
Uniform distribution of sequences connected with the

weighted sum-of-digits function

Friedrich Pillichshammer∗

Abstract

In this paper we consider sequences which are connected with the so-called
weighted q-ary sum-of-digits function and give an if and only if condition under
which such sequences are uniformly distributed modulo one. The sequences consid-
ered here contain the q-ary van der Corput sequence as well as the (nα)-sequences
as special cases.

AMS subject classification: 11K06, 11J71.

1 Introduction

A sequence (xn)n≥0 in the d-dimensional unit-cube is said to be uniformly distributed

modulo one if for all intervals [a, b) ⊆ [0, 1)d we have

lim
N→∞

#{n : 0 ≤ n < N, xn ∈ [a, b)}
N

= λd([a, b)),

where λd denotes the d-dimensional Lebesgue measure. An excellent introduction into
this topic can be found in the book of Kuipers and Niederreiter [7] or in the book of
Drmota and Tichy [4].

In this paper we consider the uniform distribution properties of special sequences which
are connected with the weighted sum-of-digits function and which are generalizations of
many well known sequences.

Let γ = (γ0, γ1, . . .) be a sequence in R and let q ∈ N, q ≥ 2. For n ∈ N0 with base
q representation n = n0 + n1q + n2q

2 + · · · we define the weighted q-ary sum-of-digits

function by
sγ(n) := γ0n0 + γ1n1 + γ2n2 + · · · .

We remark that the weighted q-ary sum-of-digits function is a q-additive function, but it
is not strongly q-additive (unless the weight-sequence γ is constant); see [5, 6] or [4] for
the notion of (strongly) q-additive functions.

For d ∈ N let γ = (γ0, γ1, . . .) be a sequences in Rd with γj = (γ
(1)
j , . . . , γ

(d)
j ), i.e., γ

(k)
j

denotes the k-th component of the j-th element of the sequence γ. For k ∈ {1, . . . , d} let

γ(k) = (γ
(k)
0 , γ

(k)
1 , . . .) be the k-th coordinate sequence in R. For n ∈ N0 define

sγ(n) := (sγ(1)(n), . . . , sγ(d)(n)).

∗This work is supported by the Austrian Science Foundation (FWF), Project S9609, that is part of
the Austrian National Research Network “Analytic Combinatorics and Probabilistic Number Theory”.
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Now we consider the d-dimensional sequence

({sγ(n)})n≥0, (1)

where {x} denotes the fractional part of the vector x (applied component-wise), and ask
under which conditions on the weight-sequence γ the sequence (1) is uniformly distributed
modulo one?

Observe that the definition of the sequence in (1) covers many well known and exten-
sively studied sequences as, for example:

1. If d = 1 and γj = q−j−1 (here we simply write γj instead of γ
(1)
j ) for all j ∈ N0, then

the sequence ({sγ(n)})n≥0 is the q-ary van der Corput sequence which is of course
well known to be uniformly distributed modulo one. See, for example, [7, 11].

2. If γj = qjα for all j ∈ N0 with α = (α1, . . . , αd) ∈ Rd, then we obtain the sequence
({nα})n≥1 which is well known to be uniformly distributed modulo one if and only
if 1, α1, . . . , αd are linearly independent over Q. See, for example, [4, 7, 12].

3. If γj = α = (α1, . . . , αd) ∈ Rd for all j ∈ N0, then we obtain the sequence
({s(n)α})n≥1, where s(·) denotes the classical, i.e. unweighted q-ary sum-of-digits
function. In the case d = 1 it was shown by Mendès France [10] and later by Coquet
[1] that the sequence ({s(n)α})n≥1 is uniformly distributed modulo one if and only
if α ∈ R \ Q. See also [2, 3] and the references therein. We remark that this result
even holds if the q-ary sum-of-digits function is replaced by an arbitrary strongly
q-additive function; see [4].

