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Abstract

We consider Fredholm integral equations of the second kind of the form f(x) =
g(x)+

∫
k(x−y)f(y) dy, where g and k are given functions from weighted Korobov

spaces. These spaces are characterized by a smoothness parameter α > 1 and weights
γ1 ≥ γ2 ≥ · · · . The weight γj moderates the behavior of the functions with respect
to the jth variable. We approximate f by the Nyström method using n rank-1 lattice
points. The combination of convolution and lattice group structure means that the
resulting linear system can be solved in O(n log n) operations.

We analyze the worst case error measured in sup norm across functions g in the
unit ball and a class of functions k in weighted Korobov spaces. We show that the
generating vector of the lattice rule can be constructed component-by-component
to achieve the optimal rate of convergence O(n−α/2+δ), δ > 0, with the implied
constant independent of the dimension d under an appropriate condition on the
weights. This construction makes use of an error criterion similar to the worst case
integration error in weighted Korobov spaces, and the computational cost is only
O(n log nd) operations.

We also study the notion of QMC-Nyström tractability: tractability means that
the smallest n needed to reduce the worst case error (or normalized error) to ε is
bounded polynomially in ε−1 and d; strong tractability means that the bound is
independent of d. We prove that strong QMC-Nyström tractability in the absolute
sense holds iff

∑∞
j=1 γj < ∞, and QMC-Nyström tractability holds in the absolute

sense iff lim supd→∞
∑d

j=1 γj/ log(d + 1) < ∞.
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1 Introduction

We study certain Fredholm integral equations of the second kind,

f(x) = g(x) +
∫

[0,1]d
κ(x,y)f(y) dy, (1)

where the kernel κ is assumed to be of the form κ(x,y) = k(x − y), with
k(x) having period one in each component of x. Further, we assume that g
and k belong to a weighted Korobov space H (and hence are continuous on
[0, 1]d). The general Fredholm integral equation problem has been analyzed in
many papers under many different settings, usually without the convolution
assumption, see for example [5–9,15,17–19] and the references therein. The
weighted Korobov spaces have also been considered in many papers, see for
example [16]. These spaces are characterized by a smoothness parameter α > 1
and weights 1 ≥ γ1 ≥ γ2 ≥ · · · > 0, where γj moderates the behavior of the
functions with respect to the jth variable; a small γj means that the functions
depend weakly on the jth variable. More general weights are considered in [4].

We approximate f using the Nyström method based on quasi-Monte Carlo
(QMC ) rules, that is, equal-weight integration rules. Let t1, . . . , tn be points
in [0, 1]d. Our approximation of f is given by

fn(x) := g(x) +
1

n

n∑

i=1

κ(x, ti)fn(ti), (2)

where the function values fn(t1), . . . , fn(tn) are obtained by solving the linear
system

fn(tj) = g(tj) +
1

n

n∑

i=1

κ(tj, ti)fn(ti), j = 1, . . . , n. (3)

We shall refer to our method formally as the QMC-Nyström method. Further
assumptions on the kernel κ (or equivalently, the function k), the value n, and
the points t1, . . . , tn are needed to ensure the stability and the existence of a
unique solution for (3). The details are given in the next section.

We analyze the worst case error of the QMC-Nyström method, which is essen-
tially the worst possible error f − fn, measured in sup norm, across functions
g in the unit ball and a class of functions k in a weighted Korobov space; the
precise definition is given in the next section. In particular, we seek a good
lattice point set t1, . . . , tn which leads to as small a worst case error as possi-
ble; hence the name lattice-Nyström method. A rank-1 lattice rule is a QMC
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rule with points given by ti = {iz/n}, i = 1, 2, . . . , n. Here z is known as
the generating vector, which is an integer vector having no factor in common
with n, and the braces around a vector indicate that each component of the
vector is to be replaced by its fractional part. In analogy to known results
on lattice rules for the integration problem in weighted Korobov spaces (see
for example [3,10,16]), we prove in Theorem 5 that, for a sufficiently large
n, a generating vector z can be constructed component-by-component for the
integral equation problem such that the worst case error achieves the optimal
rate of convergence

O(n−α/2+δ), δ > 0,

in weighted Korobov spaces. Moreover, the implied constant in the big-O
notation can be bounded polynomially in d or even independently of d provided
that the weights γj satisfy certain conditions.

The group structure of lattice points, together with the convolution assump-
tion κ(x,y) = k(x− y), means that

κ(tj, ti) = k(tj − ti) = k(t(j−i) mod n), with t0 := tn.

Thus the approximation (2) requires a total of N = 2 n function evaluations,
that is, n evaluations of the function g and n evaluations of the function k
at the lattice points. It also means that the linear system (3) can be solved
using Fast Fourier Transform, with only O(n log n) operations. This has been
studied in [20].

We also study tractability and strong tractability of the QMC-Nyström method
in the absolute and/or normalized sense. Roughly speaking, tractability in the
absolute sense means that the minimal value of n needed in the QMC-Nyström
method to reduce the worst case error to ε ∈ (0, 1) is bounded polynomially
in d and ε−1; strong tractability means that the bound is independent of d.
We show in Theorem 6 that strong QMC-Nyström tractability in the absolute
sense holds iff ∞∑

j=1

γj < ∞, (4)

and QMC-Nyström tractability in the absolute sense holds iff

lim sup
d→∞

∑d
j=1 γj

log(d + 1)
< ∞. (5)

(Strong) tractability in the normalized sense is defined in terms of the normal-
ized error with respect to the initial error. The conditions (4) and (5) are also
sufficient conditions for (strong) QMC-Nyström tractability in the normalized
sense, but we were unable to prove that they are also necessary.

