φ be the associated
shifted and folded kernel.

1. Let PN ⊆ [0, 1]s be a point set consisting of N points and let P̃N,σ,φ be the randomly
digitally shifted and then folded version of PN . The mean square worst-case error
in a reproducing kernel Hilbert space with kernel K ∈ L2([0, 1]2s) using the point set

P̃N,σ,φ is given by

ê2
sh,φ(PN , K) = −K̂sh,φ(0, 0) +

1

N2

∑

x,y∈PN

Ksh,φ(x, y).

2. For the case when P2m is a digital (t, m, s)-net over Z2 we obtain

ê2
sh,φ(P2m , K) = −K̂sh,φ(0, 0) +

1

2m

∑

x∈P2m

Ksh,φ(x, 0).

Proof. From Proposition 1 and Theorem 2 follows that
∫
[0,1]s

Ksh,φ(x, y) dy = K̂sh,φ(0, 0).

Hence the first part follows now from (3). Further, it follows from Proposition 1 and

11



Theorem 2 that for x, y ∈ [0, 1)s, where all coordinates of x and y are dyadic rationals,
Ksh,φ(x, y) = Ksh,φ(x 	 y, 0). Hence Lemma 1 implies that

∑

x,y∈P2m

Ksh,φ(x, y) =
∑

x,y∈P2m

Ksh,φ(x 	 y, 0) =
∑

x∈P2m

Ksh,φ(x, 0).

The second part now follows. 2

In the following we will show how the mean square worst-case error in a reproducing
kernel Hilbert space with kernel K using randomly digitally shifted and then folded digital
nets or polynomial lattice rules can be written as a certain sum over K̂sh,φ(k, k).

Before we state the result, we have to introduce some notation: for a non-negative
integer k with base 2 representation k =

∑∞
i=0 κi2

i (note that the sum is in fact finite) we
write

trm(k) := κ0 + κ12 + · · ·+ κm−12
m−1

and
trm(~k) := (κ0, . . . , κm−1)

> ∈ Z
m
2 .

Further we often associate k with the polynomial k(x) =
∑∞

i=0 κix
i and vice versa. In

this case we also write
trm(k) := κ0 + κ1x + · · · + κmxm.

Depending on the context it should always be clear which meaning trm(k) has. For a
vector k ∈ N

s
0 or k ∈ Z2[x]s, trm(k) is defined component-wise.

For vectors g = (g1, . . . , gs) ∈ Z2[x]s and k = (k1, . . . , ks) ∈ Z2[x]s we define the “inner
product”

k · g =

s∑

i=1

kigi

and we write g ≡ 0 (mod f) if f divides g in Z2[x].

Theorem 4 Let the set E be defined as in Theorem 2.

1. Let PN ⊆ [0, 1]s be a point set consisting of N points and let P̃N,σ,φ be the randomly
digitally shifted and then folded version of PN . The mean square worst-case error
in a reproducing kernel Hilbert space with kernel K ∈ L2([0, 1]2s) using the point set

P̃N,σ,φ is given by

ê2
sh,φ(PN , K) =

∑

k∈E\{0}

K̂sh,φ(k, k)
1

N2

∑

x,y∈PN

walk(x)walk(y).

2. For the case when P2m is a digital (t, m, s)-net over Z2 with generating matrices
C1, . . . , Cs we obtain

ê2
sh,φ(P2m , K) =

∑

k∈D∩E

K̂sh,φ(k, k),

where D = {k ∈ N
s
0 \ {0} : C>

1 trm(~k1) + · · · + C>
s trm(~ks) = ~0}.

12



3. For the case when P2m is the digital net P (g, f), with f ∈ Z2[x] irreducible and
deg(f) = m and generating vector g, then

ê2
sh,φ(P2m , K) =

∑

k∈Dg,f∩E

K̂sh,φ(k, k),

where Dg,f = {k ∈ N
s
0 \ {0} : trm(k) · g ≡ 0 (mod f)}.

Proof. The first part follows from Theorem 2 and Theorem 3.
For the second part observe that we obtain from Proposition 1 that

1

22m

∑

x,y∈P2m

walk(x)walk(y) =
1

22m

∑

y∈P2m

(
∑

x∈P2m

walk(x ⊕ y)

)
.

Due to the group structure of a digital net, see Lemma 1, each summand in the outermost
sum has the same value and therefore we obtain

1

22m

∑

x,y∈P2m

walk(x)walk(y) =
1

2m

∑

x∈P2m

walk(x) =

{
1 if k ∈ D,
0 otherwise,

where the last equality follows from Lemma 2. Hence the second part of the theorem
follows.

The third part of the theorem follows from the second part together with the fact
that if C1, . . . , Cs are generating matrices for the point set P (g, f), then for any k =
(k1, . . . , ks) ∈ N

s
0 \ {0} we have

C>
1 trm(~k1) + · · ·+ C>

s trm(~ks) = ~0 iff trm(k) · g ≡ 0 (mod f).

This was first proved in [10, Lemma 4.40]. Hence also the third part follows. 2

4 The mean square worst-case error in weighted Sobolev

spaces

Before we consider the Sobolev spaces we introduce some notation. Let S = {1, . . . , s}
be the set of coordinate indices. For u ⊆ S, let |u| denote the cardinality of u and let
xu denote the vector of elements of x whose coordinate indices are contained in u. For a
sequence γ = (γ1, γ2, . . .) of non-negative integers (the so-called weights) let γu =

∏
j∈u γj

(see [17] for more information on the weights).
First let us consider the reproducing kernel Sobolev space which contains functions

where the first partial derivatives of order up to one are square integrable. The norm in
this space is given by

‖h‖2 =
∑

u⊆S

1

γu

∫

[0,1]|u|

[∫

[0,1]s−|u|

∂|u|h

∂xu
dxS\u

]2

dxu.

This space has previously been considered in [2] and [3]. Therein it was shown that
randomly digitally shifted digital nets achieve a convergence order of N−1+ε for any ε > 0.
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Further it is known that this convergence rate is best possible. Hence it cannot be expected
that using the tent transformation can significantly improve the result. On the other hand
it is also important to know if using the tent transformation yields a slower convergence.
That this is not the case can be checked using Theorem 2, Theorem 4 and Remark 2.
Indeed, if one uses randomly digitally shifted and then folded point sets instead of just
randomly digitally shifted point sets one can obtain almost the same results as shown in
[2] and [3]. A similar result holds also for lattice rules as shown in [6].

Hence in the following we turn our attention to the Sobolev space Hs,γ, for which
we require a stronger smoothness assumption. More precisely, we now assume that the
partial derivatives up to order two have to be square integrable. This space is now defined
by (see also [6])

Hs,γ := {h : ‖h‖ < ∞},

where

‖h‖2 =
∑

u⊆S

∑

v⊆u

1

γuγv

∫

[0,1]|v|

[∫

[0,1]s−|v|

∂|u|+|v|h

∂xu∂xv

dxS\v

]2

dxv.

