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Perfect matchings in cubic graphs

Perfect matchings in cubic graphs

Theorem (Petersen, 1891)

Every bridgeless cubic graphs contains a perfect matching.

A cubic graphs has two disjoint perfect matchings
⇔ 3-edge-colourable.

Every two perfect matchings in a non-3-edge-colourable graph
have an edge in common.
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Perfect matchings in cubic graphs

Perfect matchings in cubic graphs - conjectures

Conjecture (Fan & Raspaud, 1994) F&RC

Every bridgeless cubic graphs contains three perfect matchings
with no edge in common.

Conjecture (Berge, Fulkerson, 1971) FC

Every bridgeless cubic graphs contains a family of six perfect matchings
which together cover each edge exactly twice.
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Perfect matchings in cubic graphs

Six perfect matchings in the flower snark I5
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Perfect matchings in cubic graphs

Evidence for Fulkerson’s conjecture

FC has been verified only for a few explicitly defined families of graphs

Mathematical programming approach [Seymour, 1977]:

Regard a perfect matching in G as a certain function
φ : E (G ) → {0, 1}
FC ⇔ The constant function 2 can be expressed as a sum
of several perfect-matching functions.

Theorem (Seymour, 1977)

If subtraction is allowed, then the constant function 2 can be so obtained.
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Perfect matchings in cubic graphs

FC and the Cremona-Richmond configuration 153

{1,4}

{4,5}

{1,5}

{2,4}
{5,6}

{2,5}

{4,6}

{3,6}

{3,5}

{3,4}

{2,6}

{1,3}

{1,2}

{2,3}

{1,6}
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Perfect matchings in cubic graphs

Related conjectures

Conjecture (Weak Version of Fulkerson’s Conjecture)

There exists a constant k such that every bridgeless cubic graphs contains
a family of 3k perfect matchings which together cover each edge exactly
k-times.

Theorem (Edmonds 1965)

For every bridgeless cubic graph there exists a constant k and 3k perfect
matchings such that each edge is in edge is in k of them.

∃k∀G ∃3k PM s.t. every edge is in k PM ... ??? OPEN

∀G∃k ∃3k PM s.t. every edge is in k PM ... X YES
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Perfect matchings in cubic graphs

Covering all edges by perfect matchings

Conjecture (Berge)

Every bridgeless cubic graphs contains a family of five perfect matchings
that together all the edges.

Berge’s conjecture remains open even if 5 is replaced by any fixed k.
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Perfect matchings in cubic graphs

Covering as many edges as possible

Question. How many edges of a bridgeless cubic graph can be covered
by k perfect matchings?

mk(G ) – maximum number of edges in a cubic graph G
covered by k perfect matchings

m1(G ) = 1
3 |E (G )|

m2(G ) ≥ 3
5 |E (G )| [Kaiser, Král’, Norine, 2005]

m3(G ) ≥ 27
35 |E (G )| [Kaiser, Král’, Norine, 2005]

Berge’s Conjecture ⇒ m5(G ) = 1
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Perfect matchings in cubic graphs

k-Perfect Matchings Conjectures k-PMC
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Perfect matchings in cubic graphs

k-Perfect Matchings Conjectures k-PMC

Fulkerson Conjecture (Berge, Fulkerson, 1971) FC

Every bridgeless cubic graphs contains a family of six perfect matchings
which together cover every edge exactly twice.

Conjecture (Fan & Raspaud, 1994) F&RC

Every bridgeless cubic graphs contains three perfect matchings with empty
intersection.

k-Perfect Matching Conjecture (k = 3, 4, 5, 6) k-PMC

Every bridgeless cubic graph contains a family of k perfect matchings such
that the intersection of any three of them is empty.

FC = 6-PMC ⇔ 5-PMC ⇒ 4-PMC⇒ 3-PMC
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Martin Škoviera (Bratislava) Perfect matchings in cubic graphs November 20, 2008 12 / 37



Perfect matchings in cubic graphs

k-Perfect Matchings Conjectures k-PMC

Fulkerson Conjecture (Berge, Fulkerson, 1971) 6-PMC

Every bridgeless cubic graphs contains a family of six perfect matchings
such that the intersection of any three of them is empty.

Conjecture (Fan & Raspaud, 1994) 3-PMC

Every bridgeless cubic graphs contains three perfect matchings with empty
intersection.

k-Perfect Matching Conjecture (k = 3, 4, 5, 6) k-PMC

Every bridgeless cubic graph contains a family of k perfect matchings such
that the intersection of any three of them is empty.

FC = 6-PMC ⇔ 5-PMC ⇒ 4-PMC⇒ 3-PMC
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Perfect matchings in cubic graphs

k-Perfect Matchings Conjectures k-PMC
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Fano colourings

Fano colourings of cubic graphs

110101

111

011001 010

100

Fano colouring – proper edge-colouring of a cubic graph

colours – points of the Fano plane

around each vertex the colours form a line

Fi -colouring – colouring using at most i lines of the Fano plane
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Fano colourings

F5-colouring of the Petersen graph

(1,1,0)

(0,1,0)

(0,1,0)

(1,1,1)

(0,1,0)

(0,1,1)

(1,0,0)

(1,1,0)

(0,1,0)

(1,0,0)

(1,1,0)

(0,0,1)

(0,0,1)

(1,0,1)

(1,0,0)
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Fano colourings

Fi -colourings

Theorem (Máčajová & S., 2005)

Every bridgeless cubic graph admits a F6-colouring.