This paper is organized as follows. In Section 2 we formulate the problem
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and we define the worst case error criterion and the notion of QMC-Nyström
tractability. Section 3 contains the main results of this paper. We obtain worst
case error bounds and derive necessary and/or sufficient conditions for QMC-
Nyström tractability. We also prove that the generating vector for a lattice
rule can be constructed component-by-component to achieve the optimal rate
of convergence. Finally in Section 4 we give some additional remarks.

2 Problem Formulation

2.1 Preliminaries

Let D = [0, 1]d, and let C = C(D) denote the class of continuous functions
on D equipped with the sup norm ‖f‖sup = supx∈D |f(x)|. For the space of
bounded linear operators from C to C, we equip it with the usual induced
operator norm ‖T‖ = ‖T‖C→C = sup‖f‖sup≤1 ‖Tf‖sup. In particular, for a
given kernel κ ∈ C ×C we are interested in the integral operator K : C → C,

Kf =
∫

D
κ(·,y)f(y) dy, with ‖K‖ = max

x∈D

∫

D
|κ(x,y)| dy,

and the corresponding discrete operator Kn : C → C,

Knf =
1

n

n∑

i=1

κ(·, ti)f(ti), with ‖Kn‖ = max
x∈D

1

n

n∑

i=1

|κ(x, ti)|,

where t1, . . . , tn ∈ D. The operator K is compact and the sequence {Kn}
is collectively compact, see Anselone [1]. Throughout this paper we consider
kernels of the form κ(x, y) = k(x− y) with k ∈ C periodic. Thus

‖K‖ =
∫

D
|k(y)| dy ≤ ‖k‖sup and ‖Kn‖ = max

x∈D

1

n

n∑

i=1

|k(x−ti)| ≤ ‖k‖sup,

where the inequalities become equalities when k is a constant function.

Let H = H(d)
γ,α(D) denote a weighted Korobov space, where γ = (γj)j≥1 is a

sequence of positive weights and α > 1 is a smoothness parameter. For any

f(x) =
∑

h∈Zd

f̂(h) e2πih·x, with f̂(h) =
∫

D
f(x) e−2πih·x dx,

the norm of f in H is given by

‖f‖H =


 ∑

h∈Zd

|f̂(h)|2rα(γ,h)




1/2

,
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where

rα(γ, h) =
d∏

j=1

rα(γj, hj), with rα(γ, h) =





1 if h = 0,

γ−1|h|α otherwise.

Additionally, we assume that 1 ≥ γ1 ≥ γ2 ≥ · · · > 0 and thus rα(γ,h) ≥ 1 for
all h ∈ Zd. Using the Cauchy-Schwarz inequality, we have for all f ∈ H

‖f‖sup ≤
∑

h∈Zd

|f̂(h)| ≤

 ∑

h∈Zd

|f̂(h)|2rα(γ,h)




1/2 
 ∑

h∈Zd

1

rα(γ,h)




1/2

= ‖f‖H

d∏

j=1

(1 + 2ζ(α)γj)
1/2 , (6)

where ζ(x) :=
∑∞

h=1 h−x denotes the Riemann Zeta function. Thus H is em-
bedded in C. Furthermore, the inequalities in (6) become equalities when f is
a multiple of the function

∑
h∈Zd e2πih·x/rα(γ,h).

2.2 Fredholm integral equations and the Nyström method

Given g, k ∈ H, we study the solution S(g, k) := f of the Fredholm integral
equation (1), which we express as

f = g + Kf,

or as (I −K)f = g, where I : C → C denotes the identity operator If = f .
Assuming that the operator (I −K)−1 exists, by the Fredholm alternative we
have ‖(I −K)−1‖ < ∞, and

f = (I −K)−1g.

Since (I −K)−1e2πih·x = e2πih·x/(1− k̂(h)), we have

‖(I −K)−1‖ ≥ 1

|1− k̂(h)| ∀h ∈ Zd, (7)

which guarantees that k̂(h) 6= 1. Because k ∈ H, we have k̂(h) → 0 for large
h, and thus (7) allows us to deduce that

‖(I −K)−1‖ ≥ 1.

Since κ(x,y) = k(x− y), it is easily shown that

(Kf)(x) =
∑

h∈Zd

k̂(h)f̂(h) e2πih·x,
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implying f̂(h) = ĝ(h) + k̂(h)f̂(h) for all h ∈ Zd. Thus we have

f̂(h) =
ĝ(h)

1− k̂(h)
. (8)

Hence one way to approximate f is to use approximations of the Fourier
coefficients of g and k. This will be studied in a separate paper. Moreover we
have

‖f‖H =


 ∑

h∈Zd

∣∣∣∣∣
ĝ(h)

1− k̂(h)

∣∣∣∣∣
2

rα(γ, h)




1/2

≤ ‖(I −K)−1‖‖g‖H , (9)

where the inequality becomes equality when g and k are both constant func-
tions. We emphasize that the norm of (I −K)−1 in (9) is the operator norm
in C, not in H.

Using the QMC-Nyström method, we approximate f by the algorithm An(g, k) :=
fn, with fn given by (2), or alternatively expressed,

fn = g + Knfn,

where the function values fn(t1), . . . , fn(tn) are to be obtained by solving the
linear system (3). Suppose that

∆n := ‖(I −K)−1‖‖(K −Kn)Kn‖ < 1,

then the operator (I −Kn)−1 exists and

‖(I −Kn)−1‖ ≤ 1 + ‖(I −K)−1‖‖Kn‖
1−∆n

,

see [1]. Then fn is well defined and we have

fn = (I −Kn)−1g.

