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Circular colourings
Properties of circular colourings

Definition
A circular r -edge-colouring is a mapping c : E(G)→ [0, r) such
that for any two adjacent edges e and f we have

1 ≤ |c(e)− c(f )| ≤ r − 1.

Definition
The circular chromatic index is

χ′
c(G) = inf {r | G has circular r -edge-colouring}.
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Properties of circular colourings

Why circular?

0
c(e)

c(e) + 1

c(f)

c(f) + 1
Circular colouring: colour
corresponds to a unit-length
arc on a circle with length r .

Definition (Vince)

A (p,q)-edge-colouring is a mapping
c : E(G)→ {0,1, . . .p − 1} such that for any two adjacent
edges e and f we have

q ≤ |c(e)− c(f )| ≤ p − q.
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Properties of circular edge-colourings

The infimum is always attained and is rational.
Sufficient to consider p ≤ |E(G)| and q ≤ |V (G)|/2.
χ′(G) = dχ′

c(G)e
NP-complete for cubic graphs.
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Snarks and their properties

Definition
Snarks – bridgeless cubic graphs which are not
3-edge-colourable.

Vizing: 3 or 4 colours
χ′

c ∈ (3,11/3] for a snark

χ′
c > 7/2 for the Petersen graph only?
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Known Values

Flower snarks
χ′

c(F3) = 3.5
χ′

c(F5) = 3.4
χ′

c(F2k+1) = 3.3 for k ≥ 3

Goldberg snarks
χ′

c(G3) = 3.3

χ′
c(G2k+1) = 3.25 for k ≥ 2
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Girth Conjecture (Jaeger and Swart)
There are no snarks with girth g > 6.

Theorem (Kochol 1996)
There exist snarks with arbitrarily high girth.

Theorem (Kaiser, Král’, Škrekovski 2003)
For every ε > 0 there exist g such that every snark G with girth
at least g has χ′

c(G) ≤ 3 + ε.
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Classes with index converging to 3 can be constructed by
inserting diamonds into edges of any snark.

0 ε

2 + ε 1 + ε

1 + ε 2 + ε

ε

No equivalent of Parity Lemma works.
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Lower bound for a diamond
−ε ε

1
1 + ε2

2 + 2ε
Technique of circular intervals.

0 [−ε, ε]

[2, 2 + ε] [1− ε, 1 + ε]

[1, 1 + ε] [2, 2 + 2ε]

[−ε, ε]
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Building blocks of Blanuša snarks

d c

a bB

Edges a, c receive the same colour
in a 3-edge-colouring.

B B B

Petersen graph Blanuša snark
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Generalized type 1 Blanuša snarks

B B B

Graph B1
m with m copies of block B.

χ′
c(B

1
m) = 3 +

2
3m
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Upper bound

(9m + 2, 3m)-edge-colouring of B1
m

1 9k ≡ −2

0 9k − 1 ≡ −3

6k + 1 3k − 1

3k 6k

3k + 1

6k + 1

6k − 1

3k − 19k + 1

9k + 1
3k + 1

1− 3k ≡ 6k + 3

−3k ≡ 6k + 2 v

u
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Lower bound

δ γ

α βB

|α− γ| ≤ 2ε
|α− γ|+ |β − δ| ≤ 3ε

For m blocks:
2 ≤ total change of colour ≤ 3mε.

χ′
c(B

1
m) = 3 + ε ≥ 3 +

2
3m
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Indices of generalized Blanuša snarks are
{

3 +
1
n

; n ≥ 2
}

.

Conjecture

Circular chromatic index of a snark belongs to
{

3 +
2
k

; k ≥ 3
}

.
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Conjecture (Zhu 2006)
There is no infinite increasing sequence of indices of snarks.

Theorem (Lukot’ka, M.)

For any rational number r ∈ [3,3 + 1/3] there exist a snark with
circular chromatic index r .
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Lower bound for snarks of given order

Theorem (Mačaj, M.)
Let G be a snark on 2k vertices with girth at least 5. Then

χ′
c(G) ≥ 3 +

2.5
k
.

For the generalized type 1 Blanuša snark of order 2k we have

χ′
c = 3 +

2.6
k
.
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Thank you for your attention.
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