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Flows on graphs

Integral flows on graphs

A nowhere-zero (NZ) k-flow [Tutte 1949]:
@ Orientation
@ Function ¢ : E(G) —» N
o 0< p(e) <k
hd Zee{v}+ p(e) = Zee{v}— o(e)
The flow number of a graph ¢z(G):
@ The smallest k such that G has a NZ k-flow.
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Flows on graphs

Example of a nowhere-zero 3-flow
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Flows on graphs

Possible values of ¢

Only bridgeless graphs may have NZ flows.

There are graphs with flow numbers 2, 3, 4 and 5.

Conjecture (Tutte's 5-flow conjecture)

Every bridgeless graph has a NZ 5-flow.
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Flows on graphs

Possible values of ¢

Theorem (Seymour)

Every bridgeless graph has a NZ 6-flow.

Robert Lukotka, Edita Macajova FMFI UK

Real flow numbers of Blanusa snarks



Real flows on graphs

Real flows on graphs

A real NZ r-flow:
@ Orientation
@ Function ¢ : E(G) - R
e 1<p(e)<r—1
® Decquy P(e) = ecquy- le)
Real flow number
@ ®dp(G) =inf{r | G has a NZ r-flow}
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Real flows on graphs

Real flows on graphs

Why 1 < p(e) <r—17

o 1< ¢(e)
The flow p(e)/a is also a NZ-flow.
@ ple)<r—1
The maximal possible flow value is the same as for the integer
case.
1993 — Godyn, Tarsi a Zhang — dual concept to the fractional
colorings.

Robert Lukotka, Edita Macajova FMFI UK

Real flow numbers of Blanusa snarks



Real flows on graphs

Basic properties of real NZ flows

@ The infimum from the definition is a minimum.
@ The real flow number is rational.

o If ®Rr(G) = p/q then it is sufficient to use values with the
denominator q. to create a real NZ p/g-flow.
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Real flows on graphs

The real flow number and the flow number

Theorem (Goddyn, Tarsi, Zhang)

®z(6) = [®r(G)].

Theorem (Goddyn, Tarsi, Zhang)

¥5(G) = @g(G).
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Real flows on graphs

Snarks

Snark is a non-trivial cubic graph without 3-edge-colouring.

3-edge-colouring = nowhere-zero 4-flow.
It may be useful to study circular edge colourings and real
nowhere-zero flows simultaneously.
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Real flows on graphs

Snarks

Objects of our attention:
@ Isaacs snarks
@ Blanusa snarks
@ Goldberg snarks
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Isaacs snarks

Isaacs snarks
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Isaacs snarks

Isaacs snarks

Upper bound - E. Steffen.

Theorem

The real flow number of the Isaacs snark by 1 is
4<Pr(hk+1) < 4+1/k.

Lower bound - joint work with M. Skoviera.
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Isaacs snarks

Real flows and orientations of a graph

Theorem (Goddyn, Tarsi, Zhang)

Let G be a bridgeless graph. Then G has a real nowhere-zero
(p/q + 1)-flow if and only if there exists an orientation O of G such
that for each set S of vertices of G we have

q/p <|ST|/IS"| < p/q.
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Isaacs snarks

The bound

@ There must exist an orientation and a subset of vertices such

that
STl _p
1571 g
@ Moreover, let us assume that both G(S) and G(V(G) — S)

are connected.

@ Therefore, the following holds for the boundary of S:

0S| =1STI+ISTI=p+a.

Robert Lukotka, Edita Macajova FMFI UK

Real flow numbers of Blanusa snarks



Isaacs snarks

The bound

Theorem

Let G be a graph such that ®r(G) = p/q + 1 where p and q are
two relatively prime positive integers. Then there exists a subset

S C V(G) such that both subgraphs of G induced by S and
V(G) — S are connected and

6(S)=p+gq.
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Isaacs snarks

The bound for snarks

Since snarks are 3-regular, the following holds

@ A snark with real flow number at most 4 + 1/k has at least
8k — 2 vertices.

@ A snark with at most 8k 4 4 vertices has its real flow number
at least 4 +1/k.
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Isaacs snarks

Isaacs snarks

Since lIsaacs snark I has 8k + 4 vertices:

Theorem

The real flow number of the Isaacs snark b1 is
Pr(hiy1) =4+ 1/k.
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Isaacs snarks

Circular chromatic index

Theorem (Ghebleh, Kral, Norine, Thomas)
o xe(ls) = 7/2
o xe(ls) =17/5
o XC(I2k+1) = 10/3 for k > 3.
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Blanusa snarks

Blanusa snarks

Block B

Block 1 Block X
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Blanusa snarks

Balanced valuations - simplified

We take:

— a fixed nowhere-zero (3 + ¢)-flow ¢, £ < 1/2,
— a positive orientation O of G.

@ Two incoming edges — white vertex.
@ Two outgoing edges — black vertex.

Number of black vertices = number of white vertices.
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Blanusa snarks

Forbidden substructures
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Blanusa snarks

Possible colourings of the basic block
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Blanusa snarks

The colouring

The colouring C; can not combine with the others:

O— @&
-0--0 '—\
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Blanusa snarks

The colouring (; is unusable

The middle blocks have to be coloured as follows:
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Blanusa snarks

The colouring (; is unusable
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Blanusa snarks

The colouring G, is unusable
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Blanusa snarks

Tight edges

We create a modular flow ¢’ in R/(4 + €)Z from the flow . We
take the orientation so that all values are in (1,2 4 £/2).

Tight edge — an edge with flow value (1,1 +¢) in ¢'.

Semi-tight edge — an edge with flow value (1,14 2¢) in ¢'.
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Blanusa snarks

Structure of tight edges in block B.
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Blanusa snarks

Blanusa snarks of type |

The total flow difference on neighbouring edges of Block | is at
most 2e.

Block 1

11
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Blanusa snarks

Blanusa snarks of type Il

Possible colourings of block X.

Robert Lukotka, Edita Macajova FMFI UK

Real flow numbers of Blanusa snarks



Blanusa snarks

Colouring 1

Two tight edges have incompatible orientation.
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Blanusa snarks

Colouring 2

One of the edges on right side has to be tight — the bottom right
one.

The value of the upper right edge is at most 1 + 2¢ - impossible.
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Blanusa snarks

Colouring 3

The value of the bottom right edge is at most 1 4 2¢ - impossible.
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Blanusa snarks

Real flow number of the Blanusa snarks

It is easy to construct 4.5-flows on the Blanu3a snarks that are
different from the Petersen graph.

o ¢p(B]) ="5.
° Pr(B))=4+1/2,j>2.
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Blanusa snarks

Circular chromatic index

Theorem (Mazak, Ghebleh)

® Xc(BY) =3+2/n
o xc(B2)=3+1/[1+3n/2].
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Goldberg snarks

Goldberg snarks
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Goldberg snarks

Real flow number

Goldberg snark Goxi1 has its real flow number

4+1/(2k +1) < Or(Gopy1) <4+ 1/k.
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Goldberg snarks

Circular chromatic index

Theorem (Ghebleh)
o XC(G2k+1) =3+1/4 fork > 1.
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Goldberg snarks

Thank you for your attention.
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