Note that ∆n < 1 is essentially a condition on the value of n and the quality
of the points t1, . . . , tn. Provided that ‖Kf − Knf‖ → 0 for all f ∈ C, the
collective compactness of {Kn} yields ‖(K −Kn)Kn‖ → 0. More details can
be found in [1].

2.3 Error formulation

We are ready to define the integral equation problem on H. Let

β > 0 and µ > 1
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be fixed. Recall that

S(g, k) = (I −K)−1g and An(g, k) = (I −Kn)−1g.

We define the worst case error of a QMC-Nyström method by

en,d(An) := sup
‖g‖H≤1

‖k‖H≤β, ‖(I−K)−1‖≤µ

‖S(g, k)− An(g, k)‖sup,

that is, we are interested in a class of problems where k ∈ H satisfies

‖k‖H ≤ β and 1 ≤ ‖(I −K)−1‖ ≤ µ. (10)

Due to linearity in g, we have for all g ∈ H and all k satisfying (10) that

‖S(g, k)− An(g, k)‖sup ≤ en,d(An) ‖g‖H .

However, a similar result does not hold for k. Note that the constants β and
µ in (10) are mutually independent, in that for appropriate choices of k either
‖k‖H or ‖(I −K)−1‖ can be arbitrarily large while the other is bounded.

The initial error associated with the zero algorithm A0 ≡ 0 is defined as

e0,d := sup
‖g‖H≤1

‖k‖H≤β, ‖(I−K)−1‖≤µ

‖S(g, k)‖sup.

For ε ∈ (0, 1), we are interested in the smallest value of n for which ei-
ther en,d(An) ≤ ε, which corresponds to tractability in the absolute sense,
or en,d(An) ≤ εe0,d, which corresponds to tractability in the normalized sense.

First we define tractability in the absolute sense. For ε ∈ (0, 1) and d ≥ 1, let

nabs(ε, d) := min{n : ∃ QMC-Nyström method An with en,d(An) ≤ ε}.

The integral equation problem is said to be QMC-Nyström tractable in the
absolute sense iff there exist nonnegative constants C, p and q independent of
ε and d such that

nabs(ε, d) ≤ C ε−p d q ∀ ε ∈ (0, 1) ∀ d ≥ 1.

The problem is said to be strongly QMC-Nyström tractable in the absolute
sense iff the above condition holds with q = 0.

Tractability and strong tractability in the normalized sense can be defined in
a similar way, with nabs(ε, d) replaced by

nnor(ε, d) := min{n : ∃ QMC-Nyström method An with en,d(An) ≤ ε e0,d}.
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Note that the cost (in terms of the number of function evaluations of g and
k) for the lattice-Nyström method is N = 2 n, while for the general QMC-
Nyström method it can be N = n2 + n.

3 Error Analysis

3.1 Initial error

For all g satisfying ‖g‖H ≤ 1 and all k satisfying (10), it follows from (6) and
(9) that

‖S(g, k)‖sup ≤ ‖(I−K)−1‖‖g‖H

d∏

j=1

(1 + 2ζ(α)γj)
1/2 ≤ µ

d∏

j=1

(1 + 2ζ(α)γj)
1/2 .

This provides an upper bound on the initial error e0,d. Note that this upper
bound does not depend on β.

To obtain a lower bound on the initial error, we consider specific functions g
and k. Let k ≡ c, with

0 < c := min
(
β, 1− 1

µ

)
< 1.

Then ‖k‖H = c ≤ β and ‖(I −K)−1‖ = 1/(1− c) ≤ µ. We define

g(x) :=
1

G


 ∑

h∈Zd

e2πih·x

rα(γ, h)
− c


 , with G :=

d∏

j=1

(1 + 2ζ(α)γj)
1/2 .

Then ‖g‖H ≤ 1, and it is not hard to see that

ĝ(h)

1− k̂(h)
=

1

Grα(γ,h)
∀h ∈ Zd.

Thus for this choice of g and k, it follows from (8) that

‖S(g, k)‖sup =

∥∥∥∥∥∥
1

G

∑

h∈Zd

e2πih·x

rα(γ,h)

∥∥∥∥∥∥
sup

=
d∏

j=1

(1 + 2ζ(α)γj)
1/2 .

Hence we have a lower bound on the initial error with the same dependence
on d as the upper bound obtained before. In other words, we know exactly
how the initial error increases with d.

This lower bound does not give an indication of the dependence on β and µ.
A different lower bound can be obtained by choosing g ≡ k ≡ c with c defined
as above. In this case, ‖S(g, k)‖sup = c/(1− c).
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Our analysis leads to the following result.

Lemma 1 Let c := min(β, 1− 1/µ). The initial error satisfies

max


 c

1− c
,

d∏

j=1

(1 + 2ζ(α)γj)
1/2


 ≤ e0,d ≤ µ

d∏

j=1

(1 + 2ζ(α)γj)
1/2 .

Note that if β ≥ 1 then c/(1− c) = µ− 1. In this case, we see that the initial
error increases linearly with µ.

3.2 Lower bound on the worst case error

Again we consider a constant function k ≡ c, with c := min(β, 1− 1/µ). Then
‖k‖H ≤ β and ‖(I −K)−1‖ ≤ µ. Moreover, for any g it is easy to show that

f = (I −K)−1g = g +
c

1− c

∫

D
g(x) dx

and

fn = (I −Kn)−1g = g +
c

1− c

1

n

n∑

i=1

g(ti).

