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MAXIMUM INDEPENDENT SET

Independent set
An independent (or stable) set in a graph is a set of
vertices no two of which share the same edge.
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MIS = {1,3,5,7}

Maximum independent set (MIS)
The MIS problem asks for an independent set with the
largest size.

NP hard!!
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MAXIMUM INDEPENDENT SET

Equivalent version
The same problem as MAXIMUM CLIQUE on the
complementary graph (clique = complete subgraph).



THEORETICAL RESULTS

Random models: Erdős-Rényi’s Gn,p

Vertex set = {1,2, . . . ,n} and all edges occur
independently with the same probability p.

The cardinality of an MIS in Gn,p

Matula (1970), Grimmett and McDiarmid (1975),
Bollobas and Erdős (1976), Frieze (1990): If pn→∞,
then (q := 1− p)

|MISn| ∼ 2 log1/q pn whp,

where q = 1− p.
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DESCRIPTION OF THE GREEDY ALGORITHM

Problem
Find such an independent set A in G that no other
node from G can be added to A without destroying
the independence of A.

Solution
Initially A = ∅.

I Chose v ∈ G.
I A := A ∪ {v}, G := G ∗ v , where G ∗ v is the graph

obtained from G by deleting node v together with
all its neighboring nodes and their edges.

I Continue until G = ∅.
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A GREEDY ALGORITHM

Recurrence
The size of the resulting independent set Sn satisfies
recurrence relation:

Sn
d
= 1 + Sn−1−Binom(n−1;p) (n > 1),

with S0 ≡ 0.



ANALYSIS OF THE GREEDY ALGORITHM

Relatively easy

I Mean: E(Sn) ∼ log1/q n + a bounded periodic
function.

I Variance: V(Sn) ∼ a bounded periodic function.

I Limit distribution does not exist:
E
(

e(Xn−log1/q n)y
)
∼ F (log1/q n; y), where

F (u; y) :=
1− ey

log(1/q)

∏
`>1

1− ey q`

1− q`

∑
j∈Z

Γ

(
− y + 2jπi

log(1/q)

)
e2jπiu.
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A BETTER ALGORITHM?

Goodness of GREEDY IS
Grimmett and McDiarmid (1975), Karp (1976),
Fernandez de la Vega (1984), Gazmuri (1984),
McDiarmid (1984):
Asymptotically, the GREEDY IS is half optimal.

Can we do better?
Frieze and McDiarmid (1997, RSA), Algorithmic theory
of random graphs, Research Problem 15:
Construct a polynomial time algorithm that finds an
independent set of size at least (1

2 + ε)|MISn| whp or
show that such an algorithm does not exist modulo
some reasonable conjecture in the theory of
computational complexity such as, e.g., P 6= NP.
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POSITIVE RESULTS

Exact algorithms
A huge number of algorithms proposed in the
literature; see Bomze et al.’s survey (in Handbook of
Combinatorial Optimization, 1999).

Special algorithms

– Chvátal (1977) proposes exhaustive algorithms
where almost all Gn,1/2 creates at most n2(1+log2 n)

subproblems.
– Pittel (1982):

P
(

n
1−ε

4 log1/q n 6 Timeused by
Chvátal’s algo 6 n

1+ε
2 log1/q n

)
> 1− e−c log2 n
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DESCRIPTION OF THE EXHAUSTIVE ALGORITHM
PROPOSED BY V. CHVATAL

Problem
Suppose we want to compute the stability number of
the graph G, that is |MIS(G)|.

I Chose a node v ∈ G.
I Delete from G the node v together with all its

edges, that is obtain graph G − v . Compute
|MIS(G − v)|.

I Delete from G the node v together with all its
neighboring nodes and their edges. The obtained
graph denote by G ∗ v . Compute |MIS(G ∗ v)|.