4-Line Conjecture (Máčajová & S., 2005) F4C

Every bridgeless cubic graph admits an F4-colouring.

Theorem (Máčajová & S., 2005)

F&RC=3-PMC is equivalent to the 4-Line Conjecture.
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Fano colourings

F5-colourings

FC= 6-PMC ⇔ 5-PMC ⇒ 4-PMC ⇒ 3-PMC = F&RC
F&RC ⇔ F4C ⇒ F5C ⇒ F6C≡ TRUE

Theorem (Kaiser, Raspaud, 2007)

Every bridgeless cubic graph of oddness ≤ 2 admits an F5-colouring.
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Main result

F4-colourings: Theorem

Theorem (Máčajová & S., 2008+)

Every bridgeless cubic graph of oddness ≤ 2 admits an F4-colouring.

Equivalently:

Every bridgeless cubic graph of oddness ≤ 2 has three perfect matchings
with no edge in common.
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Main result

Proof of Theorem

I. G has oddness 0 ... X

II. Let G have oddness 2

B C . . . 2-factor with two odd circuits

B F = G − C perfect matching of G

B M . . . perfect matching in the set of even circuits of C

Call the triple M = (G ,F ,M) a mesh
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Martin Škoviera (Bratislava) Perfect matchings in cubic graphs November 20, 2008 18 / 37



Main result

Proof: meshes
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Main result

Proof: meshes

mesh ∼= partial 3-edge-colouring – non-coloured edges are red

O1 O2

matching M
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Main result

Proof: chains

Let M = (G ,F ,M) be a mesh on G .

chain in M . . . M-alternating path or circuit

transversal chain . . . connects O1 to O2 (otherwise local)

independent chains . . . do not share an edge of F

Observations: (F ∪M)-chains

Every connected component of F ∪M is a chain;

by parity, at least one is transversal;

different components are independent chains.
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Main result

Sufficient condition

Proposition

If a mesh M = (G ,F ,M) has two independent transversal chains, then G
contains two perfect matchings F1 and F2 such that F1 ∩ F2 ∩ F = ∅.

Call a mesh good if it contains two independent transversal chains.

Aim: To prove that every mesh is good.
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Main result

Necessary condition: I. Reduction
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Main result

Necessary condition: dissolving a circuit of C = G − F

(Z −M)-edges

F -edges

M-edges
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Main result

Reduction: dissolving a circuit of C = G − F

We obtain a transformation

G → G ′ F → F ′ M → M ′

M = (G ,F ,M) →M′ = (G ′,F ′,M ′)

Definition. The resulting mesh M′ is said to be a reduction of M.

Claim

If a reduction M′ of M is good, then M is good.

Corollary

It is enough to deal with primitive meshes.
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Main result

Primitive meshes
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Main result

Primitive meshes: linear ordering of circuits

Proposition

Let M be a primitive mesh. Then there exists a unique linear ordering
”�” on the set of circuits of C = G − F such that

1 O1 and O2 are the smallest and the largest element, respectively;

2 each circuit Z ≺ O2 is joined to its successor by some F -edge; and

3 each circuit of C is avoided by at most one F -edge.

Furthermore, this ordering is independent of the choice of M.
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Martin Škoviera (Bratislava) Perfect matchings in cubic graphs November 20, 2008 27 / 37



Main result

Primitive meshes: linear ordering of circuits

Proposition

Let M be a primitive mesh. Then there exists a unique linear ordering
”�” on the set of circuits of C = G − F such that

1 O1 and O2 are the smallest and the largest element, respectively;

2 each circuit Z ≺ O2 is joined to its successor by some F -edge;

and

3 each circuit of C is avoided by at most one F -edge.

Furthermore, this ordering is independent of the choice of M.
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Main result

(F ∪M)-chains in primitive meshes

Proposition

1 Every transversal (F ∪M)-chain is almost increasing – it may return
to the predecessor circuit, but not further back.

2 Every local (F ∪M)-chain intersects only two consecutive circuits.
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Main result

Necessary condition: II. Construction of chains – transfer
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Main result

Necessary condition: II. Construction of chains – transfer

f = ω(e, P ; Z )

Ω(e,P;Z )

M-edges

e

P

chain P
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Main result

Multiple transfers: tubes

...

...

f

U1 U2

U1 U2

K = (KU ; Y � U � Z )

KZ

Ω(e,K)

KY KZ

KU1
KU2

KU1
KU2

Y = U0 Un = Z

Y = U0 Un = Z

f

f = ω(e,K)

KYe

e
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Main result

Smoothing
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Main result

Smoothing: Case 1
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Main result

Smoothing: Case 2
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Smoothing: Case 2
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Martin Škoviera (Bratislava) Perfect matchings in cubic graphs November 20, 2008 33 / 37



Main result

Final construction: transfer graph

transversal quasichain
O1

q3

p3

r3p2

q2

r2

r1

q1

p1

O2
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Main result
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Main result

Final construction: transfer graph

Proposition

The transfer graph contains two internally disjoint increasing O1-O1-paths
which together use at most one white edge from each class.

These two paths give rise to two independent transversal chains.

Corollary

Every mesh on a bridgeless cubic graph is good.
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Conclusion

Open problems

1 Higher oddness?

2 Other classes of cubic graphs?

3 Fulkerson Conjecture for oddness two?
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Conclusion

Thank you!
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