The reproducing kernel of this Sobolev space is given by

Ks,γ(x, y) =

s∏

j=1

Kγj
(xj, yj),

where

Kγ(x, y) = 1 + γB1(x)B1(y) +
γ2

4
B2(x)B2(y) −

γ2

24
B4(|x − y|). (7)

Here Bk denotes the k-th Bernoulli polynomial, i.e., B1(x) = x − 1
2
, B2(x) = x2 − x + 1

6

and B4(x) = x4 − 2x3 + x2 − 1
30

.
For this reproducing kernel it is shown in Appendix A that the digitally shifted and

then folded kernel is given by

Ks,γ,sh,φ(x, y) =
∑

k∈Ns
0

r(k, γ)walk(x)walk(y), (8)

where for k = (k1, . . . , ks) ∈ N
s
0, r(k, γ) =

∏s
j=1 r(kj, γj) and r(k, γ) = 0 if σ(k) ≡

1 (mod 2) and for σ(k) ≡ 0 (mod 2) we define

r(k, γ) =





1 if k = 0,
γ

4·22a + γ2

120·24a if k = 2a + 1 with a ≥ 1,
γ2

12·22(a+j) + γ2

20·24a if k = 2a + 2j + l, where 1 ≤ j < a and 0 ≤ l < 2j

with σ(l) ≡ 0 (mod 2).

Note that r(k, γ) is zero for k ∈ N
s
0 \ E , hence in (8) we can also sum over all k in N

s
0

rather than E .
Using this result and Theorem 4 we can obtain a formula for the mean square worst-

case error in Hs,γ for randomly digitally shifted and then folded point sets. One just has

to set K̂sh,φ(k, k) =
∏s

j=1 r(kj, γj) in Theorem 4 to obtain the mean square worst-case
error in the space Hs,γ. In the following we will prove some existence results for digital
nets and polynomial lattice rules.
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4.1 An existence result for digital nets

Let Mm be the set of all m×m matrices with entries in {0, 1} and let C := {(C1, . . . , Cs) :
Cj ∈ Mm for j = 1, . . . , s}, (note that |C| = 2m2s). Then we define

A2m,s,λ :=
1

2m2s

∑

(C1,...,Cs)∈C

∑

k∈D

rλ(k, γ). (9)

In the following lemma we obtain a bound on A2m ,s,λ.

Lemma 4 For 1
4

< λ ≤ 1 we have

A2m,s,λ ≤
2

2m

s∏

j=1

(1 + γ2λ
j τλ + γλ

j ζλ),

where

ζλ =
1

22λ(22λ − 1)

and

τλ =
3λ + 20λ + 80λ

960λ(16λ − 1)
+

3λ + 5λ + 20λ

60λ(2 − 3 · 16λ + 256λ)
.

Proof. As in [3, Proof of Lemma 4] we find that

A2m,s,λ = −1 +

(
1 −

1

2m

)∑

l∈Ns
0

rλ(2ml, γ) +
1

2m

∑

l∈Ns
0

rλ(l, γ)

≤ −1 +
∑

l∈Ns
0

rλ(2ml, γ) +
1

2m

∑

l∈Ns
0

rλ(l, γ)

= −1 +
s∏

j=1

(
∞∑

l=0

rλ(2ml, γj)

)
+

1

2m

s∏

j=1

(
∞∑

l=0

rλ(l, γj)

)
.

With Lemma 9 from Appendix C we obtain

−1 +
s∏

j=1

(
∞∑

l=0

rλ(2ml, γj)

)
≤ −1 +

s∏

j=1

(
1 +

γ2λ
j

24λm
τλ

)
=

∑

u⊆{1,...,s}
u6=∅

∏

j∈u

γ2λ
j

24λm
τλ

≤
1

2m

s∏

j=1

(1 + γ2λ
j τλ).

Therefore, with Lemma 8 from Appendix C and since τ̂λ ≤ τλ we obtain

A2m,s,λ ≤
1

2m

s∏

j=1

(1 + γ2λ
j τλ) +

1

2m

s∏

j=1

(1 + γ2λ
j τ̂λ + γλ

j ζλ)

≤
2

2m

s∏

j=1

(1 + γ2λ
j τλ + γλ

j ζλ)

and hence the result follows. 2
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Remark 3 The restriction λ > 1/4 in the lemma above is needed as otherwise
∑∞

l=0 rλ(l, γ)
is not finite anymore.

Remark 4 In Appendix A we also calculated the Walsh coefficients of the shift invariant
kernel Ks,γ,sh. It can be shown that if one replaces r(k, γ) in (9), (10), (11), Lemma 4,
Lemma 5 and Lemma 6 with Ks,γ,sh(k, k) we can obtain a similar result to Lemma 4,
Lemma 5 and Lemma 6 only for 1

2
< λ ≤ 1. Hence in the existence results above we

would only obtain a convergence rate of O(2m(−1+ε)) for any ε > 0.

From the average result obtained above we can now obtain an existence result for
digital nets. We will make use of Jensen’s inequality, which states that for any sequence
of non-negative real numbers (ak)k≥1 and any 0 < λ ≤ 1 we have

(
∑

k

ak

)λ

≤
∑

k

aλ
k .

We have the following theorem.

Theorem 5 There exists a digital (t, m, s)-net P2m over Z2 such that for any 1
4

< λ ≤ 1
the mean square worst-case error is bounded by

ê2
sh,φ(P2m, Ks,γ) ≤ cs,γ,λ2

−m/λ,

where

cs,γ,λ := 21/λ

s∏

j=1

(1 + γ2λ
j τλ + γλ

j ζλ)
1/λ.

Here τλ and ζλ are defined as in Lemma 4.

Proof. Let êsh,φ(C1, . . . , Cs) = êsh,φ(P2m , Ks,γ), where P2m is the digital net generated by
the matrices C1, . . . , Cs. Then for any 0 < λ ≤ 1 there exists a choice of C ′

1, . . . , C
′
s such

that

ê2λ
sh,φ(C

′
1, . . . , C

′
s) ≤

1

2m2s

∑

(C1,...,Cs)∈C

ê2λ
sh,φ(C1, . . . , Cs).

From Jensen’s inequality it now follows that

1

2m2s

∑

(C1,...,Cs)∈C

ê2λ
sh,φ(C1, . . . , Cs) ≤

1

2m2s

∑

(C1,...,Cs)∈C

∑

k∈D

rλ(k, γ) = A2m,s,λ.

The result now follows from Lemma 4. 2

Theorem 5 shows that there exists a randomly digitally shifted digital net which is then
folded using the tent transformation which achieves a convergence order of O(2m(−2+ε))
for any ε > 0. A comparable result holds for lattice rules, see [6]. For digital nets explicit
constructions do exist [10, 12, 13] (in contrast to lattice rules), but at present it is not
clear if those constructions in conjunction with the tent transformation can yield such a
convergence.

Further, Remark 4 implies that the arguments used above would not yield a conver-
gence order of O(2m(−2+ε)) for any ε > 0 if one uses only a random digital shift but not
the tent transformation. Instead the argument would only yield a convergence order of
O(2m(−1+ε)) for any ε > 0.
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4.2 An existence result for polynomial lattice rules

On the other hand we can show that a similar result as for the average over all digital nets
holds for the average over all digital nets P (g, f), where f is an irreducible polynomial.
Note that the number of digital nets of the form P (g, f) is (2m −1)s, whereas the number
of all digital nets is 2m2s, which is of course much larger.

