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The function evaluation problem

f=(xandy)or(x and z)

@ X,y,z: binary variables

@ for some inputs it is possible to evaluate f without reading
all variables
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The function evaluation problem

f=(xandy)or(x and z)

@ X,y,z: binary variables

@ for some inputs it is possible to evaluate f without reading
all variables

Example:
° (x,y,z) =(0,1,1)

It is enough to know the value of x
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The function evaluation problem

Input:

e a function f over the variables x4, ..., X
e each variable has a positive cost of reading its value

Goal:

@ Devise an algorithm for evaluating f which incurs as little
cost as possible reading its variables
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Applications

Applications of the function evaluation problem:

@ Reliability testing / diagnosis
Telecommunications: testing connectivity of networks
Manufacturing: testing machines before shipping

@ Databases
Query optimization

@ Avrtificial Intelligence
Finding optimal derivation strategies in knowledge-based systems

@ Decision-making strategies (AND-OR trees)

(] Computer-aided game pIaying for two-player zero-sum games with
perfect information, e.g. chess (game trees)
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Algorithms for evaluating  f

e Dynamically select the next variable based on the values of
the variables read so far

e Stop when the value of f is determined

f=(z and y) or (z and 2)
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Evaluation measure

Evasive Functions
e For any possible algorithm, all the variables must be read
in the worst case.
e f=(xandy)or(x and z)

e Some important functions are evasive (e.g. game trees,
AND/OR trees and threshold trees).
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Evaluation measure

Evasive Functions
e For any possible algorithm, all the variables must be read
in the worst case.
e f=(xandy)or(x and z)

e Some important functions are evasive (e.g. game trees,
AND/OR trees and threshold trees).

@ Worst case analysis cannot distinguish among the
performance of different algorithms.

@ Instead, we use competitive analysis (Charikar et
al. 2002)
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Cost of evaluation

f=(xandy)or(x and z)
cost(x) = 3, cost(y) =4, cost(z) =5

Asignment (x,y,z) | Value of f | Cheapest Proof | Cost
(0,0,0) 0 {x} 3
(1,1,0) 1 {x,y} 3+4=7
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The competitive ratio

(x,y,2) f(x,y,z) | Costof Algorithm | Ratio
Cheapest | Cost
Proof

(0,000 | 0 3 9 3
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The competitive ratio

(x,y,2) f(x,y,z) | Costof Algorithm | Ratio
Cheapest | Cost
Proof

(1,10 |1 7 7 1
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The competitive ratio

(x,y,2) f(x,y,z) | Costof Algorithm | Ratio
Cheapest | Cost
Proof
(0,000 |0 3 9 3
(1,0,0) | 0 9 9 1
(0,1,0) | 0 3 7 713
(0,0,1) | 0 3 12 4
(1,1,0) | 1 7 7 1
(1,01) | 1 8 12 3/2
(0,1,1) | 0 3 7 713
(1,1,1) | 1 7 7 1
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The competitive ratio

(x,y,2) f(x,y,z) | Costof Algorithm | Ratio
Cheapest | Cost
Proof
(0,000 |0 3 9 3
(1,0,0) | 0 9 9 1
(0,1,0) | 0 3 7 713
(0,0,1) | O 3 12 4
(1,1,0) | 1 7 7 1
(1,01) | 1 8 12 3/2
(0,1,1) | 0 3 7 713
(1,1,1) | 1 7 7 1
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Measures of algorithm’s performance

Competitive ratio of algorithm A for (f, c):

cost of A to evaluate f on o
max
all assignments o COSt of cheapest proof of f on o

Cicalese—Milani ¢ Evaluating game trees with priced variables



Measures of algorithm’s performance

Competitive ratio of algorithm A for (f, c):

cost of A to evaluate f on o
max
all assignments o COSt of cheapest proof of f on o

Extremal competitive ratio of A for f:

cost of A to evaluate f on (o, c)
max

all assignments o, COSt of cheapest proof of f on (o, ¢)
all cost vectors ¢
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Measure of function’s complexity

Extremal competitive ratio of f:

min extremal competitive ratio of A for f
all deterministic algorithms A
that evaluate f
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The function evaluation problem

Given:
a function f over the variables x1,Xo, ..., Xn

Combinatorial Goal:
e Determine the extremal competitive ratio of f ’
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The function evaluation problem

Given:
a function f over the variables x1,Xo, ..., Xn

Combinatorial Goal:
e Determine the extremal competitive ratio of f

Algorithmic Goal:
e Devise an algorithm for evaluating f that:

1. achieves the optimal (or close to optimal) extremal
competitive ratio
2. is efficient (runs in time polynomial in the size of f)

The algorithm knows the reading costs.
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Related work - other models/measures