Thus it follows by definition that

en,d(An) ≥ sup
‖g‖H≤1

‖S(g, k)− An(g, k)‖sup

=
c

1− c
sup

‖g‖H≤1

∣∣∣∣∣
∫

D
g(x) dx− 1

n

n∑

i=1

g(ti)

∣∣∣∣∣

=
c

1− c
ewor−int

n,d (t1, . . . , tn), (11)

where ewor−int
n,d (t1, . . . , tn) denotes the worst case integration error in H using

quadrature points t1, . . . , tn.

It is known from [16] that in weighted Korobov spaces we have

ewor−int
n,d (t1, . . . , tn) ≥ ewor−int

n,1

(
0, 1

n
, 2

n
, . . . , n−1

n

)
=

(
2ζ(α)γ1

nα

)1/2

.

This rate of convergence of O(n−α/2) is optimal for the integration problem
in weighted Korobov spaces (see also Sharygin’s lower bound [9]). In fact, it
was proved in [3,10] that a generating vector z for a rank-1 lattice rule can
be constructed component-by-component to achieve the rate of convergence
O(n−α/2+δ), δ > 0. Not surprisingly, this is also the optimal rate of convergence
for the integral equation problem. Later we will show that a generating vector
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z for a rank-1 lattice rule can be constructed component-by-component, based
on a different error criterion, to achieve this optimal rate of convergence.

In terms of the dependence on d, it was shown in [16] that

ewor−int
n,d (t1, . . . , tn) ≥


1

n

d∏

j=1

(1 + 2ζ(α)ωαγj)− 1




1/2

,

where ωα := min(1, 1/(2γ1|θmin|)) ≤ 1, with −1 < θmin < −1 + 2−α denot-
ing the minimum of the function θ(x) =

∑∞
h=1 cos(2πhx)/hα, see [2] or [4,

Eq. (26)]. Moreover, it was proved in [16] that the integration problem in
weighted Korobov spaces is strongly QMC tractable iff (4) holds, and QMC
tractable iff (5) holds. Note that since the initial integration error is exactly
1, there is no need to distinguish between tractability in the normalized sense
and tractability in the absolute sense.

We summarize the lower bounds in the following lemma.

Lemma 2 Let c := min(β, 1 − 1/µ). The worst case error for the QMC-
Nyström method satisfies

en,d(An) ≥ c

1− c
max


2ζ(α)γ1

nα
,
1

n

d∏

j=1

(1 + 2ζ(α)ωαγj)− 1




1/2

,

where ωα ≤ 1 is some constant independent of n and d.

For tractability in the absolute sense, we see from the relationship (11) that
(4) and (5) are necessary conditions for strong QMC-Nyström tractability and
QMC-Nyström tractability, respectively. Later we will see that these condi-
tions are also sufficient for tractability in the absolute sense.

Unfortunately, we cannot obtain necessary conditions for tractability in the
normalized sense because the d-dependence in the lower bound is too weak
compared with the bounds on the initial error. Indeed, since ωα ≤ 1, we cannot
see how the normalized error en,d(An)/e0,d increases with d.

3.3 Upper bound on the worst case error

By subtracting (I −Kn)fn = g from (I −Kn)f = (I −K)f + (K −Kn)f =
g + (K −Kn)f , we obtain

f − fn = (I −Kn)−1(K −Kn)f.
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Thus

‖S(g, k)− An(g, k)‖sup = ‖f − fn‖sup ≤ ‖(I −Kn)−1‖‖(K −Kn)f‖sup.

Recall that

‖(I −Kn)−1‖ ≤ 1 + ‖(I −K)−1‖‖Kn‖
1−∆n

,

when ∆n := ‖(I −K)−1‖‖(K −Kn)Kn‖ < 1. We can bound ‖Kn‖ as follows

‖Kn‖ ≤ ‖k‖sup ≤ ‖k‖H

d∏

j=1

(1 + 2ζ(α)γj)
1/2.

Hence we can write

‖f − fn‖sup ≤
1 + ‖(I −K)−1‖‖k‖H

∏d
j=1(1 + 2ζ(α)γj)

1/2

1− ‖(I −K)−1‖‖(K −Kn)Kn‖ ‖(K −Kn)f‖sup.

The term ‖(K−Kn)Kn‖ controls whether or not ∆n < 1, while ‖(K−Kn)f‖sup

determines the rate of convergence. It remains to obtain bounds on these two
terms.

Let t1, . . . , tn be rank-1 lattice points generated by z, that is, ti = {iz/n}
where {x} = x− bxc. We have

((K −Kn)f)(x) =
∫

D
k(x− y)f(y) dy − 1

n

n∑

i=1

k(x− ti)f(ti)

= − ∑

h∈Zd\{0}
h·z≡0 ( mod n)

F̂x(h),

where Fx(y) := k(x− y)f(y), and

F̂x(h) =
∫

D
k(x− y)f(y) e−2πih·y dy

=
∑

`∈Zd

∑

p∈Zd

k̂(`)f̂(p) e2πi`·x
∫

D
e2πi(p−`−h)·y dy

=
∑

`∈Zd

k̂(`)f̂(h + `) e2πi`·x.
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Thus it follows from the Cauchy-Schwarz inequality that

‖(K −Kn)f‖sup = sup
x∈D

∣∣∣∣∣∣
∑

h∈Zd\{0}
h·z≡0 ( mod n)