4. If d = 1 and γj = rjα (again we simply write γj instead of γ
(1)
j ) with rj ∈ Z for

all j ∈ N0 where α ∈ R, then the following was proved (in fact in a more general
setting) by Larcher [8]: the sequence ({sγ(n)})

n≥0 is uniformly distributed modulo
one if and only if

∞
∑

k=0

‖hrkα‖2 = ∞ ∀h ∈ N,

where for x ∈ R, ‖x‖ = mink∈Z |x − k|.

It is the aim of this paper to characterize the weight-sequences γ : N0 → Rd for
which the sequence (1) is uniformly distributed modulo one. As corollary we obtain
that the sequence (1) is uniformly distributed modulo one for almost all weight-sequences
γ : N0 → [0, 1)d. We close the paper with an interesting open question.

Throughout the paper let the base q ∈ N, q ≥ 2, and the dimension d ∈ N be fixed.
By 〈·, ·〉 we denote the usual inner product in Rd. As above ‖ · ‖ denotes the distance-to-

the-nearest-integer function.

2 Statement and proof of the results

The following theorem gives a full characterization of the sequences γ : N0 → Rd for
which the sequence (1) is uniformly distributed modulo one. The proof is based on easy
estimates for exponential sums and Weyl’s criterion (see, for example, [4, 7]).
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Theorem 1 The sequence ({sγ(n)})n≥0 is uniformly distributed modulo one if and only

if for every h ∈ Zd \ {0} one of the following properties hold:

Either ∞
∑

k=0
〈h,γk〉q 6∈Z

‖〈h, γk〉‖2 = ∞

or there exists a k ∈ N0 such that 〈h, γk〉 6∈ Z and 〈h, γk〉q ∈ Z.

Of course the condition from our theorem covers all special cases from the list of
examples in Section 1. Before we give the proof of the theorem let us consider two of
them.

Example 1 Consider the q-ary van der Corput sequence, i.e., d = 1 and γj = q−j−1 for
all j ∈ N0. For h ∈ Z \ {0} let k ∈ N0 be maximal such that qk|h. Then hq−k−1 6∈ Z and
hq−k ∈ Z. Hence from Theorem 1 we obtain the well known fact that the q-ary van der
Corput sequence is uniformly distributed modulo one.

Example 2 Let γj = α = (α1, . . . , αd) ∈ Rd for all j ∈ N0. Then for any h ∈ Zd \ {0}
we have ∞

∑

k=0
〈h,γk〉q 6∈Z

‖〈h, γk〉‖2 =
∞
∑

k=0

‖〈h, α〉‖2 = ∞

if and only if 〈h, α〉 6∈ Z. But the last condition holds if and only if 1, α1, . . . , αd are
linearly independent over Q.

For the proof of Theorem 1 we need the following easy lemmas. For the sake of
completeness we give short verifications of these results.

Lemma 1 Let x0, . . . , xq−1 ∈
(

−1
2
, 1

2

]

and define x := max0≤j<q |xj|. Then we have

∣

∣

∣

∣

∣

q−1
∑

j=0

e2πixj

∣

∣

∣

∣

∣

≥ q(1 − 4π2x2).

Proof. We have

∣

∣

∣

∣

∣

q−1
∑

j=0

e2πixj

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

Re

(

q−1
∑

j=0

e2πixj

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

q−1
∑

j=0

cos(2πxj)

∣

∣

∣

∣

∣

≥ q cos(2πx) ≥ q(1 − 4π2x2).
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Lemma 2 For any x ∈ R we have

∣

∣

∣

∣

∣

q−1
∑

n=0

e2πixn

∣

∣

∣

∣

∣

≤ q − 4‖x‖2.
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Proof. We have
∣

∣

∣

∣

∣

q−1
∑

n=0

e2πixn

∣

∣

∣

∣

∣

≤
∣

∣1 + e2πix
∣

∣ + q − 2 = 2 cos(π‖x‖) + q − 2

≤ 2

(

1 − π2‖x‖2

π

)

+ q − 2 ≤ q − 4‖x‖2.