@ Non-uniform costs & competitive analysis
Charikar et al. [STOC 2000, JCSS 2002]
@ Unknown costs
Cicalese and Laber [SODA 2006]
@ Restricted costs (selection and sorting)
Gupta and Kumar [FOCS 2001], Kannan and Khanna [SODA 2003]
@ Randomized algorithms
Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004]
@ Stochastic models
Random input, uniform probabilities

Tarsi [JACM 1983], Boros and Unliiyurt [AMAI 1999]
Charikar et al. [STOC 2000, JCSS 2002], Greiner et al. [Al 2005]

Random input, arbitrary probabilities
Kaplan et al. [STOC 2005]

Random costs
Angelov et al. [LATIN 2008]
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How to evaluate general functions?

Good algorithms are expected to test. . .

e cheap variables - well defined
e important variables ???

Cicalese and Laber created
a linear program that captures the impact of the variables
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The minimal proofs

f - afunction over V. = {xq,...,Xn}

R - range of f

Definition

Letr € R. A minimal proof for f(x) =r is a minimal set of
variables P C V such that there is an assignment ¢ of values to
the variables in P such that f, is constantly equal to r.
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The minimal proofs

f - afunction over V. = {xq,...,Xn}

R - range of f

Definition

Letr € R. A minimal proof for f(x) =r is a minimal set of
variables P C V such that there is an assignment ¢ of values to
the variables in P such that f, is constantly equal to r.

Example: f(x1,X2,X3) = (X1 and Xz) or (x; and x3), R = {0,1}
minimal proofs for f(x) = 1: {{xq, X2}, {X1,X3}}

minimal proofs for f(x) = 0: {{x1}, {X2,%3}}
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The Linear Program by Cicalese-Laber

Minimize > ., S(X)

s.t.

Y xepS(X) > 1 forevery minimal proof P of f
s(x) > 0 foreveryx € V

LP(f)

Intuitively, s(x) measures the impact of variable x.
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The Linear Program by Cicalese-Laber

Minimize > ., S(X)

s.t.

Y xepS(X) > 1 forevery minimal proof P of f
s(x) > 0 foreveryx € V

LP(f)

Intuitively, s(x) measures the impact of variable x.

The feasible solutions to the LP(f) are precisely the fractional
hitting sets of the set of minimal proofs of f.
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LP(f): example

f(x1,%2,X3) = (X3 and xz) or (x; and x3)
minimal proofs for f = 1: {{x1,X2}, {X1,X3}}

minimal proofs for f = 0: {{x1}, {X2,X3}}

Minimize s; + S, + S3
s.t.
S1+s,>1
Lp(f) S1+s3>1
s1>1
S2+s3>1
S1,S2,53 >0

Optimal solution: s = (1,1/2,1/2)
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The Linear Programming Approach

LPA(f: function)
While the value of f is unknown
Select a feasible solution s() of LP(f)
Read the variable u which minimizes c(x)/s(x)
(cost/impact)
c(x) = c(x) = s(x)c(u)/s(u)

f < restriction of f after reading u

End While
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The LPA bounds the extremal competitive ratio

The selection of solution s determines both the computational
efficiency and the performance (extremal competitive ratio) of
the algorithm.

Key Lemma (Cicalese-Laber 2006)
Let K be a positive number. If

ObjectiveFunctionValue(s) < K,

for every selected solution s

then

ExtremalCompetitiveRatio(f) < K.
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The fractional cover number

The fractional cover number of a function f is defined as

f/ restriction of f

A(f)=  max {opt-value(LP(f’))}

Key Lemma (Cicalese-Laber 2006)
For every function f,

ExtremalCompetitiveRatio(f) < A(f).
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Cross-intersecting families

e cross-intersecting: Ac A,BcB=ANB#(
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Minimal proofs and cross-intersecting families

f:S1x--- xSy — S,afunctionoverV = {x1,...,%n}
R - range of f

Forr € R, let P(r) denote the set of minimal proofs for
f(x)=r.

Then:

@ each P(r) is a non-empty Sperner family

@ for every r # r’, the families P(r) and P(r’) are
cross-intersecting
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The Linear Program by Cicalese-Laber

Minimize > ., S(X)

s.t.
LP(f) YepS(X) > 1 foreveryP € P
s(x) > 0 foreveryx €V

P = UrERP(r)
union of pairwise cross-intersecting Sperner families

For every functionf : S; x --- x S, — S, the LP(f) seeks a
minimal fractional hitting set of a union of pairwise
cross-intersecting Sperner families.
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Cross-intersecting lemma

Cross-Intersecting Lemma (Cicalese-Laber 2008)

Let A and B be two non-empty cross-intersecting families of
subsets of V.
Then, there is a fractional hitting set s of .4 U B such that