∑

`∈Zd

k̂(`)f̂(h + `) e2πi`·x
∣∣∣∣∣∣

≤ ∑

h∈Zd\{0}
h·z≡0 ( mod n)

∑

`∈Zd

|k̂(`)||f̂(h + `)| (12)

≤ ∑

`∈Zd


|k̂(`)|


 ∑

h∈Zd\{0}
h·z≡0 ( mod n)

|f̂(h + `)|2rα(γ, h + `)




1/2

×

 ∑

h∈Zd\{0}
h·z≡0 ( mod n)

1

rα(γ,h + `)




1/2


≤ ‖f‖H


 ∑

`∈Zd

|k̂(`)|2rα(γ, `)




1/2 
 ∑

`∈Zd

1

rα(γ, `)

∑

h∈Zd\{0}
h·z≡0 ( mod n)

1

rα(γ,h + `)




1/2

≤ ‖(I −K)−1‖‖g‖H‖k‖HSn,d(z),

where in the last step we used (9) and the definition

Sn,d(z) :=


 ∑

h∈Zd\{0}
h·z≡0 ( mod n)

∑

`∈Zd

1

rα(γ, `) rα(γ,h + `)




1/2

. (13)

Using a similar argument to that above, we obtain

‖(K −Kn)Kn‖
= sup

x∈D

1

n

n∑

j=1

∣∣∣∣∣
∫

D
k(x− y)k(y − tj) dy − 1

n

n∑

i=1

k(x− ti)k(ti − tj)

∣∣∣∣∣

= sup
x∈D

1

n

n∑

j=1

∣∣∣∣∣∣
∑

h∈Zd\{0}
h·z≡0 ( mod n)

∑

`∈Zd

k̂(`)k̂(h + `) e2πi`·xe−2πi(h+`)·tj

∣∣∣∣∣∣

≤ ∑

h∈Zd\{0}
h·z≡0 ( mod n)

∑

`∈Zd

|k̂(`)||k̂(h + `)|

≤ ‖k‖2
HSn,d(z).

Therefore when k satisfies (10) we have

∆n ≤ ‖(I −K)−1‖‖k‖2
HSn,d(z) ≤ µβ2Sn,d(z).

12



To ensure that ∆n < 1, it is sufficient to demand that Sn,d(z) < 1/(µβ2).
When this holds, we have

‖(I −Kn)−1‖ ≤ 1 + ‖(I −K)−1‖‖k‖H
∏d

j=1(1 + 2ζ(α)γj)
1/2

1−∆n

≤ 1 + µβ
∏d

j=1(1 + 2ζ(α)γj)
1/2

1− µβ2Sn,d(z)

≤ 1 + µβ

1− µβ2Sn,d(z)

d∏

j=1

(1 + 2ζ(α)γj)
1/2 .

Thus for g satisfying ‖g‖H ≤ 1 and k satisfying (10), we have

‖f − fn‖sup ≤ ‖(I −Kn)−1‖‖(I −K)−1‖‖g‖H‖k‖HSn,d(z)

≤ (1 + µβ)µβ Sn,d(z)

1− µβ2 Sn,d(z)

d∏

j=1

(1 + 2ζ(α)γj)
1/2.

We summarize this discussion in the following lemma.

Lemma 3 Suppose there exists an integer vector z for which Sn,d(z) defined
in (13) satisfies

Sn,d(z) <
1

µβ2
.

Then the worst case error for the lattice-Nyström method satisfies

en,d(An) ≤ (1 + µβ)µβ Sn,d(z)

1− µβ2 Sn,d(z)

d∏

j=1

(1 + 2ζ(α)γj)
1/2.

We need Sn,d(z) < 1/(µβ2) to control the denominator in the error bound (to
ensure that ∆n < 1). As long as Sn,d(z) converges with n, this condition can
be trivially fulfilled with a large enough n. On the other hand, the Sn,d(z) in
the numerator determines the rate of convergence of the worst case error.

3.4 Component-by-component construction of z

Here we present an algorithm for constructing a generating vector z that
leads to the optimal rate of convergence O(n−α/2+δ), δ > 0. For simplicity, we
restrict ourselves to n being a prime number. In this case, the components of
the generating vector z can be restricted to the set {1, 2, . . . , n− 1}.

Algorithm 1 Let n be a prime number.

1. Set z1 = 1.
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2. For s = 2, 3, . . . , d, with z1, z2, . . . , zs−1 already chosen and fixed, find
zs ∈ {1, 2, . . . , n− 1} to minimize Sn,s(z1, . . . , zs−1, zs).

Lemma 4 Let n be prime and let z∗ ∈ {1, 2, . . . , n − 1}d be constructed by
Algorithm 1. Then

Sn,d(z
∗) ≤ 1

δ n1/(2λ)

d∏

j=1

(
1 + 2(1 + δλ)1/2ζ(αλ)γλ

j

)1/λ

for all λ ∈ (1/α, 1] and δ ∈ (0, 2−3α].