By Gm we denote the set consisting of all nonzero polynomials from Z2[x] with degree
smaller than m, i.e.,

Gm := {h ∈ Z2[x] \ {0} : deg(h) < m}.

For a polynomial f ∈ Z2[x] we define

Âf,s,λ :=
1

(2m − 1)s

∑

g∈Gm

∑

k∈Dg,f

rλ(k, γ). (10)

Lemma 5 Let f ∈ Z2[x] be irreducible with deg(f) = m. For 1
4

< λ ≤ 1 we have

Âf,s,λ ≤
3

2m

s∏

j=1

(1 + γ2λ
j τλ + γλ

j ζλ),

where τλ and ζλ are defined as in Lemma 4.

Proof. We have

Âf,s,λ =
1

(2m − 1)s

∑

k∈Z2[x]s

k6=0

rλ(k, γ)
∑

g∈Gs
m

trm(k)·g≡0 ( mod f)

1.

Now we consider two cases:

1. If k = xml with l ∈ Z2[x]s, l 6= 0, then we have trm(k) = 0 and therefore

∑

g∈Gs
m

trm(k)·g≡0 ( mod f)

1 = (2m − 1)s.

2. If k = xml + k∗ with l ∈ Z2[x]s and k∗ = (k∗
1, . . . , k

∗
s) ∈ Z2[x]s, k∗ 6= 0 and

deg(k∗
i ) < m. Then we have trm(k) = k∗ and hence

∑

g∈Gs
m

trm(k)·g≡0 ( mod f)

1 =
∑

g∈Gs
m

k∗·g≡0 ( mod f)

1.

If k∗ = (0, . . . , 0, k∗
i , 0, . . . , 0) with k∗

i 6= 0 then there is no polynomial gi ∈ Gm such
that k∗ · g = k∗

i gi ≡ 0 (mod f), since f is irreducible. Otherwise we have

∑

g∈Gs
m

k∗·g≡0 ( mod f)

1 = (2m − 1)s−1.
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Together we obtain

Âf,s,λ ≤
∑

l∈Z2[x]s

l6=0

rλ(2ml, γ) +
1

2m − 1

∑

l∈Z2[x]s

∑

k∗∈Z2[x]s\{0}

deg(k∗
i
)<m ∀i

rλ(2ml + k∗, γ)

≤ −1 +
∑

l∈Ns
0

rλ(2ml, γ) +
2

2m

∑

k∈Ns
0

rλ(k, γ).

Now the result follows as in the proof of Lemma 4. 2

Theorem 6 Let f ∈ Z2[x] be irreducible with deg(f) = m ≥ 1. Then there exists a vector
g ∈ Gs

m such that for any 1
4

< λ ≤ 1 the mean square worst-case error is bounded by

ê2
sh,φ(P (g, f), Ks,γ) ≤ ĉs,γ,λ2

−m/λ,

where

ĉs,γ,λ := 31/λ
s∏

j=1

(1 + γ2λ
j τλ + γλ

j ζλ)
1/λ.

Here τλ and ζλ are defined as in Lemma 4.

Proof. The result is proved in the same way as Theorem 5 with Lemma 4 replaced by
Lemma 5. 2

4.3 A component-by-component construction of polynomial lat-

tice rules

In this subsection we show, how digital nets of the form P (g, f) for which we obtain a
bound for the mean square worst-case error as in Theorem 6 can be found by computer
search.

Algorithm 1 Given a dimension s, an integer m ≥ 1 and weights γ = (γj)j≥1.

1. Choose an irreducible polynomial f ∈ Z2[x] with deg(p) = m.

2. Set g∗
1 = 1.

3. For d = 2, 3, . . . , s, find g∗
d ∈ Gm by minimizing the square worst-case error

ê2
sh,φ(P ((g∗

1, . . . , g
∗
d−1, gd), f), Ks,γ)

as a function in gd.

Theorem 7 Let f ∈ Z2[x] be irreducible, with deg(f) = m ∈ N. Suppose that (g∗
1, . . . , g

∗
s) ∈

Gs
m is constructed according to Algorithm 1. Then for all d = 1, 2, . . . , s we have

ê2
sh,φ(P ((g∗

1, . . . , g
∗
d), f), Kd,γ) ≤ ĉd,γ,λ2

−m/λ,

where

ĉs,γ,λ := 21/λ
d∏

j=1

(1 + γ2λ
j τλ + γλ

j ζλ)
1/λ,

and where 1
4

< λ ≤ 1. Here τλ and ζλ are defined as in Lemma 4.

Proof. The proof of this result follows exactly the lines of the proof of [2, Theorem 4.4].
2
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4.4 An existence result for Korobov polynomial lattice rules

Let now
̂̂
Af,s,λ :=

1

2m − 1

∑

g∈Gm

∑

k∈Dvs(g),f

rλ(k, γ), (11)

where for g ∈ Gm we use the notation vs(g) = (1, g, g2, . . . , gs−1) (mod f). Note that this
corresponds to averaging over all polynomial lattice rules of Korobov form, see [2] where
similar calculations have been carried out.

Lemma 6 Let f ∈ Z2[x] be irreducible with deg(f) = m ≥ 1. For 1
4

< λ ≤ 1 we have

̂̂
Af,s,λ ≤

2s − 1

2m

s∏

j=1

(1 + γ2λ
j τλ + γλ

j ζλ),

where τλ and ζλ are defined as in Lemma 4.

Proof. As in the proof of Lemma 5 we obtain

̂̂
Af,s,λ ≤

∑

l∈Z2[x]s

l6=0

rλ(2ml, γ) +
1

2m − 1

∑

l∈Z2[x]s

∑

k∗∈Z2[x]s\{0}

deg(k∗
i
)<m ∀i

rλ(2ml + k∗, γ)
∑

g∈Gs
m

vs(g)·k∗≡0 ( mod f)

1.

Now we recall that for an irreducible polynomial f ∈ Z2[x], with deg(f) = m ≥ 1, and a
nonzero (h1, . . . , hs) ∈ Z2[x]s with deg(hi) < m, i = 1, . . . , s, the congruence

h1 + h2g + · · · + hsg
s−1 ≡ 0 (mod f)

has at most s − 1 solutions g ∈ Gm. Therefore

̂̂
Af,s,λ ≤ −1 +

∑

l∈Ns
0

rλ(2ml, γ) +
s − 1

2m − 1

∑

k∈Ns
0

rλ(k, γ).

Now the result follows as in the proof of Lemma 4. 2

Again we can obtain an existence result from the above lemma.

Theorem 8 Let f ∈ Z2[x] be irreducible with deg(f) = m ≥ 1. Then there exists a
polynomial g ∈ Gm such that for any 1

4
< λ ≤ 1 the mean square worst-case error is

bounded by

ê2(P (vs(g), f), Ks,γ) ≤ ̂̂cs,γ,λ2
−m/λ,

where

̂̂cs,γ,λ := (2s − 1)1/λ
s∏

j=1

(1 + γ2λ
j τλ + γλ

j ζλ)
1/λ.