Islly = > s(x) < max{|P|: P € AUB}.

xev

e geometric proof

e generalizes to any number of pairwise cross-intersecting
families
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Applications of the cross-intersecting lemma

©Q f:S; x--- xS, — S, nonconstant:
ExtremalCompetitiveRatio(f) < PROOF (f) (cicalese-Laver 2008]

(PROOF (f) = size of the largest minimal proof of f)
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Applications of the cross-intersecting lemma

©Q f:S; x--- xS, — S, nonconstant:
ExtremalCompetitiveRatio(f) < PROOF (f) (cicalese-Laver 2008]

(PROOF (f) = size of the largest minimal proof of f)

© Monotone Boolean functions:
ExtremalCompetitiveRatio(f) = PROOF (f) (cicalese-Laver 2008]
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Applications of the cross-intersecting lemma

©Q f:S; x--- xS, — S, nonconstant:
ExtremalCompetitiveRatio(f) < PROOF (f) (cicalese-Laver 2008]

(PROOF (f) = size of the largest minimal proof of f)

© Monotone Boolean functions:
ExtremalCompetitiveRatio(f) = PROOF (f) (cicalese-Laver 2008]

© Game trees: ExtremalCompetitiveRatio(f) < TBA
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Game trees

game tree




Game trees

game tree
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Game trees
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Minterms of game trees

Minterm : minimal set A C V of variables such that
value of f > value of A := min value of variables in A

Minterms can prove a lower bound for the value of f.
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Minterms of game trees

Minterm : minimal set A C V of variables such that
value of f > value of A := min value of variables in A

Minterms can prove a lower bound for the value of f.
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Minterms of game trees

Minterm : minimal set A C V of variables such that
value of f > value of A := min value of variables in A

Minterms can prove a lower bound for the value of f.
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Maxterms of game trees

Maxterm : minimal set B C V of variables such that
value of f < value of B := max value of variables in B

Maxterms can prove an upper bound for the value of f.

() ®'@@

= ®) ©
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Maxterms of game trees

Maxterm : minimal set B C V of variables such that
value of f < value of B := max value of variables in B

Maxterms can prove an upper bound for the value of f.
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Lower bound for the extremal competitive ratio

e k(f) = max{|A| : A minterm of f}
e |(f) = max{|B| : B maxterm of f }

Theorem (Cicalese-Laber 2005)

Let f be a game tree with no minterms or maxterms of size 1.
Then,

ExtremalCompetitiveRatio(f) > max{k(f),[(f)} .
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Minimal proofs of game trees

To prove that the value of f is b, we need:

e aminterm of valueb  [proves f > b]
e amaxtermofvalueb  [proves f < b]

Every minimal proof = union of a minterm and a maxterm

A - minterm

@ B - maxterm
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A first upper bound

It follows that

PROOF (f) = size of the largest minimal proof of f
=Kk(f) +I(f) — 1. J
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A first upper bound

It follows that

PROOF (f) = size of the largest minimal proof of f
=Kk(f) +I(f) — 1.

Theorem (Cicalese-Laber 2008)

f:S; x--- xS, — S, nonconstant:
ExtremalCompetitiveRatio(f) < PROOF (f)

For a game tree f,
ExtremalCompetitiveRatio(f) < k(f) + I(f) — 1.
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A first upper bound

It follows that

PROOF (f) = size of the largest minimal proof of f
=Kk(f) +I(f) — 1. J

Theorem (Cicalese-Laber 2008)

f:S; x--- xS, — S, nonconstant:
ExtremalCompetitiveRatio(f) < PROOF (f)

For a game tree f,
ExtremalCompetitiveRatio(f) < k(f) + I(f) — 1.

Lower bound: max{k(f),(f)} j
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Can we close the gap?

Yes:

For every restriction f’ of f, there is a fractional hitting set s of
the set of minimal proofs of f’ such that

Islla < max{k(f),1(f)} .
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Can we close the gap?

Yes:

For every restriction f’ of f, there is a fractional hitting set s of
the set of minimal proofs of f’ such that

Islla < max{k(f),1(f)} .

f/ restriction of f

A(f)=  max {opt-value(LP(f’))} < max{k(f),I(f)}

By the Key Lemma,

ExtremalCompetitiveRatio(f) < max{k(f),I(f)}
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Restrictions of game trees

restriction of f

(X3, X5, X7, Xg, Xg)




Restrictions of game trees

f(X3, X5,X7,Xg, Xg) > 6




Restrictions of game trees

f(X3,Xs,X7,Xg, Xg) < 15




Restrictions of game trees

f(xs,Xs5,%7,X8,X9) € [6,15] = [LB, UB]




Minimal proofs of a restriction of a game tree

maxterm proofs minterm proofs

minterm minterm

b=UB

maxterm

combined proofs

minterm
minterm

maxterm

LB<b<UB

Cicalese—Milani ¢ Evaluating game trees with priced variables



Case 1: No maxterm has been fully evaluated yet

maxterm proofs

minterm

combined proofs

minterm

minterm

maxterm
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Case 1: No maxterm has been fully evaluated yet

maxterm proofs

INnterm proofé

combined proofs

Let s be (the characteristic vector of) a minimal hitting set of
the shaded sets .

