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1. The distinguishing number

D(G) of a graph G is the least natural number d such that G has

a labeling with D(G) labels that is not preserved by any nontrivial

automorphism:

D(Pn) = 2 for n > 1

D(P∞) = 1
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D(T2) = 2

D(K3 � K2) = 2

Proposition The automorphisms of a Cartesian product of prime

graphs are induced by automorphisms of the factors and permutations

of isomorphic factors.
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The Cartesian product G2H

V (G2H) = V (G) × V (H),

E(G2H) that is the set of all pairs [(u, v), (x, y)]

where either u = x and [v, y] ∈ E(H) or [u, x] ∈ E(G) and v = y
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Bogstad and Cowen, 2004, determined D(Qk):

D(Q2) = D(Q3) = 3; the figure shows D(Q3) ≤ 3

D(Qk) = 2 for k ≥ 4
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We needed k + 2 black vertices for the distinguishing coloring. One

can do with k for k ≥ 7:

Thus, one needs fewer than k black vertices to distinguish Qk. How

many suffice?

Let B be a smallest set of distinguishing black vertices. Any auto-

morphism that stabilizes it is the identity. Clearly |B| ≤ k.

What is we look for a smallest set S such that every automorphism

α that fixes every element in S is the identity. It is plausible that S

can be as small as log k for Qk.
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But, since S is so small, we dG(u, v) 6= dG(x, y) unless {u, v} = {x, y}.

But then every automorphism that stabilizes S also fixes every vertex,

and thus is the identity.

Theorem (Debra Boutin) Let B be a smallest set of black vertices

that distinguishes Qk. If k ≥ 5, then

dlog2 ke + 1 ≤ |B| ≤ 2dlog2 ke − 1

.

Suppose αB = βB.

Then β−1αB = B. Hence β−1α = id and α = β.
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This means, if we wish to check whether α and β are the same, we

have to check whether αB = βB, where B has size

< 2 log2 k.

Boutin’s proof uses a tedious construction. She also can probably

prove that

dlog3(2k + 1)e + 1 ≤ |B| ≤ 2dlog3(2k + 1)e − 1

for Kk
3.

Can one prove a general theorem for Kk
n by probabilistic methods?
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2. Distinguishing the infinite hypercube
- mainly with Werner Klöckl -

The vertices of the infinite hypercube Qℵ0
are the infinite 01-sequences;

any two of them being adjacent if they differ in exactly one place.

Qℵ0
is a component of the Cartesian product of ℵ0 copies of K2, the

so-called weak Cartesian product.

Theorem D(Qℵ0
) = 2.

Proof. Let P be a one-sided infinite path that contains exactly one

edge of every set of parallel edges of Qℵ0
. Color its vertices black and

all others white. This is a distinguishing coloring. �
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Corollary Let G be the weak Cartesian product of ℵ0 complete

graphs K2 or K3. Then D(G) = 2.

Proof. A triangle is fixed if two of its vertices are fixed.

Choose the edges of P such that it contains exactly one edge of every

set of parallel edges for every factor K2 and one edge of every set of

parallel triangles (K3-fibers) for every factor K3. �

This construction also works for the Cartesian product of finitely many

K2-s and K3-s if there is at least factor is a K2 and one a K3.

Then P is a finite path.

We choose its first edge from a triangle and the last such that it is

not in a triangle.
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Theorem Let G be the weak Cartesian product of countably many
finite or countable prime (e.g. complete) graphs. Then D(G) = 2.

Remark: To any two natural numbers k, n one can always find k finite
complete graphs Ki, 1 ≤ i ≤ k such that

D(

2∏

1≤i≤k

Ki) > n.

Up to now all graphs were countable. Now a result for an uncountable
graph.

Theorem For any infinite cardinal n the distinguishing number of
Qn is 2.

Proof by transfinite induction.
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3. Distinguishing products of two complete graphs
- with Janja Jerebic and Sandi Klavžar -

r d
k

k

 - r

Nk
d - set of vectors of length k with integer entries between 1 and d

(Here k = 3 and d = 2; D(K4 � K24−4+1) = 2.)
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Let π ∈ Sk and v = (v1, . . . , vk) ∈ Nk
d. Set πv = (vπ−1(1), . . . , vπ−1(k))

We say X = {v1, . . . ,vr} is column-invariant if ∃π ∈ Sk such that

{v1, . . . ,vr} = {πv
1, . . . , πv

r}

For example, the following vectors are column-invariant:
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Lemma (Switching Lemma) Let k, d ≥ 2 and 1 ≤ r < dk. Then

every set of r vectors from N
k
d is column invariant

if and only if

every set of dk − r vectors from N
k
d is column invariant.

Theorem (Basic) Let 2 ≤ d, k < n and (d − 1)k < n ≤ dk − k + 1.

Then

D(Kk � Kn) = d
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r d
k

k

 - r

Theorem (Bounding) Let k, d ≥ 2 and 1 ≤ r ≤ k − 2. Then the

following implications hold

D(Kr � Kk) ≥ d + 1 ⇒ D(Kk � Kdk−r) = d + 1

D(Kr � Kk) ≤ d ⇒ D(Kk � Kdk−r) = d.