2

Proof of Theorem 1. Let h ∈ Zd \ {0}. By Lemma 2 we have
∣

∣

∣

∣

∣

q−1
∑

n=0

e2πi〈h,γk〉n

∣

∣

∣

∣

∣

≤ q − 4‖〈h, γk〉‖2.

But if 〈h, γk〉 6∈ Z and 〈h, γk〉q ∈ Z we also have
∣

∣

∣

∣

∣

q−1
∑

n=0

e2πi〈h,γk〉n

∣

∣

∣

∣

∣

= 0.

For j ∈ N0 we have
∣

∣

∣

∣

∣

∣

1

qj

qj−1
∑

n=0

e2πi〈h,sγ(n)〉

∣

∣

∣

∣

∣

∣

=
1

qj

j−1
∏

k=0

∣

∣

∣

∣

∣

q−1
∑

n=0

e2πi〈h,γk〉n

∣

∣

∣

∣

∣

≤
j−1
∏

k=0
〈h,γk〉q 6∈Z

q − 4‖〈h, γk〉‖2

q

j−1
∏

k=0
〈h,γk〉6∈Z∧〈h,γk〉q∈Z

0.

Here and later on an empty product is considered to be one.
Let N ∈ N with base q representation N = N0 + N1q + · · ·+ Nmqm with Nm 6= 0. For

0 ≤ j ≤ m set N(j) := Njq
j + · · ·+ Nmqm. Define g(n) := e2πi〈h,sγ(n)〉. Then

N−1
∑

n=0

e2πi〈h,sγ(n)〉 =

N(m)−1
∑

n=0

g(n) +
m−1
∑

j=0

N(j)−1
∑

n=N(j+1)

g(n).

Now
N(m)−1
∑

n=0

g(n) =
Nm−1
∑

l=0

(l+1)qm−1
∑

n=lqm

e2πi〈h,n0γ0+···+nmγm〉 =
Nm−1
∑

l=0

g(lqm)

qm−1
∑

n=0

g(n),

and
N(j)−1
∑

n=N(j+1)

g(n) = g(N(j + 1))

Njqj−1
∑

n=0

g(n) = g(N(j + 1))

Nj−1
∑

l=0

g(lqj)

qj−1
∑

n=0

g(n).

Therefore
∣

∣

∣

∣

∣

N−1
∑

n=0

e2πi〈h,sγ(n)〉

∣

∣

∣

∣

∣

≤
m
∑

j=0

∣

∣

∣

∣

∣

∣

Nj−1
∑

l=0

g(lqj)

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

qj−1
∑

n=0

g(n)

∣

∣

∣

∣

∣

∣

≤
m
∑

j=0

Njq
j 1

qj

∣

∣

∣

∣

∣

∣

qj−1
∑

n=0

g(n)

∣

∣

∣

∣

∣

∣

≤
r−1
∑

j=0

Njq
j +

m
∑

j=r

Njq
j

j−1
∏

k=0
〈h,γk〉q 6∈Z

(

q − 4‖〈h, γk〉‖2

q

) j−1
∏

k=0
〈h,γk〉6∈Z∧〈h,γk〉q∈Z

0.
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for any r ∈ N0.
We consider two cases

1. There exists a k ∈ N0 such that 〈h, γk〉 6∈ Z and 〈h, γk〉q ∈ Z. Let k0 be minimal
with this property (of course k0 is independent of N). Then we have

∣

∣

∣

∣

∣

N−1
∑

n=0

e2πi〈h,sγ(n)〉

∣

∣

∣

∣

∣

≤
k0
∑

j=0

Njq
j

j−1
∏

k=0
〈h,γk〉q 6∈Z

(

q − 4‖〈h, γk〉‖2

q

)

≤ (q−1)

k0
∑

j=0

qj = qk0+1−1.