Islla < k(f) < max{k(f),I(f)}
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Case 2: There is a fully evaluated maxterm

maxterm proofs minterm proofs

minterm

minterm

maxterm
maxterm

combined proofs

minterm

minterm
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Case 2: There is a fully evaluated maxterm

maxterm proofs minterm proofs

R: the family of the minterm proofs

B: the family of the maxterm parts of the non-minterm proofs
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Case 2: There is a fully evaluated maxterm

@ R and B are non-empty sets
@ R and B are cross-intersecting
@ every minimal proof contains a member of R U B
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Case 2: There is a fully evaluated maxterm

@ R and B are non-empty sets
@ R and B are cross-intersecting
@ every minimal proof contains a member of R U B

By the Cross-intersecting lemma , there exists a feasible
solution s to the LP(f') such that

sl < max{|P|: P € RUB} < max{k(f),I(f)}.
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Case 2: There is a fully evaluated maxterm

@ R and B are non-empty sets
@ R and B are cross-intersecting
@ every minimal proof contains a member of R U B

By the Cross-intersecting lemma , there exists a feasible
solution s to the LP(f') such that

sl < max{|P|: P € RUB} < max{k(f),I(f)}.

Putting together the two cases, it follows that

A(f) < max{k(f),I(f)}
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The extremal competitive ratio for game trees

Let f be a game tree with no minterms or maxterms of size 1.
Then,

ExtremalCompetitiveRatio(f) = max{k(f),I(f)} .
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The extremal competitive ratio for game trees

Let f be a game tree with no minterms or maxterms of size 1.
Then,

ExtremalCompetitiveRatio(f) = max{k(f),I(f)} .

Theorem

Let f be a game tree. Let p (q) denote the number of minterms
(maxterms) of f of size 1. Then

max{k (f), 1(f)}, ifp=g=0o0rp=gqg=1;
ExtremalCompetitiveRatio(f) = ¢ max{k(f),I(f) —p}, ifp>1andq=0;
max{k(f) — q,I(f)}, ifp=0andq > 1.

There is a polynomial-time algorithm for evaluating game trees
with optimal extremal competitiveness.

v
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Value dependent costs

Suppose that the cost of reading a variable can depend on
the variable’s value:

o(x) = 50, ifx=0;
~ | 1000, ifx =1.
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Value dependent costs

Suppose that the cost of reading a variable can depend on
the variable’s value:

o(x) = 50, ifx=0;
~ | 1000, ifx =1.

Theorem
Let f be a monotone Boolean function or a game tree. Then,

ExtremalCompetitiveRatio(f,r) =r - ECR(f) —r +1,

where

c
r = max max (X) .
xeV Cmm(x)
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LPA has a very broad applicability

LPA does not depend on the structure of  f

It can be used to derive upper bounds on the extremal
competitive ratios of very different functions

@ f = minimum of a list:
ExtremalCompetitiveRatio(f) < n — 1 (cicalese-Laber 2005]

@ f = the sorting function: ExtremalCompetitiveRatio(f) <n —1

[Cicalese-Laber 2008]

@ f:S; x--- xS, — S, nonconstant:
ExtremalCompetitiveRatio(f) < PROOF (f) [cicalese-Laber 2008]

@ f = monotone Boolean function:
ExtremalCompetitiveRatio(f) = PROOF (f) (cicalese-Laber 2008]

@ f = game tree: ExtremalCompetitiveRatio(f) < max{k(f),I(f)}

v
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We have seen:

@ the Linear Programming Approach for the development of
competitive algorithms for the function evaluation problem,

@ the related combinatorial notion of the
fractional cover number ,

@ the extremal competitive ratio  for game trees ,
@ the more general model of value dependent costs.
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Some Open Questions

@ |s the extremal competitive ratio always integer?
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Some Open Questions

@ |s the extremal competitive ratio always integer?

@ Find the extremal comp. ratio of general Boolean functions.
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Some Open Questions

@ |s the extremal competitive ratio always integer?
@ Find the extremal comp. ratio of general Boolean functions.
@ Is there a polynomial algorithm with optimal extremal

comp. ratio for evaluating monotone Boolean functions
(given by an oracle/by the list of minterms)?
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THANK YOU
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