Here τλ and ζλ are defined as in Lemma 4.

Proof. The result is proved in the same way as Theorem 5 with Lemma 4 replaced by
Lemma 6. 2
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A polynomial g∗ for which we obtain a bound for the mean square worst-case error as
in Theorem 8 can be found by the following Algorithm 2.

Algorithm 2 Given a dimension s ≥ 2, an integer m ≥ 1 and weights γ = (γj)j≥1.

1. Choose an irreducible polynomial f ∈ Z2[x] with deg(f) = m.

2. Find g∗ ∈ Gm by minimizing the square worst-case error

ê2
sh,φ(P (vs(g), f), Ks,γ)

as a function in g.

5 Numerical experiments

In Lemma 7 in Appendix B we gave a closed form of the digitally shifted and folded kernel
Kγ,sh,φ. This result can be used in conjunction with Theorem 3 to obtain a closed form
of the mean square worst-case error, which can be used as a quality measure for choosing
good polynomial lattice rules. As noted in Remark 5 êsh,φ(P2m , Ks,γ) can be computed in
O(s2mm) operations for digital nets or polynomial lattice rules. Hence this formula can
be used in a component-by-component (Algorithm 1) or Korobov construction algorithm
(Algorithm 2). A similar approach has previously been used in [2].

In the following we present the results for a component-by-component construction of
polynomial lattice rules, more precisely we compute the mean square worst case errors for
different values of m (2m integration nodes) and s. The choice of irreducible polynomials
fm needed in Algorithm 1 for each m is shown in the following table:

m 1 2 3 4 5 6 7 8 9 10 11 12 13
fm 3 7 11 25 47 103 203 487 865 1933 2881 6923 15847

Here, 3 denotes the polynomial 1 + x, 7 the polynomial 1 + x + x2 and so on.
For our computation we fix weights γ1, γ2, . . . and compute

ê(Pm,s, fm, Ks,γ),

where Pm,s is the point set corresponding to the polynomial lattice rule we obtain from
the component-by-component construction. On the x-axis we plotted m while the y-axis
shows the logarithm to the base 10 of ê(Pm,s, fm, Ks,γ). As a benchmark we also include
a solid line which corresponds to convergence at the speed of N−2 = 2−2m.

Figure 1 shows the results for γj = j−2. We see that for moderate dimensions the
error sticks to quadratic convergence. For higher dimensions it takes higher values of
m to actually see near quadratic convergence behaviour, but it still can be observed for
practical values of m. Notice that due to the fast decreasing weights the difference in the
error between s = 16 and s = 32 is quite small.

The same observations can be made for the weights γj = 0.5j, Figure 2. Here even
the difference in the error between s = 5 and s = 16 is almost negligible for practical
purposes.

On the other hand it is not surprising that in the case where γj = 1 for all j, i.e.,
when all coordinates are equally important, the curse of dimensionality takes over and
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Figure 1: Root mean square worst case errors for γj =
(

1
j

)2

so the quadratic convergence for higher dimensions will be seen for very large values of
m only. But still for dimension s = 5 we obtain a practically useful integration method.
The results are shown in Figure 3.

It is instructive to compare the results for the folded points with the classical case. In
Figure 4 we see that – in accordance with theory – the error of the non-folded point-set
decreases like N−1. We see that the method is less sensitive to increasing dimensionality
and the graphs for s = 5 and s = 16 can hardly be distinguished in that case. But still
the folded points for s = 32 do much better than the non-folded points.

Appendix A: Calculation of the shift invariant ker-

nel Ks,γ,sh and the digitally shifted and folded kernel

Ks,γ,sh,φ

Here we compute the shift invariant kernel Ks,γ,sh(x, y) for the reproducing kernel

Ks,γ(x, y) =

s∏

j=1

Kγj
(xj, yj),

where Kγ(x, y) is given by (7). We have

Ks,γ,sh(x, y) =

∫

[0,1]s
Ks,γ(x ⊕ σ, y ⊕ σ) dσ

=

s∏

j=1

∫ 1

0

Kγj
(xj ⊕ σ, yj ⊕ σ) dσ.
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Hence it suffices to deal only with the one dimensional kernels. We only need to calculate
the Walsh coefficients

K̂γj ,sh(k, k) =

∫ 1

0

∫ 1

0

Kγj
(x, y)walk(x)walk(y) dx dy. (12)

First note that it is stated in Proposition 1 that

∫ 1

0

∫ 1

0

walk(x)walk(y) dx dy =

{
1 if k = 0,
0 otherwise.

It was shown in [3] that

x −
1

2
= −

1

2

∞∑

a=1

1

2a
wal2a−1(x) (13)

and as B1(x) = x − 1
2

we have

∫ 1

0

∫ 1

0

B1(x)B1(y)walk(x)walk(y) dx dy =

{
1

4a+1 if k = 2a−1,
0 otherwise.

(14)

We have B2(x) = x2 − x + 1
6

=
(
x − 1

2

)2
− 1

12
and thus

B2(x) = −
1

12
+

1

4

∞∑

a=1

∞∑

j=1

1

2a+j
wal2a−1(x)wal2j−1(x)

= −
1

12
+

1

4

∞∑

a=1

1

22a
+

1

2

∞∑

j=1

∞∑

a=j+1

1

2a+j
wal2a−1+2j−1(x)

=
1

2

∞∑

j=1

∞∑

a=j+1

1

2a+j
wal2a−1+2j−1(x),
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which yields
∫ 1

0

∫ 1

0

B2(x)B2(y)walk(x)walk(y) dx dy =

{
1

4a+j+1 if k = 2a−1 + 2j−1 for 1 ≤ j ≤ a − 1,
0 otherwise.

(15)
It remains to deal with B4(|x − y|). For j ∈ {0, 2, 3, 4} define

Ij(k) :=

∫ 1

0

∫ 1

0

|x − y|jwalk(x)walk(y) dx dy.

Then we have
∫ 1

0

∫ 1

0

B4(|x − y|)walk(y)walk(y) dx dy = I4(k) − 2I3(k) + I2(k) −
1

30
I0(k). (16)

It now follows from Proposition 1 that

I0(k) =

{
1 if k = 0,
0 otherwise.

Note that for j even we do not need the to take the absolute value in the definition of
Ij(k) and hence we can use equation (13). First note that

∫ 1

0

∫ 1

0
(x − y)2 dx dy = 1

6
. We

have

(x − y)2 =
1

4

(
∞∑

a=1

1

2a
[wal2a−1(x) − wal2a−1(y)]

)2

=
1

4

∞∑

a=1

∞∑

j=1

1

2a+j
[wal2a−1(x) − wal2a−1(y)][wal2j−1(x) − wal2j−1(y)].