2. For all k ∈ N0 we have 〈h, γk〉 ∈ Z or 〈h, γk〉q 6∈ Z. Then we have

∣

∣

∣

∣

∣

N−1
∑

n=0

e2πi〈h,sγ(n)〉

∣

∣

∣

∣

∣

≤ qr + N

r−1
∏

k=0
〈h,γk〉q 6∈Z

(

q − 4‖〈h, γk〉‖2

q

)

. (2)

Define

xr := qr/







r−1
∏

k=0
〈h,γk〉q 6∈Z

(

q − 4‖〈h, γk〉‖2

q

)







=







r−1
∏

k=0
〈h,γk〉q∈Z

q







r−1
∏

k=0
〈h,γk〉q 6∈Z

(

q2

q − 4‖〈h, γk〉‖2

)

≥ qr.

Therefore xr → ∞ as r → ∞. Choose r such that xr ≤ N < xr+1. Then we have

qr ≤ N
r−1
∏

k=0
〈h,γk〉q 6∈Z

(

q − 4‖〈h, γk〉‖2

q

)

. (3)

On the other hand we have

r
∏

k=0
〈h,γk〉q 6∈Z

(

q − 4‖〈h, γk〉‖2

q

)

≥
r
∏

k=0

(

q − 4‖〈h, γk〉‖2

q

)

≥
r
∏

k=0

1

q
=

1

qr+1

and hence

N < qr+1/







r
∏

k=0
〈h,γk〉q 6∈Z

(

q − 4‖〈h, γk〉‖2

q

)






≤ q2(r+1).

Thus we have logq

√
N < r + 1 resp. blogq

√
Nc ≤ r and hence

r−1
∏

k=0
〈h,γk〉q 6∈Z

(

q − 4‖〈h, γk〉‖2

q

)

≤
blogq

√
Nc−1

∏

k=0
〈h,γk〉q 6∈Z

(

q − 4‖〈h, γk〉‖2

q

)

. (4)

5



From (2), (3) and (4) we find

∣

∣

∣

∣

∣

N−1
∑

n=0

e2πi〈h,sγ(n)〉

∣

∣

∣

∣

∣

≤ 2N

blogq

√
Nc−1

∏

k=0
〈h,γk〉q 6∈Z

(

q − 4‖〈h, γk〉‖2

q

)

≤ 2Ne

blogq

√
Nc−1

P

k=0
〈h,γk〉q 6∈Z

log

„

q−4‖〈h,γk〉‖2
q

«

≤ 2Ne

− 4
q

blogq

√
Nc−1

P

k=0
〈h,γk〉q 6∈Z

‖〈h,γk〉‖2

In both of the above cases we obtain 1
N

∑N−1
n=0 e2πi〈h,sγ(n)〉 → 0 as N → ∞. Hence the

result follows by Weyl’s criterion.
Assume now that there is a h ∈ Zd \ {0} such that

∞
∑

k=0
〈h,γk〉q 6∈Z

‖〈h, γk〉‖2 < ∞

and for all k ∈ N0 we have 〈h, γk〉 ∈ Z or 〈h, γk〉q 6∈ Z.
Then we have

∞
∑

k=0

‖〈h, γk〉‖2 =
∞
∑

k=0
〈h,γk〉q 6∈Z

‖〈h, γk〉‖2 +
∞
∑

k=0
〈h,γk〉q∈Z

‖〈h, γk〉‖2 < ∞.

For j ∈ N0 we have

∣

∣

∣

∣

∣

∣

1

qj

qj−1
∑

n=0

e2πi〈h,sγ(n)〉

∣

∣

∣

∣

∣

∣

=
1

qj

j−1
∏

k=0

∣

∣

∣

∣

∣

q−1
∑

n=0

e2πi〈h,γk〉n

∣

∣

∣

∣

∣

.

Here we have
q−1
∑

n=0

e2πi〈h,γk〉n 6= 0

for all k ∈ N0. This is clear for the case 〈h, γk〉 ∈ Z. If 〈h, γk〉 6∈ Z, then we have
〈h, γk〉q 6∈ Z and the inequality holds as well.

