Real flow numbers of Blanuša snarks

Robert Lukoťka, Edita Máčajová

EMFLUK

A nowhere-zero (NZ) k-flow [Tutte 1949]:

- Orientation
- Function $\varphi : E(G) \to \mathbb{N}$
 - $0 < \varphi(e) < k$
 - $\sum_{e \in \{v\}^+} \varphi(e) = \sum_{e \in \{v\}^-} \varphi(e)$

The flow number of a graph $\Phi_{\mathbb{Z}}(G)$:

• The smallest k such that G has a NZ k-flow.

Flows on graphs

Only bridgeless graphs may have NZ flows.

There are graphs with flow numbers 2, 3, 4 and 5.

Conjecture (Tutte's 5-flow conjecture)

Every bridgeless graph has a NZ 5-flow.

Flows on graphs

Theorem (Seymour)

Every bridgeless graph has a NZ 6-flow.

A real N7 r-flow:

- Orientation
- Function $\varphi : E(G) \to \mathbb{R}$
 - $1 < \varphi(e) < r 1$
 - $\sum_{e \in \{v\}^+} \varphi(e) = \sum_{e \in \{v\}^-} \varphi(e)$

Real flow number

• $\Phi_{\mathbb{R}}(G) = \inf\{r \mid G \text{ has a NZ } r\text{-flow}\}$

Why $1 \le \varphi(e) \le r - 1$?

- $1 \le \varphi(e)$ The flow $\varphi(e)/a$ is also a NZ-flow.
- $\varphi(e) \le r 1$ The maximal possible flow value is the same as for the integer case.

1993 - Godyn, Tarsi a Zhang - dual concept to the fractional colorings.

- The infimum from the definition is a minimum.
- The real flow number is rational.
- If $\Phi_{\mathbb{R}}(G) = p/q$ then it is sufficient to use values with the denominator q. to create a real NZ p/q-flow.

Theorem (Goddyn, Tarsi, Zhang)

$$\Phi_{\mathbb{Z}}(G) = \lceil \Phi_{\mathbb{R}}(G) \rceil.$$

Theorem (Goddyn, Tarsi, Zhang)

$$\Phi_{\mathbb{R}}(G) = \Phi_{\mathbb{O}}(G).$$

Snark is a non-trivial cubic graph without 3-edge-colouring.

3-edge-colouring = nowhere-zero 4-flow. It may be useful to study circular edge colourings and real nowhere-zero flows simultaneously.

Objects of our attention:

- Isaacs snarks
- Blanuša snarks
- Goldberg snarks

Isaacs snarks

Upper bound - E. Steffen.

Theorem

The real flow number of the Isaacs snark l_{2k+1} is $4 < \Phi_{\mathbb{R}}(I_{2k+1}) \le 4 + 1/k$.

Lower bound - joint work with M. Škoviera.

Theorem (Goddyn, Tarsi, Zhang)

Let G be a bridgeless graph. Then G has a real nowhere-zero (p/q+1)-flow if and only if there exists an orientation O of G such that for each set S of vertices of G we have

Isaacs snarks

$$q/p \le |S^+|/|S^-| \le p/q$$
.

Flows on graphs

• There must exist an orientation and a subset of vertices such that

$$\frac{|S^+|}{|S^-|} = \frac{p}{q}$$

- Moreover, let us assume that both G(S) and G(V(G) S)are connected.
- Therefore, the following holds for the boundary of S:

$$|\delta_G S| = |S^+| + |S^-| \ge p + q.$$

Theorem

Let G be a graph such that $\Phi_{\mathbb{R}}(G) = p/q + 1$ where p and q are two relatively prime positive integers. Then there exists a subset $S \subseteq V(G)$ such that both subgraphs of G induced by S and V(G) - S are connected and

$$\delta_G(S) \geq p + q$$
.

Since snarks are 3-regular, the following holds

• A snark with real flow number at most 4 + 1/k has at least 8k-2 vertices.

Isaacs snarks

• A snark with at most 8k + 4 vertices has its real flow number at least 4+1/k.

Since Isaacs snark I_k has 8k + 4 vertices:

Theorem

The real flow number of the Isaacs snark l_{2k+1} is

$$\Phi_{\mathbb{R}}(I_{2k+1}) = 4 + 1/k.$$

Theorem (Ghebleh, Kráľ, Norine, Thomas)

- $\chi_c(I_3) = 7/2$
- $\chi_c(l_5) = 17/5$
- $\chi_c(l_{2k+1}) = 10/3$ for $k \ge 3$.

Isaacs snarks

We take

- a fixed nowhere-zero $(3 + \varepsilon)$ -flow φ , $\varepsilon < 1/2$,
- a positive orientation O of G.
 - Two incoming edges white vertex.
 - Two outgoing edges black vertex.

Number of black vertices = number of white vertices.

The colouring C_1 can not combine with the others:

The colouring C_1 is unusable

The middle blocks have to be coloured as follows:

Blanuša snarks

Flows on graphs

We create a modular flow φ' in $\mathbb{R}/(4+\varepsilon)\mathbb{Z}$ from the flow φ . We take the orientation so that all values are in $\langle 1, 2 + \varepsilon/2 \rangle$. Tight edge – an edge with flow value $\langle 1, 1 + \varepsilon \rangle$ in φ' . Semi-tight edge – an edge with flow value $\langle 1, 1+2\varepsilon \rangle$ in φ' .

Isaacs snarks

The total flow difference on neighbouring edges of Block I is at most 2ε .

Possible colourings of block X.

Two tight edges have incompatible orientation.

The value of the upper right edge is at most $1+2\varepsilon$ - impossible.

Goldberg snarks

The value of the bottom right edge is at most $1+2\varepsilon$ - impossible.

It is easy to construct 4.5-flows on the Blanuša snarks that are different from the Petersen graph.

- $\Phi_{\mathbb{R}}(B_1^i) = 5.$
- $\Phi_{\mathbb{R}}(B_i^i) = 4 + 1/2, j \geq 2.$

Theorem (Mazák, Ghebleh)

•
$$\chi_c(B_n^1) = 3 + 2/n$$

$$\chi_c(B_n^2) = 3 + 1/|1 + 3n/2|.$$

Goldberg snarks

Real flow number

Goldberg snark G_{2k+1} has its real flow number

$$4+1/(2k+1) \leq \Phi_{\mathbb{R}}(G_{2k+1}) \leq 4+1/k$$
.

Theorem (Ghebleh)

- $\chi_c(G_3) = 3 + 1/3$
- $\chi_c(G_{2k+1}) = 3 + 1/4$ for k > 1.

Goldberg snarks