Observe that for k ∈ N we have that
∫ 1

0

∫ 1

0

[wal2a−1(x) − wal2a−1(y)][wal2j−1(x) − wal2j−1(y)]walk(x)walk(y) dx dy
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is zero if a 6= j. If on the other hand a = j and k = 2a−1 the above integral yields −2 and
for k 6= 2a−1 the above integral is zero. Hence we obtain

I2(k) =





1
6

if k = 0,
− 1

2·4a if k = 2a−1,
0 otherwise.

For j = 4 we can use the same method. Note that
∫ 1

0

∫ 1

0
(x − y)4 dx dy = 1

15
. Further

we have

(x − y)4 =
1

16

(
∞∑

a=1

1

2a
[wal2a−1(x) − wal2a−1(y)]

)4

=
1

16

∞∑

a1=1

∞∑

a2=1

∞∑

a3=1

∞∑

a4=1

1

2a1+a2+a3+a4

4∏

i=1

[wal2ai−1(x) − wal2ai−1(y)]. (17)

For k ∈ N we need to consider

∫ 1

0

∫ 1

0

4∏

i=1

[wal2ai−1(x) − wal2ai−1(y)]walk(x)walk(y) dx dy. (18)

It follows from the orthogonality properties of the Walsh function system (see Proposi-
tion 1) that only if k is of the form k = 2a−1 or k = 2a−1 + 2j−1, 1 ≤ j < a, the above
integral is not zero. In order to obtain a non-zero value of (18) for k = 2a−1 for some
a ≥ 1 we must have ai1 = ai2 = a for some 1 ≤ i1 < i2 ≤ 4 and for i3 ∈ {1, 2, 3, 4}\{i1, i2}
and i4 ∈ {1, 2, 3, 4} \ {i1, i2, i3} we must have ai3 = ai4 such that (18) becomes

−

∫ 1

0

∫ 1

0

wal2a1−1(u)wal2a2−1(v)wal2a3−1(z)wal2a4−1(z)walk(x)walk(y) dx dy,

where z stands either for x or for y and we either have u = x and v = y or u = y and
v = x. Note that wal2a3−1(z)wal2a4−1(z) = 1 as a3 = a4. Further there are

(
4
2

)
ways to
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choose the values of i1, i2. An exception is the case where ai1 = ai2 = ai3 = ai4 = a. In
this case we have only

(
4
3

)
ways to choose wal2a−1(u)wal2a−1(v)wal2a−1(v)wal2a−1(v). Hence

the value of I4(k) for k = 2a−1 is given by

I4(2
a−1) = −

1

16




1

2a+a
2 · 2

(
4

2

) ∞∑

a3=1
a3 6=a

1

22a3
+

8

2a+a+a+a


 = −

1

16

(
24

22a

∞∑

a3=1

1

22a3
−

16

24a

)

and hence we have

I4(2
a−1) =

1

24a
−

1

2 · 4a
.

If k = 2a−1 + 2j−1 for 1 ≤ j < a we have must have ai1 = ai2 = a and ai3 = ai4 = j for
some i1, i2, i3, i4 such that {i1, i2, i3, i4} = {1, 2, 3, 4} and (18) must become

∫ 1

0

∫ 1

0

wal2a1−1(u)wal2a2−1(v)wal2a3−1(w)wal2a4−1(z)walk(x)walk(y) dx dy,

where now either u = x and v = y or u = y and v = x and further w = x and z = y or
w = y and z = x. Hence the value of I4(k) for k = 2a−1 + 2j−1, 1 ≤ j < a, is then given
by

I4(2
a−1 + 2j−1) =

1

16

1

2a1+a2+a3+a4
2 · 2

(
4

2

)
=

3

2 · 4a+j
.

Hence we have

I4(k) =





1
15

if k = 0,
1

24a − 1
2·4a if k = 2a−1,

3
2·4a+j if k = 2a−1 + 2j−1 with 1 ≤ j < a,
0 otherwise.

It remains to calculate I3(k). It can easily be checked that I3(0) = 1
10

. For k ≥ 1 let
k = κa−12

a−1 + κa−22
a−2 + · · · + κ0 with κa−1 = 1. We have

I3(k) =

∫ 1

0

∫ 1

0

|x − y|3walk(x)walk(y) dx dy

=

2a−1∑

u=0

2a−1∑

v=0

(−1)κ0(ua−1+va−1)+···+κa−1(u0+v0)

∫ (u+1)/2a

u/2a

∫ (v+1)/2a

v/2a

|x − y|3 dx dy,

where u = ua−12
a−1 + · · · + u0 and v analogously.

For 0 ≤ u, v < 2a it can be shown that

∫ (u+1)/2a

u/2a

∫ (v+1)/2a

v/2a

|x − y|3 dx dy =

{
1

10·25a if u = v,
1

25a

[
|u − v|3 + |u−v|

2

]
if u 6= v.

Thus we have

I3(k) =
2a−1∑

u=0

1

10 · 25a
+

2a−1∑

u,v=0
u6=v

(−1)κ0(ua−1+va−1)+···+κa−1(u0+v0) |u − v|

2 · 25a

+

2a−1∑

u,v=0
u6=v

(−1)κ0(ua−1+va−1)+···+κa−1(u0+v0) |u − v|3

25a
. (19)
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For the first sum we have
∑2a−1

u=0
1

10·25a = 1
10·24a . A sum very similar to the second sum

was calculated in [3, Appendix A], we have

2a−1∑

u,v=0
u6=v

(−1)κ0(ua−1+va−1)+···+κa−1(u0+v0) |u − v|

2 · 25a
= −

1

2 · 24a
.

Now we simplify the third sum. We have

2a−1∑

u,v=0
u6=v

(−1)κ0(ua−1+va−1)+···+κa−1(u0+v0) |u − v|3

25a

=
2

25a

2a−2∑

u=0

2a−1∑

v=u+1

(v − u)3(−1)κ0(ua−1+va−1)+···+κa−1(u0+v0).

Let now u = u′ + u0 and v = v′ + v0 with u0, v0 ∈ {0, 1} and u′, v′ even. Further let

θ(u, v) = (v − u)3(−1)κ0(ua−1+va−1)+···+κa−1(u0+v0).

Let v′ > u′, then we have

1∑

u0=0

1∑

v0=0

θ(u′ + u0, v
′ + v0) = −6(v′ − u′)(−1)κ0(ua−1+va−1)+···+κa−2(u1+v1).

For v′ = u′ we have v0 = 1 and u0 = 0 as v > u and (−1)κ0(ua−1+va−1)+···+κa−1(u0+v0) = −1
as κa−1 = 1 and ui = vi for i = 1, . . . , a − 1. Hence

2a−2∑

u=0

2a−1∑

v=u+1

(v − u)3(−1)κ0(ua−1+va−1)+···+κa−1(u0+v0)

= −2a−1 − 6

2a−4∑

u′=0
2|u′

2a−2∑

v′=u′+2
2|v′

(v′ − u′)(−1)κ0(ua−1+va−1)+···+κa−2(u1+v1).