With Lemma 1 and since ‖nx‖ ≤ n‖x‖ for all n ∈ N0 we obtain

∣

∣

∣

∣

∣

q−1
∑

n=0

e2πi〈h,γk〉n

∣

∣

∣

∣

∣

≥ q

(

1 − 4π2 max
0≤n<q

‖〈h, γk〉n‖2

)

> q
(

1 − 4π2q‖〈h, γk〉‖2
)

.

Let 0 < c < 1 and let l ∈ N be large enough such that

1 − 4π2q
∑

k>l

‖〈h, γk〉‖2 > c > 0.
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For j > l we have

∣

∣

∣

∣

∣

∣

1

qj

qj−1
∑

n=0

e2πi〈h,sγ(n)〉

∣

∣

∣

∣

∣

∣

≥
l
∏

k=0

1

q

∣

∣

∣

∣

∣

q−1
∑

n=0

e2πi〈h,γk〉n

∣

∣

∣

∣

∣

j
∏

k=l+1

(

1 − 4π2q‖〈h, γk〉‖2
)

≥ c′

(

1 − 4π2q
∑

k>l

‖〈h, γk〉‖2

)

> c′ · c > 0.

and by Weyl’s criterion ({sγ(n)})n≥0 is not uniformly distributed modulo one. 2

Corollary 1 The sequence ({sγ(n)})n≥0 is uniformly distributed modulo one for almost

all sequences γ : N0 → [0, 1)d.

Proof. We consider the sequence of random variables X1, X2, . . . uniformly i.i.d. in [0, 1)d.
For h ∈ Zd \ {0}, we have E(‖〈h, Xi〉‖2) = 1/12 and hence it follows from Kolmogorov’s
strong law of large numbers that for n → ∞ we have

‖〈h, X1〉‖2 + · · · + ‖〈h, Xn〉‖2

n
→ 1

12
a.e..

Therefore ∞
∑

k=0

‖〈h, γk〉‖2 = ∞

for almost all sequences γ : N0 → [0, 1)d and hence

∞
∑

k=0

‖〈h, γk〉‖2 = ∞ ∀h ∈ Zd \ {0}

for almost all sequences γ : N0 → [0, 1)d. The result follows from Theorem 1. 2

Finally we state an

Open question: Let q1, . . . , qd ≥ 2 be pairwisely coprime integers. Under which condi-
tions on the weight-sequences γ(k) = (γ

(k)
0 , γ

(k)
1 , . . .) in R, k ∈ {1, . . . , d}, is the sequence

({(sq1,γ(1)(n), . . . , sq1,γ(1)(n))})n≥0 (5)

uniformly distributed modulo one? (Here we wrote sq,γ(·) for the weighted q-ary sum-of-
digits function to stress the dependence on the base q.)

For example if γ
(k)
i = q−i−1

k for all k ∈ {1, . . . , d} and all i ∈ N0, then we obtain the
d-dimensional Halton sequences which is well known to be uniformly distributed modulo
one. If γ

(k)
i = αk ∈ R for all k ∈ {1, . . . , d} and all i ∈ N0, then it was shown by Drmota

and Larcher [3] that the sequence (5) is uniformly distributed modulo one if and only if
α1, . . . , αd ∈ R \ Q. But also the classical (nα)-sequence is contained in this concept.
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Birkhäuser, Basel, pp. 61–76, 2002.

[7] L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences. John Wiley, New
York, 1974.

[8] G. Larcher, On the distribution of sequences connected with digit-representation.
Manuscripta Math. 61 (1988), 33–42.

[9] G. Larcher, R.F. Tichy, Some number-theoretical properties of generalized sum-of-
digits functions. Acta Arith. 52 (1989), 183–196.

[10] M. Mendès France, Nombres normaux, applications aux fonctions pseudoaléatories.
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