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The MIS problem asks for an independent set with the
largest size.

NP hard!!



MAXIMUM INDEPENDENT SET

Equivalent version

The same problem as |23V NeiH[e]V]} on the

complementary graph (clique = complete subgraph).
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Random models: Erdés-Rényi's G, ,

Vertex set = {1,2,..., n} and all edges occur
independently with the same probability p.

The cardinality of an MIS in G,

Matula (1970), Grimmett and McDiarmid (1975),
Bollobas and Erdos (1976), Frieze (1990): If pn — oo,
then (g .=1—-p)

s, - SR e

whereg=1—p.
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DESCRIPTION OF THE GREEDY ALGORITHM

Problem

Find such an independent set A in G that no other
node from G can be added to A without destroying
the independence of A.

Solution
Initially A = (.
» Chose v € G.
» A:=AU{v}, G:= Gxv,where G« v is the graph
obtained from G by deleting node v together with
all its neighboring nodes and their edges.

» Continue until G = 0.



A GREEDY ALGORITHM

Recurrence
The size of the resulting independent set S, satisfies

recurrence relation:
d
Sn =1+ Sn—1—Binom(n—1;p) (n P 1),
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ANALYSIS OF THE GREEDY ALGORITHM

Relatively easy

» Mean: E(S,) ~ + a bounded periodic
function.

» Variance: V(S,) ~ a bounded periodic function.

» Limit distribution does not exist:
E <e(Xn—|Og1/CI n)y) ~ F(log1/q n;y), where

1—¢ 1-eq° ( y+2j7ri> o
F(u;y) = — r{— eI,
WY = log(i/q) <Q1 —q )% l09(1/q)
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McDiarmid (1984):
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A BETTER ALGORITHM?

Goodness of GREEDY IS

Grimmett and McDiarmid (1975), Karp (1976),
Fernandez de la Vega (1984), Gazmuri (1984),
McDiarmid (1984):

Asymptotically, the GREEDY IS is half optimal.

Can we do better?

Frieze and McDiarmid (1997, RSA), Algorithmic theory
of random graphs, Research Problem 15:

Construct a polynomial time algorithm that finds an
independent set of size at least (} + ¢)|MIS,| whp or
show that such an algorithm does not exist modulo
some reasonable conjecture in the theory of
computational complexity such as, e.g., P #* NP.
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POSITIVE RESULTS

Exact algorithms

A huge number of algorithms proposed in the
literature; see Bomze et al.’s survey (in Handbook of
Combinatorial Optimization, 1999).

Special algorithms

— Chvatal (1977) proposes exhaustive algorithms
where almost all G, ;. creates at most n?(1+1°62"
subproblems.

— Pittel (1982):

1=<log,,, n . _used by e jog, o N —clog®n
P (f‘l ¢ AN TImeChva’taI’s algo sne "a >1-e
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DESCRIPTION OF THE EXHAUSTIVE ALGORITHM
PROPOSED BY V. CHVATAL

Problem
Suppose we want to compute the stability number of
the graph G, that is |MIS(G)|.

» Chose anode v € G.

» Delete from G the node v together with all its
edges, that is obtain graph G — v. Compute
IMIS(G — V).

» Delete from G the node v together with all its

neighboring nodes and their edges. The obtained
graph denote by G x v. Compute |MIS(G * v)|.

> |MIS(G)| = max{|MIS(G — V)|, |MIS(G % v)| + 1}.
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AIM: A MORE PRECISE ANALYSIS OF THE
EXHAUSTIVE ALGORITHM

The time needed to complete the algorithm X, is a
random variable satisfying recurrence relation

d *
Xn = Xn—1 + Xn—1—Binom(
with X; = 0and X; = 1.

n—1;p) (n > 2)a

Special cases

— If pis close to 1, then the second term is small, so
we expect a polynomial time bound.

— If p is sufficiently small, then the second term is
large, and we expect an exponential time bound.

— What happens for p in between?
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MEAN VALUE

The expected value u, := E(X,) satisfies

n—1\ .
Hn = fn—1 + Z ( , )p’qn_1_jﬂn—1_j.

0gj<n J
with po = 0 and pq = 1.