We have to distinguish two cases now, namely where κ0 = · · · = κa−2 = 0, i.e.
k = 2a−1, and where this is not the case. If k = 2a−1 we have

2a−2∑

u=0

2a−1∑

v=u+1

(v − u)3(−1)κ0(ua−1+va−1)+···+κa−1(u0+v0) = −2a−1 − 12
2a−1−2∑

u′=0

2a−1−1∑

v′=u′+1

(v′ − u′)

= 2a−1 − 23a−2.

Thus we have

I3(2
a−1) =

1

10 · 24a
−

1

2 · 24a
+

1

24a
−

1

2 · 22a
=

3

5 · 24a
−

1

2 · 22a
.

Let now 0 ≤ j ≤ a − 1 be the largest number such that κj−1 = 1, i.e., k = 2a−1 +
2j−1 + κj−22

j−2 + · · ·+ κ0. Then we have

2a−2∑

u=0

2a−1∑

v=u+1

(v − u)3(−1)κ0(ua−1+va−1)+···+κa−1(u0+v0)

= −2a−1 − 6

2a−4∑

u′=0
2|u′

2a−2∑

v′=u′+2
2|v′

(v′ − u′)(−1)κ0(ua−1+va−1)+···+κj−1(ua−j+va−j). (20)
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The last double sum can be written as

2a−4∑

u′=0
2|u′

2a−2∑

v′=u′+2
2|v′

(v′ − u′)(−1)κ0(ua−1+va−1)+···+κj−1(ua−j+va−j )

= 2

2a−1−2∑

n=0

2a−1−1∑

m=n+1

(m − n)(−1)κ0(na−2+ma−2)+···+κj−1(na−j−1+ma−j−1), (21)

where m = ma−22
a−2 + · · ·+ m0 and n analogously. Let m′ = ma−22

a−2 + · · ·+ma−j2
a−j,

m′′ = ma−j−22
a−j−2 + · · · + m0, n′ = na−22

a−2 + · · ·+ na−j2
a−j and n′′ = na−j−22

a−j−2 +
· · ·+ n0.

First consider the case where m′ > n′. We have

1∑

na−j−1=0

1∑

ma−j−1=0

(m − n)(−1)κ0(na−2+ma−2)+···+κj−1(na−j−1+ma−j−1)

= 2a−j−1
1∑

na−j−1=0

1∑

ma−j−1=0

(ma−j−1 − na−j−1)(−1)κ0(na−2+ma−2)+···+κj−1(na−j−1+ma−j−1)

= 0.

Thus we are left with the case where m′ = n′. Note that in this case

(−1)κ0(na−2+ma−2)+···+κj−1(na−j−1+ma−j−1) = (−1)na−j−1+ma−j−1

as κj−1 = 1. Thus the double sum (21) is independent of m′ = n′ and is equal to

2·2j−1

1∑

na−j−1=0

1∑

ma−j−1=0

2a−j−1−1∑

n′′=0

2a−j−1−1∑

m′′=0

(m′′−n′′+2a−j−1(ma−j−1−na−j−1))(−1)ma−j−1+na−j−1 ,

(22)
where we have the additional assumption that ma−j−12

a−j−1 + m′′ > na−j−12
a−j−1 + n′′.

First consider the case where ma−j−1 = 1 and na−j−1 = 0, then this part of (22) is

−2j

2a−j−1−1∑

n′′=0

2a−j−1−1∑

m′′=0

(2a−j−1 + m′′ − n′′) = −2j23(a−j−1).

Now consider the case where ma−j−1 = na−j−1. In this case we have the assumption that
m′′ > n′′ and hence this part of (22) is

2 · 2j

2a−j−1−2∑

n′′=0

2a−j−1−1∑

m′′=n′′+1

(m′′ − n′′) = 2j+1

(
1

48
23(a−j) −

1

12
2a−j

)
.

Thus (21) is given by

−2j23(a−j−1) + 2j+1

(
1

48
23(a−j) −

1

12
2a−j

)
= −2j

(
2a−j

6
+

23(a−j)

12

)
.
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Using (19), (20), (21) and the above sum we obtain that for k = 2a−1 + 2j−1 + κj−22
j−2 +

· · ·+ κ0 we have

I3(k) =
1

10 · 24a
−

1

2 · 24a
−

2

25a

(
2a−1 − 6 · 2j

(
2a−j

6
+

23(a−j)

12

))
=

3

5 · 24a
+

1

22(a+j)
.

Thus we have

I3(k) =





1
10

if k = 0,
3

524a − 1
2·22a if k = 2a−1,

3
5·24a + 1

22(a+j) if k = 2a−1 + 2j−1 + κj−22
j−2 + · · ·+ κ0 with 1 ≤ j ≤ a − 1.

From (16) it now follows that

∫ 1

0

∫ 1

0

B4(|x − y|)walk(y)walk(y) dx dy

=





0 if k = 0,
− 1

5·24a if k = 2a−1 with a ≥ 1,
− 6

5·24a − 1
2·22(a+j) if k = 2a−1 + 2j−1 where 1 ≤ j < a,

− 6
5·24a − 2

22(a+j) if k = 2a−1 + 2j−1 + κj−22
j−2 + · · · + κ0 where 1 ≤ j < a

and κi = 1 for some 0 ≤ i ≤ j − 2.

Using the above result together with (7), (12), (14) and (15) we obtain

K̂γj ,sh(k, k) =





1 if k = 0,
γj

4·22a +
γ2

j

120·24a if k = 2a−1 with a ≥ 1,
γ2

j

12·22(a+j) +
γ2

j

20·24a if k = 2a−1 + 2j−1 + κj−22
j−2 + · · ·+ κ0 where 1 ≤ j < a.

Note that the case k = 2a−1 + 2j−1 + κj−22
j−2 + · · · + κ0 in the equation for K̂2

γj ,sh also

includes the case where k = 2a−1 + 2j−1.
Thus we have

Kγ,sh(x, y) =
s∏

j=1

Kγj ,sh(xj, yj),

where

Kγj ,sh(x, y) =
∞∑

k=0

K̂γj ,sh(k, k)walk(x)walk(y).

We are now ready to calculate K̂γj ,sh,φ using Remark 2. First note that K̂γj ,sh,φ(k, k) =

0 if σ(k) ≡ 1 (mod2). From Remark 2 we have that K̂γj ,sh,φ(2k + ν(k), 2k + ν(k)) =

K̂γj ,sh(k, k) and hence we have

K̂γj ,sh,φ(k, k) =





1 if k = 0,
γj

4·22a +
γ2

j

120·24a if k = 2a + 1 with a ≥ 1,
γ2

j

12·22(a+j) +
γ2

j

20·24a if k = 2a + 2j + κj−12
j−1 + · · ·+ κ0 where 1 ≤ j < a

and κj−1 + · · · + κ0 ≡ 0 (mod 2).
(23)
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Thus we have

Kγ,sh,φ(x, y) =
s∏

j=1

Kγj ,sh,φ(xj, yj), (24)

where

Kγj ,sh,φ(x, y) =
∞∑

k=0

r(k, γj)walk(x)walk(y), (25)

where, for simplicity, we define r(k, γ) = K̂γ,sh,φ(k, k).