Proof. The proof of this lemma is long and tedious, and is therefore deferred
to the Appendix. 2

We now obtain a sufficient condition on n to ensure that Sn,d(z) < 1/(µβ2).
It is enough to choose n such that the upper bound in Lemma 4 with λ = 1
and δ = 2−3α is no greater than, say, 1/(2µβ2). In other words, if

n ≥ (2µβ2)2 26α
d∏

j=1

(
1 + 2(1 + 2−3α)1/2ζ(α)γj

)2
, (14)

then Sn,d(z) ≤ 1/(2µβ2), and we conclude from Lemmas 3 and 4 that

en,d(An) ≤ 2(1 + µβ)µβ

δ n1/(2λ)

d∏

j=1

(
1 + 2(1 + δλ)1/2ζ(αλ)γλ

j

)1/λ
(1 + 2ζ(α)γj)

1/2

for all λ ∈ (1/α, 1] and δ ∈ (0, 2−3α]. Taking λ = 1/(α − 2δ) with δ ≤
min(2−3α, (α − 1)/2)), we see that en,d(An) = O(n−α/2+δ). Comparing this
with the first lower bound in Lemma 2, we see that this is the optimal rate of
convergence.

Using the property

d∏

j=1

(1 + xj) = exp

(
d∑

j=1

log(1 + xj)

)
≤ exp

(
d∑

j=1

xj

)
= (d + 1)

∑d

j=1
xj/ log(d+1)

(15)
for all xj > 0, we see that the requirement (14) on n does not grow with d if (4)
holds, and it grows only polynomially with d when (5) holds. The conditions
(4) and/or (5) are also sufficient to ensure that en,d(An) does not grow faster
than polynomially with d. However, we will need to assume stronger conditions
on the weights if we want to have the optimal rate of convergence at the same
time.

Theorem 5 Suppose n is a prime number satisfying (14). Then the generat-
ing vector z∗ constructed by Algorithm 1 achieves the optimal rate of conver-
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gence, with

en,d(An) ≤ Cd,δ n−α/2+δ and
en,d(An)

e0,d

≤ C̃d,δ n−α/2+δ,

for all δ ∈ (0, min(2−3α, (α− 1)/2)], where Cd,δ and C̃d,δ are independent of n,
but depend on δ and d. Additionally, if

∞∑

j=1

γ
1/(α−2δ)
j < ∞,

then the numbers Cd,δ and C̃d,δ, and the requirement (14) on n, can be bounded
independently of d.

To implement Algorithm 1, we need a computable expression for Sn,d(z). We
can write

S2
n,d(z) = −

d∏

j=1

(
1 + 2ζ(2α)γ2

j

)
+

1

n

d∏

j=1

(1 + 2ζ(α)γj)
2

+
1

n

n−1∑

k=1

d∏

j=1


1 + γj

∑

h∈Z\{0}

e2πikhzj/n

|h|α



2

. (16)

This expression is very similar to the squared worst case integration error (see
for example [16]). If α is an even integer, then the inner sum over h can be
computed via

∑

h∈Z\{0}

e2πikhzj/n

|h|α =
(2π)α

(−1)α/2+1α!
Bα

({
kzj

n

})
,

where Bα is the Bernoulli polynomial of degree α.

Following [14] and using the Fast Fourier Transform, the component-by-com-
ponent construction based on the quantity Sn,d(z) requires only O(n log n d)
operations. In other words, the computational cost is no worse than that for
the integration problem.

3.5 Tractability

First we analyze tractability in the absolute sense. For ε ∈ (0, 1), we want to
find the smallest n for which en,d(An) ≤ ε. From Lemma 3 we see that it is
sufficient to insist that

Sn,d(z) ≤ 1

ε−1(1 + µβ)µβ
∏d

j=1(1 + 2ζ(α)γj)1/2 + µβ2
, (17)
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the right-hand side of which is less than 1/(µβ2). Using Lemma 4, we see that
Algorithm 1 will generate a vector z satisfying (17) if we demand that

n ≥ pr


 min

λ∈(1/α,1]
δ∈(0,2−3α]


 1

δ2λ

d∏

j=1

(
1 + 2(1 + δλ)1/2ζ(αλ)γλ

j

)2

×

ε−1(1 + µβ)µβ

d∏

j=1

(1 + 2ζ(α)γj)
1/2 + µβ2




2λ 



 , (18)

where pr(x) denotes the smallest prime number greater than or equal to x.
Hence we conclude that

nabs(ε, d) is less than or equal to the right-hand side of (18).

Note that pr(x) ≤ 2x, since there is a prime number in the interval [k, 2k] for
any positive integer k. (This is known as “Bertrand’s postulate”, proved by
Chebyshev in 1850.)

On the other hand, the second lower bound in Lemma 2 implies

nabs(ε, d) ≥ 1

1 + ε2(1/c− 1)2

d∏

j=1

(1 + 2ζ(α)ωαγj) .

Similarly, for tractability in the normalized sense we obtain

nnor(ε, d) ≤ pr


 min

λ∈(1/α,1]
δ∈(0,2−3α]


 1

δ2λ

d∏

j=1

(
1 + 2(1 + δλ)1/2ζ(αλ)γλ

j

)2

×
(
ε−1(1 + µβ)µβ + µβ2

)2λ





 .

However, we were unable to derive a lower bound on nnor(ε, d) because our
lower bound on en,d(An) was too weak compared to the initial error e0,d.

Using again (15) and the additional property that log(1+x) ≥ log(1+x∗)x/x∗

for all x ≤ x∗, we arrive at the following theorem.

Theorem 6 Consider the Fredholm integral equation problem defined as in
Section 2.

(a) The problem is strongly QMC-Nyström tractable in the absolute sense iff

∞∑

j=1

γj < ∞, (4)
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and it is QMC-Nyström tractable in the absolute sense iff

L := lim sup
d→∞

∑d
j=1 γj

log(d + 1)
< ∞. (5)

These conditions are also sufficient for strong QMC-Nyström tractability
and QMC-Nyström tractability in the normalized sense.