I |MIS(G)| = max{|MIS(G − v)|, |MIS(G ∗ v)|+ 1}.
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AIM: A MORE PRECISE ANALYSIS OF THE
EXHAUSTIVE ALGORITHM

The time needed to complete the algorithm Xn is a
random variable satisfying recurrence relation

Xn
d
= Xn−1 + X ∗n−1−Binom(n−1;p) (n > 2),

with X0 = 0 and X1 = 1.

Special cases

– If p is close to 1, then the second term is small, so
we expect a polynomial time bound.

– If p is sufficiently small, then the second term is
large, and we expect an exponential time bound.

– What happens for p in between?
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MEAN VALUE

The expected value µn := E(Xn) satisfies

µn = µn−1 +
∑

06j<n

(
n − 1

j

)
pjqn−1−jµn−1−j .

with µ0 = 0 and µ1 = 1.

Poisson generating function
Let f̃ (z) := e−z ∑

n>0 µnzn/n!. Then

f̃ ′(z) = f̃ (qz) + e−z .
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RESOLUTION OF THE RECURRENCE

Laplace transform
The Laplace transform of f̃

L (s) =

∫ ∞
0

e−xs f̃ (x) dx

satisfies
sL (s) =

1
q

L

(
s
q

)
+

1
s + 1

.

Exact solutions

L (s) =
∑
j>0

q(j+1
2 )

sj+1(s + q j)
.
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RESOLUTION OF THE RECURRENCE

Exact solutions

L (s) =
∑
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.

Inverting gives f̃ (z) =
∑
j>0

q(j+1
2 )

j!
z j+1

∫ 1

0
e−qj uz(1−u)j du.

Thus µn =
∑

16j6n

(
n
j

)
(−1)j

∑
16`6j

(−1)`q j(`−1)−(`
2), or

µn = n
∑

06j<n

(
n − 1

j

)
q(j+1

2 )
∑

06`<n−j

(
n − 1− j

`

)
q j`(1− q j )n−1−j−`

j + `+ 1
.

Neither is useful for numerical purposes for large n.
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ASYMPTOTICS OF µn

Poisson heuristic (de-Poissonization, saddle-point
method)

µn =
n!

2πi

∮
|z|=n

z−n−1ez f̃ (z) dz

≈
∑
j>0

f̃ (j)(n)

j!
n!

2πi

∮
|z|=n

z−n−1ez(z − n)j dz

= f̃ (n) +
∑
j>2

f̃ (j)(n)

j!
τj(n),

where τj(n) := n![zn]ez(z − n)j = j![z j ](1 + z)ne−nz

(Charlier polynomials). In particular, τ0(n) = 1,
τ1(n) = 0, τ2(n) = −n, τ3(n) = 2n, and τ4(n) = 3n2 − 6n.
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A MORE PRECISE EXPANSION FOR f̃ (x)

Asymptotics of f̃ (x)
Let ρ = 1/ log(1/q) and R log R = x/ρ. Then

f̃ (x) ∼ Rρ+1/2e(ρ/2)(log R)2
G(ρ log R)√

2πρ log R

1 +
∑
j>1

φj (ρ log R)

(ρ log R)j

 ,

as x →∞, where G(u) := q({u}2+{u})/2F (q−{u}),

F (s) =
∑

−∞<j<∞

q j(j+1)/2

1 + q js
sj+1,

and the φj(u)’s are bounded, 1-periodic functions of u
involving the derivatives F (j)(q−{u}).



A MORE EXPLICIT ASYMPTOTIC APPROXIMATION

R = x/ρ/W (x/ρ), Lambert’s W -function

W (x) = log x − log log x +
log log x

log x
+

(log log x)2 − 2 log log x
2(log x)2 + · · · .

So that

f̃ (x) ∼
xρ+1/2G

(
ρ log x/ρ

log(x/ρ)

)
√

2πρρ+1/2 log x
exp

(
ρ

2

(
log

x/ρ
log(x/ρ)

)2
)
.

Method of proof: a variant of the saddle-point method

f̃ (x) =
1

2πi

∫ 1+i∞

1−i∞
exsL (s) ds
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JUSTIFICATION OF THE POISSON HEURISTIC

Four properties are sufficient
The following four properties are enough to justify the
Poisson-Charlier expansion.