Appendix B: Simplification of the digitally shifted and

folded kernel Kγ,sh,φ

In this section we prove a closed form of the digitally shifted and folded kernel Kγ,sh,φ. As
can be seen from (24) it is enough to consider the one dimensional case, indeed we only
need to find a closed form of (25). We split up the sum in (25) into three parts according
to (23), namely, k = 0, k of the form 2a +1 and k of the form 2a +2j +κj−12

j−1 + · · ·+κ0,
where κ0 + · · · + κj−1 ≡ 0 (mod 2). For k = 0 we have wal0(x)wal0(y) = 1, hence this
part gives 1.

Now we consider k = 2a + 1 where we sum over all a ≥ 1. Let x = x1

2
+ x2

22 + · · · and
y analogously. Then we have wal2a+1(x)wal2a+1(y) = (−1)x1+y1+xa+1+ya+1 and hence

∞∑

a=1

K̂γj ,sh,φ(2
a + 1, 2a + 1)wal2a+1(x)wal2a+1(y) (26)

= (−1)x1+y1

∞∑

a=1

(
γj

4 · 22a
+

γ2
j

120 · 24a

)
(−1)xa+1+ya+1

= γj(−1)x1+y1




1

12
− 2

∞∑

a=2
xa 6=ya

1

22a


+ γ2

j (−1)x1+y1




1

1800
−

4

15

∞∑

a=2
xa 6=ya

1

24a


 .

We consider the third part where k = 2a + 2j + κj−12
j−1 + · · · + κ0 with 1 ≤ j < a

and κ0 + · · ·+ κj−1 ≡ 0 (mod 2). We have

∞∑

a=2

a−1∑

j=1

2j−1∑

k=0
σ(k)≡0 ( mod 2)

K̂γj ,sh,φ(2
a + 2j + k, 2a + 2j + k)wal2a+2j+k(x)wal2a+2j+k(y)

=
∞∑

a=2

a−1∑

j=1

2j−1∑

k=0
σ(k)≡0 ( mod 2)

(
γ2

j

12 · 22(a+j)
+

γ2
j

20 · 24a

)
(−1)xa+1+ya+1+xj+1+yj+1walk(x)walk(y)

=
∞∑

a=2

(−1)xa+1+ya+1

a−1∑

j=1

(−1)xj+1+yj+1

(
γ2

j

12 · 22(a+j)
+

γ2
j

20 · 24a

) 2j−1∑

k=0
σ(k)≡0 ( mod 2)

walk(x)walk(y).

(27)
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First observe that

2j−1∑

k=0
σ(k)≡0 ( mod 2)

walk(x)walk(y) =

1∑

κ0,...,κj−1=0

κ0+···+κj−1≡0 ( mod 2)

(−1)κ0(x1+y1) · · · (−1)κj−1(xj+yj)

=





2j−1 if either xi = yi for all i = 1, . . . , j,
or xi 6= yi for all i = 1, . . . , j,

0 otherwise.

If x1 = y1 then let i0 be the smallest integer such that xi0 6= yi0 and if x1 6= y1 then let
i0 be the smallest integer such that xi0 = yi0. Hence i0 ≥ 2. Then we can write (27) as

γ2
j

∞∑

a=2

(−1)xa+1+ya+1

min(a−1,i0−1)∑

j=1

(−1)xj+1+yj+1

(
1

12 · 22(a+j)
+

1

20 · 24a

)
2j−1

=
γ2

j

40

∞∑

a=2

(−1)xa+1+ya+1

24a

min(a−1,i0−1)∑

j=1

2j(−1)xj+1+yj+1

+
γ2

j

24

∞∑

a=2

(−1)xa+1+ya+1

22a

min(a−1,i0−1)∑

j=1

(−1)xj+1+yj+1

2j
. (28)

We have for a < i0 that
∑min(a−1,i0−1)

j=1 2j(−1)xj+1+yj+1 = (−1)x1+y1
∑a−1

j=1 2j = (−1)x1+y1(2a−

2) and for a ≥ i0 we have
∑min(a−1,i0−1)

j=1 2j(−1)xj+1+yj+1 = (−1)x1+y1(
∑i0−2

j=1 2j − 2i0−1) =
−(−1)x1+y12. Hence we have

∞∑

a=2

(−1)xa+1+ya+1

24a

min(a−1,i0−1)∑

j=1

2j(−1)xj+1+yj+1

= (−1)x1+y1

(
i0−1∑

a=2

(−1)xa+1+ya+1(2a − 2)

24a
− 2

∞∑

a=i0

(−1)xa+1+ya+1

24a

)

=
1

105
+

992

15 · 24i0
−

120

7 · 23i0
− 2(−1)x1+y1




∞∑

a=i0

1

24a
− 2

∞∑

a=i0
xa+1 6=ya+1

1

24a




=
1

105
+

992

15 · 24i0
−

120

7 · 23i0
− (−1)x1+y1




32

15 · 24i0
− 64

∞∑

a=i0+1
xa 6=ya

1

24a


 , (29)

where for x = y the last sum is defined as 0.

Further, if a < i0 we have
∑min(a−1,i0−1)

j=1
(−1)xj+1+yj+1

2j = (−1)x1+y1
∑a−1

j=1
1
2j = (−1)x1+y1(1−

1
2a−1 ) and if a ≥ i0 we have

∑min(a−1,i0−1)
j=1

(−1)xj+1+yj+1

2j = (−1)x1+y1(
∑i0−2

j=1
1
2j − 1

2i0−1 ) =

30



(−1)x1+y1(1 − 6
2i0

). Hence we have

∞∑

a=2

(−1)xa+1+ya+1

22a

min(a−1,i0−1)∑

j=1

(−1)xj+1+yj+1

2j

= (−1)x1+y1

(
i0−1∑

a=2

(−1)xa+1+ya+1

22a

(
1 −

2

2a

)
+

(
1 −

6

2i0

) ∞∑

a=i0

(−1)xa+1+ya+1

22a

)

=
1

21
+

240

7 · 23i0
−

28

3 · 22i0
+ (−1)x1+y1

(
1 −

6

2i0

)



∞∑

a=i0

1

22a
− 2

∞∑

a=i0
xa+1 6=ya+1

1

22a




=
1

21
+

240

7 · 23i0
−

28

3 · 22i0
+ (−1)x1+y1




4

3 · 22i0
−

8

23i0
−

(
8 −

48

2i0

) ∞∑

a=i0+1
xa 6=ya

1

22a


 ,(30)

where again the last sum is defined as 0 if x = y.
Thus we obtain from (28), (29) and (30) that (27) is equal to

γ2
j

(
1

450
−

7

18 · 22i0
+

1

23i0
+

124

75 · 24i0

)

+γ2
j (−1)x1+y1




1

18 · 22i0
−

1

3 · 23i0
−

4

75 · 24i0
−

(
1

3
−

2

2i0

) ∞∑

a=i0+1
xa 6=ya

1

22a
+

8

5

∞∑

a=i0+1
xa 6=ya

1

24a


 .

Hence the following result follows from (26) and (27).