Thus d ≤ D(Kk � Kn) ≤ d + 1 for d = dn1/ke.
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4. A recursion for the distinguishing number of Kk � Kn

- mainly with Janja Jerebic and Sandi Klavžar -

Distinguishing(k, n)

INPUT: Integers k, n with 1 ≤ k ≤ n

OUTPUT: D(Kk � Kn)

1. d = bn1/kc + 1

2. if (d − 1)k ≤ n ≤ dk − k + 1

3. then D(Kk � Kn) = d

4. else determine D(Kk � Kn) from D(Kdk−n � Kk)

by an application of the Bounding Theorem
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Analysis of the recursion

Step 3 returns the distinguishing number

Step 4, is executed only if dk − k + 1 < n. Since d ≥ 2

2k − k + 1 < n,

2k < 2n,

k − 1 < log2 n.

Hence dk − n < k − 1 < log2 n.

We must thus consider Kk1
� Kk, where k1 = dk − n < log2 n.

If Distinguishing(k1, k) also enters the recursive step, then with a

call of Distinguishing(k2, k1), where k2 < log2 k.

Since ki ≥ 1 the number of recursive steps is bounded

by the iterated logarithm log∗
2 n.
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log∗
2 2 = 1, log∗

2 4 = 2, log∗
2 16 = 3, log∗

2 65536 = 4, log∗
2(2

65536) = 5.

Theorem (Finite Kk � Kn) The distinguishing number D(Kk � Kn)

of the product of two complete graphs Kk and Kn, where 1 ≤ k ≤ n,

can be determined in O(log∗ n) time.

Here any finite number d is the distinguishing number of some product

of complete graphs. In the infinite case we have:

Theorem (Infinite K
n
� K

m
) For infinite cardinals n we have:

D(K
n
� K2n) = 2.

If 2n < m, then D(K
n
� K

m
) > n.
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If the generalized continuum hypothesis does not hold, then there are

cardinals

n and m

such that

n < m < 2n.

We do not know whether D(K
n
� K

m
) = 2 in this case.



We only prove D(Kℵ0
� Kℵ0

) = 2.

To see this one simply labels as in the figure.
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To show D(K
n
� K

n
) = 2 for arbitrary n one well-orders the vertices

of the factors and proceeds by transfinite induction.

For D(K
n
� K

m
) the Switching Lemma is needed.
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5. Infinite trees and tree -like graphs
- with Sandi Klavžar and Vladimir Trofimov -

Theorem The distinguishing number of the homogeneous tree T
n

of finite or infinite degree n is 2.

Proof for n = 4
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Proof for n = ℵ0
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Theorem Let Γ be a connected graph with d(v) ≤ 2ℵ0 ∀v ∈ V (Γ).

Suppose there is a vertex x in Γ with the following property:

∀y ∈ V (Γ) ∃z ∈ V (Γ) such that {y} = Γ(z) ∩ Bx(d(x, z) − 1).

Then D(Γ) ≤ 2.

x y z
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6. General countable graphs
- with Sandi Klavžar and Vladimir Trofimov -

Theorem Let G be a connected, infinite graph with largest degree

∆(G) < ∞. Then D(G) ≤ ∆(G).

In the finite case the bound is ∆(G) + 1.

Theorem The distinguishing number of the random graph is 2.

Property of the random graph R: For any finite disjoint subsets X

and Y of V (R), there are infinitely many vertices z of R such that

zx ∈ E(R) for all x ∈ X and

zy 6∈ E(R) for all y ∈ Y .
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7. Appendix - Exact formulas and examples for finite graphs
- with Janja Jerebic and Sandi Klavžar -

Theorem (Basis for explicit results) Let k, d ≥ 2, 1 ≤ r ≤ k − 2.

Then D(Kk � Kdk−r) = d + 1 if and only if every set consisting of r
vectors from Nk

d is column-invariant.

Proof. If every set of r vectors from Nk
d is column-invariant,

then D(Kk � Kr) ≥ d + 1,

and thus D(Kk � Kdk−r) = d + 1

by (i) of the Bounding Theorem.

If there is a set of r vectors from Nk
d that is not column-invariant,

then D(Kk � Kr) ≤ d,
and thus D(Kk � Kdk−r) 6= d + 1

by (ii) of the Bounding Theorem. �
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Proposition 4.2 Let d ≥ 2, 3 ≤ k ≤ d. Then

D(Kk � Kdk−1) = d.

Proposition 4.3 Let k, d ≥ 2 and 0 ≤ r < logd k. Then

D(Kk � Kdk−r) = d + 1.

Proposition 4.4 Let d, r ≥ 2 and r + 2 ≤ k ≤ dr − r + 1. Then

D(Kk � Kdk−r) = d.

Proposition 4.5 Let d, r ≥ 2 and dr − logd r < k ≤ dr. Then

D(Kk � Kdk−r) = d + 1.
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The rare case when the recursion applies (white field) for 2k < n ≤ 3k

4.2

4
.4

4.3

4.5

Theorem

(Theorem 3.3 is the Basic Theorem)
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Summary for D(Kk � Kn)

D(Kk � Kn) satisfies the inequality

d ≤ D(Kk � Kn) ≤ d + 1,

where d = dn1/ke and 1 ≤ k ≤ n.

It can be determined explicitly unless

dr − r + 2 ≤ k ≤ dr − logd r.

Then it can be computed by at most log∗
2 n calls of a recursion.
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Can one replace the recursion by an explicit formula?
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