– f̃ ′(z) = f̃ (qz) + e−z;
– F (s) = sF (qs) (F (s) =

∑
i∈Z q j(j+1)/2sj+1/(1 + q js));

–
f̃ (j)(x)

f̃ (x)
∼
(
ρ log x

x

)j

;

– |f (z)| 6 f (|z|) where f (z) := ez f̃ (z).

Thus (ρ = 1/ log(1/q))

µn ∼
nρ+1/2G

(
ρ log n/ρ

log(n/ρ)

)
√

2πρρ+1/2 log n
exp

(
ρ

2

(
log

n/ρ
log(n/ρ)

)2
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Rough estimates

Corollary
Thus we have

EXn � nρ+1/2 exp

(
ρ

2

(
log

n/ρ
log(n/ρ)

)2
)
,

where
ρ = ρ(p) =

1
log 1

1−p

.

Compare with the result of Pittel (1982)

P
(

n
1−ε

4 log1/q n 6 Timeused by
Chvátal’s algo 6 n

1+ε
2 log1/q n

)
> 1−e−c log2 n



Numerical example

n=300
If we take n = 300 then according to our result for
p = 0.4

EXn ≈ 1.12 · 1011

while for p = 0.6

EXn ≈ 3.38 · 107

This means that our algorithm for p = 0.6 runs almost
3300 times faster than for p = 0.4.



Idealized model

Dependence of Xn

Unfortunately Xn in the recurrence

Xn
d
= Xn−1 + X ∗n−1−Binom(n−1;p) (n > 2),

with X0 = 0 and X1 = 1, are not independent!

Idealized model
What will happen if we assume that Xn are
independent?



VARIANCE OF Xn under the assumption of
independence

σn :=
√

V(Xn)

σ2
n = σ2

n−1 +
∑

06j<n

πn,jσ
2
n−1−j + Tn, πn,j :=

(
n − 1

j

)
pjqn−1−j ,

where Tn :=
∑

06j<n πn,j∆
2
n,j , ∆n,j := µj + µn−1 − µn.

Asymptotic transfer: an = an−1 +
∑

06j<n πn,jan−1−j + bn

If bn ∼ nβ(log n)κf̃ (n)α, where α > 1, β, κ ∈ R, then

an ∼
∑
j6n

bj ∼
n

αρ log n
bn.
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ASYMPTOTICS OF THE VARIANCE

Asymptotics of Tn: by elementary means

Tn ∼ q−1pρ4n−3(log n)4 f̃ (n)2.

Applying the asymptotic transfer

σ2
n ∼ Cn−2(log n)3f̃ (n)2.

where C := pρ3/(2q).

Variance
Mean2 ∼ C

(log n)3

n2
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ASYMPTOTIC NORMALITY OF Xn

Convergence in distribution
The distribution of Xn is asymptotically normal

Xn − µn

σn

d→ N (0,1),

with convergence of all moments.

Proof by the method of moments

– Derive recurrence for E(Xn − µn)m.
– Prove by induction (using the asymptotic

transfer) that

E(Xn − µn)m

∼
(m)!

(m/2)!2m/2 σ
m
n , if 2 | m,

= o(σm
n ), if 2 - m,
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A STRAIGHTFORWARD EXTENSION

b = 1,2, . . .

Xn
d
= Xn−b + X ∗n−b−Binom(n−b;p),

with Xn = 0 for n < b and Xb = 1.



A NATURAL VARIANT

What happens if Xn
d
= Xn−1 + X ∗uniform[0,n-1]?

µn = µn−1 +
1
n

∑
06j<n

µj ,

satisfies µn ∼ cn−1/4e2
√

n.

Limit law not Gaussian (by method of moments)

Xn

µn

d→ X ,

where g(z) :=
∑

m>1 E(X m)zm/(m ·m!) satisfies

z2g′′ + zg′ − g = zgg′.
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CONCLUSION

Random graph algorithms:
a rich source of interesting recurrences