(b) If (4) holds and additionally
∑∞

j=1 γλ
j < ∞ for some λ ∈ (1/α, 1], then

nabs(ε, d) = O(ε−2λ) and nnor(ε, d) = O(ε−2λ),

with the implied factors independent of ε and d.
(c) If (4) does not hold but (5) holds, then

nabs(ε, d) = O(ε−2 d q1) and nnor(ε, d) = O(ε−2 d q2),

with the implied factors independent of ε and d, and with q1 and q2 arbi-
trarily close to

6 ζ(α) L and 4 ζ(α) L,

respectively.

Note that Part (b) is obtained by taking any δ, say, δ = 2−3α, and Part (c) is
obtained with λ = 1 and with δ approaching 0.

4 Additional remarks

4.1 Generating vectors constructed for integration

Since the optimal rate of convergence O(n−α/2+δ), δ > 0, for the integral
equation problem is the same as that for the integration problem, a natural
question to ask is: can we use the generating vector already constructed for
the integration problem? We came up with two approaches for estimating the
resulting worst case error, but both with some undesirable effects. These are
discussed below.

Since (K−Kn)f(x) is essentially the integration error of the function Fx(y) :=
k(x− y)f(y), we can write

‖K −Kn‖sup ≤ sup
x∈D

‖Fx‖H ewor−int
n,d (z),

where ewor−int
n,d (z) denotes the worst case integration error for a lattice rule

with generating vector z. We know that z can be constructed to achieve the
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optimal rate of convergence. However, from [13] (Appendix 2: Korobov spaces
are algebras) we see that

‖Fx‖H ≤ 2 d max(1,α/2)
d∏

j=1

(1 + 2ζ(α)γj)
1/2 ‖k‖H‖f‖H .

This exponential dependence on d means that tractability is out of the ques-
tion.

Alternatively, we can estimate the expression (12) as follows

∑

h∈Zd\{0}
h·z≡0 ( mod n)

∑

`∈Zd

|k̂(`)||f̂(h + `)|

≤ ∑

h∈Zd\{0}
h·z≡0 ( mod n)


 ∑

`∈Zd

|k̂(`)|2rα(γ, `)




1/2 
 ∑

`∈Zd

|f̂(h + `)|2
rα(γ, `)




1/2

≤ ‖k‖H

∑

h∈Zd\{0}
h·z≡0 ( mod n)





 ∑

`∈Zd

|f̂(h + `)|2rα(γ,h + `)




1/2

×

max

`∈Zd

1√
rα(γ, `) rα(γ,h + `)







≤ ‖f‖H‖k‖H

d∏

j=1

max(1, 2αγj)
1/2

∑

h∈Zd\{0}
h·z≡0 ( mod n)

1

rα/2(γ1/2, h)
, (19)

where in the final step we made use of the estimate obtained in [13],

rα(γ, `) rα(γ,h + `) ≥ rα(γ,h)
∏d

j=1 max(1, 2αγj)
∀ ` ∈ Zd.

Observe that the sum in (19) is exactly the squared worst case integration error
of a lattice rule in the weighted Korobov space with α replaced by α/2 and γj

replaced by γ
1/2
j . Thus we know that a generating vector can be constructed

such that this sum is of order O(n−α/2+δ), δ > 0. In other words, the rate
of convergence is right, and the dependence on d can be controlled by the
weights, but we would require α > 2 to begin with.
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4.2 The algorithms for approximation

In [11] and [12], functions from weighted Korobov spaces were approximated
by truncated Fourier series, with vectors h from the set

A(d,M) := {h ∈ Zd : rα(γ,h) ≤ M}.

Since M/rα(γ, h) ≥ 1 for all h ∈ A(d,M), the quantity En,d(z) studied in
[11] and [12] can be bounded above by

En,d(z) :=
∑

h∈A(d,M)

∑

`∈Zd\{0}
`·z≡0 (mod n)

1

rα(γ,h + `)

≤ ∑

h∈A(d,M)

M

rα(γ,h)

∑

`∈Zd\{0}
`·z≡0 (mod n)

1

rα(γ,h + `)

≤ M
∑

h∈Zd

1

rα(γ,h)

∑

`∈Zd\{0}
`·z≡0 (mod n)

1

rα(γ,h + `)
= M S2

n,d(z).

Note that S2
n,d(z) is much easier to work with than En,d(z), because it is

given explicitly by (16), and there is no need to analyze the set A(d,M). The
component-by-component construction is independent of M , and the compu-
tational cost is much cheaper.

Furthermore, the vectors obtained by minimizing S2
n,d(z) lead to the same

n-dependence in the worst case and average case approximation error bounds
as those obtained by minimizing En,d(z). Hence this new quantity should be
used not only for the integral equation problem, but also for the approximation
problem discussed in [11] and [12].
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[11] F. Y. Kuo, I. H. Sloan, and H. Woźniakowski, Lattice rules for multivariate
approximation in the worst case setting, Monte Carlo and Quasi-Monte Carlo
Methods 2004 (H. Niederreiter and D. Talay, eds.), 289–330, Springer, 2006.

[12] F. Y. Kuo, I. H. Sloan, and H. Woźniakowski, Lattice rule algorithms for
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Appendix: proof of Lemma 4

We prove the result by induction on d, following closely the argument used in
the proof of Lemma 6 in [11]. It can easily be checked that the result holds
for d = 1.