Lemma 7 Let x = x1

2
+ x2

22 + · · · and y = y1

2
+ y2

22 + · · · be the base 2 representation of x
and y such that for infinitely many i ∈ N we have xi = 0 and analogously for y. If there
is an integer i > 1 such that x1 + xi + y1 + yi ≡ 1 (mod 2) then let i0 be the smallest such
integer, otherwise set i0 = ∞. Then we have

Kγj ,sh,φ(x, y)

= 1 + γj(−1)x1+y1




1

12
− 2

∞∑

a=2
xa 6=ya

1

22a


 + γ2

j

(
1

450
−

7

18 · 22i0
+

1

23i0
+

124

75 · 24i0

)

+γ2
j (−1)x1+y1

(
1

1800
+

1

18 · 22i0
−

1

3 · 23i0
−

4

75 · 24i0
−

(
1

3
−

2

2i0

) ∞∑

a=i0+1
xa 6=ya

1

22a

+
8

5

∞∑

a=i0+1
xa 6=ya

1

24a
−

4

15

∞∑

a=2
xa 6=ya

1

24a

)
,

where if xa = ya for all a ≥ c or if c = ∞ we define
∞∑

a=c

xa 6=ya

1
ba = 0.
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Remark 5 In practice we want to compute the value of the kernel at the quadrature
points x0, . . . , xN−1 ∈ [0, 1)s, especially where the quadrature points stem from a digital
net. Let xn = (x1,n, . . . , xs,n) with xj,n =

xj,n,1

2
+

xj,n,2

22 +· · · . For digital nets, as can readily
be seen, we have xj,n,i = 0 for all i > m. Hence, if we want to evaluate Ks,γ,sh,φ(xn, xh)
for some 0 ≤ n, h ≤ 2m − 1 (in case the point set is a digital net over Z2) the sum

∞∑
a=c

xj,n,a 6=xj,h,a

1
ba =

m∑
a=c

xj,n,a 6=xj,h,a

1
ba , that is, the sum is finite and can be evaluated in O(m)

operations.

By the way, similar arguments as above can be used to find the following simplified
version of the shift invariant kernel: for x 6= y we have

Kγj ,sh(x, y)

= 1 + γ




1

12
−

1

2

∞∑

a=1
xa 6=ya

1

22a




+γ2




1

360
−

4

225 · 23i0
+

(
1

12
−

2i0

20

) ∞∑

a=1
xa 6=ya

1

24a
+

1

12

(
−1 +

2

2i0

) ∞∑

a=1
xa 6=ya

1

22a




where i0 is defined as the smallest integer such that xi0 6= yi0 and for x = y we have

Kγj ,sh(x, x) = 1 +
γj

12
+

491γ2
j

567000
.

Appendix C: Some useful lemmas

In the following two lemmas we prove upper bounds on the sum of all Walsh coefficients
r(k, γ).

Lemma 8 For all 1
4

< λ ≤ 1 we have

∞∑

k=1

rλ(k, γ) ≤ γλζλ + γ2λτ̂λ,

where

ζλ :=
1

22λ(22λ − 1)

and

τ̂λ :=
3λ + 5λ + 20λ

60λ(2 − 3 · 16λ + 256λ)
+

1

120λ(24λ − 1)
.

Further we have equality if λ = 1, i.e.,

∞∑

k=1

r(k, γ) =
γ

12
+

γ2

360
.
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Proof. We have

∞∑

k=1

rλ(k, γ) =

∞∑

a=1

rλ(2a + 1, γ) +

∞∑

a=2

a−1∑

j=1

2j−1∑

l=0
σ(l)≡0 ( mod 2)

rλ(2a + 2j + l, γ)

=
∞∑

a=1

rλ(2a + 1, γ) +
∞∑

a=2

a−1∑

j=1

rλ(2a + 2j, γ)2j−1

=: Σ1 + Σ2.

By Jensen’s inequality for any 0 < λ ≤ 1 we have

rλ(2a + 1, γ) ≤
γλ

4λ22λa
+

γ2λ

120λ24λa

and therefore

Σ1 ≤
γλ

4λ

∞∑

a=1

1

22λa
+

γ2λ

120λ

∞∑

a=1

1

24λa
=

γλ

22λ(22λ − 1)
+

γ2λ

120λ(24λ − 1)
.

Again by Jensen’s inequality for any 0 < λ ≤ 1 we have

rλ(2a + 2j, γ) ≤
γ2λ

12λ22λ(a+j)
+

γ2λ

20λ24λa

and therefore we have for 1
4

< λ ≤ 1 and λ 6= 1
2

that

Σ2 ≤ γ2λ

∞∑

a=2

a−1∑

j=1

2j−1

(
1

12λ22λ(a+j)
+

1

20λ24λa

)

=
γ2λ

48λ(22λ − 2)

(
1

22λ − 1
−

2

24λ − 2

)
+

γ2λ

320λ

(
22

24λ − 2
−

2

24λ − 1

)

= γ2λ 3λ + 5λ + 20λ

60λ(2 − 3 · 16λ + 256λ)
.

It is easily verified that this also holds for λ = 1
2
. The result follows by adding the bounds

on Σ1 and Σ2. 2

Lemma 9 For all 1
4

< λ ≤ 1 and m ∈ N we have

∞∑

l=1

rλ(2ml, γ) ≤
1

24mλ
γ2λτλ,

where

τλ :=
1

48λ
+

1

320λ
+

3λ + 20λ + 80λ

960λ(16λ − 1)
+

3λ + 5λ + 20λ

60λ(2 − 3 · 16λ + 256λ)
.
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Figure 5: Hammersley net with 23 points, shifted version, shifted & folded version.

Proof. Note that in order for r(k, γ) not to be zero k must either be of the form 2a + 1
or 2a + 2j + u with 1 ≤ j < a and 0 ≤ u < 2j with σ(u) ≡ 0 (mod 2). As we now sum
rλ(2ml, γ) it follows that we only have to consider the latter case. Note that for l ≥ 1

it follows from Jensen’s inequality that rλ(2ml, γ) ≤ γ2λ

24mλ ( 1
12λ22λ(a+j) + 1

20λ24λa ). Hence we
have

∞∑

l=1

rλ(2ml, γ) ≤
γ2λ

24mλ

∞∑

a=2

a−1∑

j=0

2j−1∑

u=0
σ(u)≡0 ( mod 2)

(
1

12λ22λ(a+j)
+

1

20λ24λa

)

=
γ2λ

24mλ

(
∞∑

a=2

[
1

12λ22λa
+

1

20λ24λa

]
+

∞∑

a=2

a−1∑

j=1

[
2j−1

12λ22λ(a+j)
+

2j−1

20λ24λa

])

=
γ2λ

24mλ

(
3λ + 20λ + 80λ

960λ(16λ − 1)
+

3λ + 5λ + 20λ

60λ(2 − 3 · 16λ + 256λ)

)
.

The result follows. 2

Appendix D: Some pictures of digitally shifted and

then folded two dimensional digital nets

In the following we present some pictures which show how the original digital net is
changed by first digitally shifting and then folding using the tent transformation.
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