Suppose the result has been shown for d. By separating the hd+1 = 0 and
hd+1 6= 0 terms in (13), we can write

S2
n,d+1(z, zd+1) =

(
1 + 2ζ(2α)γ2

d+1

)
S2

n,d(z) + θ(z, zd+1),

where

θ(z, zd+1) =
∑

`d+1∈Z

∞∑

hd+1=−∞
hd+1 6=0


 1

rα(γd+1, `d+1)

1

rα(γd+1, `d+1 + hd+1)

× ∑

`∈Zd

∑

h∈Zd

h·z≡−hd+1zd+1 (mod n)

1

rα(γ, `)

1

rα(γ, ` + h)


.

A similar expression already appeared in the proof of Lemma 6 in [11] (but
with the role of ` and h interchanged). For λ ∈ (1/α, 1], we follow closely the
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argument used in [11], including the use of Jensen’s inequality, to arrive at

[
θ(z, z∗d+1)

]λ ≤ 1

n− 1

n−1∑

zd+1=1

[θ(z, zd+1)]
λ ≤ Θ(z),

with

Θ(z) =
G−G

n− 1

∑

ld+1∈Z

∞∑

hd+1=−∞
hd+1 6=0

1

rαλ(γλ
d+1, ld+1)

1

rαλ(γλ
d+1, ld+1 + hd+1)

+
nG−G

n− 1

∑

ld+1∈Z

∞∑

hd+1=−∞
hd+1≡0 (mod n)

hd+1 6=0

1

rαλ(γλ
d+1, ld+1)

1

rαλ(γλ
d+1, ld+1 + hd+1)

,

where

G :=
∑

`∈Zd

∑

h∈Zd

h·z≡0 (mod n)

1

rαλ(γλ, `)

1

rαλ(γλ, ` + h)
≤

d∏

j=1

(
1 + 2ζ(αλ)γλ

j

)2
=: G.

We have

W1 :=
∑

ld+1∈Z

∑

hd+1∈Z
hd+1 6=0

1

rαλ(γλ
d+1, ld+1)

1

rαλ(γλ
d+1, ld+1 + hd+1)

=
(
1 + 2ζ(αλ)γλ

d+1

)2 −
(
1 + 2ζ(2αλ)γ2λ

d+1

)

≤ 22ζ(αλ)γλ
d+1 + 22[ζ(αλ)]2γ2λ

d+1,

W2 :=
∑

ld+1∈Z
ld+1≡0 (mod n)

∑

hd+1∈Z
hd+1≡0 (mod n)

hd+1 6=0

1

rαλ(γλ
d+1, ld+1)

1

rαλ(γλ
d+1, ld+1 + hd+1)

=

(
1 +

2ζ(αλ)γλ
d+1

nαλ

)2

−
(

1 +
2ζ(2αλ)γ2λ

d+1

n2αλ

)

≤ 22ζ(αλ)γλ
d+1

n
+

22[ζ(αλ)]2γ2λ
d+1

n
,
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and

W3 :=
∑

ld+1∈Z
ld+1 6≡0 (mod n)

∑

hd+1∈Z
hd+1≡0 (mod n)

hd+1 6=0

1

rαλ(γλ
d+1, ld+1)

1

rαλ(γλ
d+1, ld+1 + hd+1)

= γ2λ
d+1

(n−1)/2∑

k=−(n−1)/2
k 6=0





∑

l∈Z

1

|ln + k|αλ




2

−∑

l∈Z

1

|ln + k|2αλ




≤ γ2λ
d+1

(n−1)/2∑

k=−(n−1)/2
k 6=0





 1

|k|αλ
+

∑

l∈Z
l 6=0

1

|ln|αλ
∣∣∣1 + k

ln

∣∣∣
αλ




2

− 1

|k|2αλ




≤ γ2λ
d+1

(n−1)/2∑

k=−(n−1)/2
k 6=0

(
1

|k|αλ

2αλ+2ζ(αλ)

nαλ
+

22αλ+2[ζ(αλ)]2

n2αλ

)

≤ 2αλ+4[ζ(αλ)]2γ2λ
d+1

n
.

Thus

Θ(z) =
G−G

n− 1
W1 +

nG−G

n− 1
(W2 + W3)

≤ 22ζ(αλ)γλ
d+1 + 22[ζ(αλ)]2γ2λ

d+1

n− 1
G

(
1− 1

n

)
+

nG−G

n− 1

2αλ+4[ζ(αλ)]2γ2λ
d+1

n

≤
(
22ζ(αλ)γλ

d+1 + 22(1 + 2αλ+2)[ζ(αλ)]2γ2λ
d+1

) 1

n

d∏

j=1

(
1 + 2ζ(αλ)γλ

j

)2
.

Combining all the estimates together and making use of the induction hypoth-
esis, the desired result then follows from

(
1 + 2ζ(2α)γ2

d+1

)
+ δ

(
22ζ(αλ)γλ

d+1 + 22(1 + 2αλ+2)[ζ(αλ)]2γ2λ
d+1

)1/λ

≤
(
1 + 2ζ(αλ)γλ

d+1 + 22δλζ(αλ)γλ
d+1 + 22δλ(1 + 2αλ+2)[ζ(αλ)]2γ2λ

d+1

)1/λ

≤
(
1 + 22ζ(αλ)γλ

d+1 + 22(1 + δλ)[ζ(αλ)]2γ2λ
d+1

)1/λ

≤
(
1 + 2(1 + δλ)1/2ζ(αλ)γλ

d+1

)2/λ
,

where we have used Jensen’s inequality, δλ ≤ 1/2 and δλ2αλ+2 ≤ 1 (since
δ ≤ 2−3α). This completes the proof of Lemma 4.
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