Poisson generating function
Let f(z) .= €% 5o 1nZ"/nl. Then

f(z) = f(gz) + e 2.
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RESOLUTION OF THE RECURRENCE

Exact solutions

()
#(s) = Zm

(") .
Inverting gives f(z Zqﬂ z/“/ e 7%(1 — u) du.
0

j=0

Thus i, = > (7)(-1)/‘ 3 ()¢ 6, or

1<j<n 1<6<

pon=n>Y_ (n— 1> () Oqz;n_j (n—; —j> q/@(1j;¢z/z;r11je’
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RESOLUTION OF THE RECURRENCE
Exact solutions
.,sf(s):z | q(z)

2T (s+q)

(") .
Inverting gives 7(z) = > qjl z/“/ e 7%(1 — u) du.
0

j=0
Thus i, = > (’7)(-1)/‘ 3 ()¢ 6, or
1<j<n J 10
n—1 /+1 n—1—j qu(1—q/)n717j7€
wen (7760 5 ()P
P 2 U e

Neither is useful for numerical purposes for large n.
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ASYMPTOTICS OF

Poisson heuristic (de-Poissonization, saddle-point
method)

where 7;(n) := n![z"|€*(z — n) = jI[Z](1 + z)"e "™
(Charlier polynomials). In particular, 7o(n) = 1,
71(n) = 0, 72(n) = —n, 73(n) = 2n, and 74(n) = 3n® — 6n.



A MORE PRECISE EXPANSION FOR 7(x)

Asymptotics of f(x)
Let p=1/log(1/q) and Rlog R = x/p. Then

X) ~
) \/2mplog R (plog RY

as x — oo, where G(u) := qUu*Hu)2F(g—{u}),

: Rp+1/2e(p/2)(|ogﬁ)2G(p|ogF; ( Z oy plogR )

j>1

q] ""1)/2 n
Z +q/s ’

—oo<f< oo

and the ¢;(u)’s are bounded, 1-periodic functions of u
involving the derivatives FU)(g—{}).
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A MORE EXPLICIT ASYMPTOTIC APPROXIMATION

R=x/p/W(x/p), Lambert’s W-function

loglogx  (loglog x)? — 2loglog x
log x 2(log x)?

W(x) =log x — loglog x +

So that

?(X) . xPt1/2G <p|09 Tog( x/p)) o ( ( X/p >2> |

V2rpr+1/21og x o9 log(x/p)

Method of proof: a variant of the saddle-point method
. 1 14ioco s
f(x) = 2—7”/1 - e°Z(s)ds

—Io0



JUSTIFICATION OF THE POISSON HEURISTIC

Four properties are sufficient

The following four properties are enough to justify the
Poisson-Charlier expansion.

— F(2) = f(qz) + e %;
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JUSTIFICATION OF THE POISSON HEURISTIC

Four properties are sufficient

The following four properties are enough to justify the
Poisson-Charlier expansion.

— F(2) = f(qz) + e %;
— F(s) = sF(gs) (F(s) = X1, UV /(1 + @s));
_ ) (rlogx.
f(x) ( - > ,
— |f(2)| < f(|z|) where f(z) = &’}(2).

Thus (p = 1/log(1/q))

nPt1/2G P109 55757 2
Tt o)

V2rprt1/2log n (n/p)



Rough estimates

Corollary
Thus we have

p n/p \?
EX, = n"t"2exp | & (Io —) :
g (2 9log(n/p)

]
:l L'
og 155

Compare with the result of Pittel (1982)

where

p = p(p)

122 logy )y 1 . _used by relogy o0 —clog®n
P <n ¢ AN TImeChvétaI’s algo sn: /a >1-e



Numerical example

n=300
If we take n = 300 then according to our result for
p=04

EX,~ 1.12-10"

while for p = 0.6
EX, ~ 3.38 - 10’

This means that our algorithm for p = 0.6 runs almost
3300 times faster than for p = 0.4.



|dealized model

Dependence of X,
Unfortunately X, in the recurrence

d :
Xn = X1+ n—1—Binom(n—1;p) (n > 2)7
with X; = 0 and X; = 1, are not independent!

|dealized model
What will happen if we assume that X, are
independent?



VARIANCE OF X, under the assumption of
independence

n—1

2 _ 2 2 ._
Op=0p 4t E  TnjOn_jt+ Tn, Tnji= ( j
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VARIANCE OF X, under the assumption of
independence

n—1
2 2 E 2 . 1—j
O‘n — O'n_1 + 7Tf7,j0n—1—j+ Tn, 7Tn7j = ( )p’ n— j

ogj<n
where T, .= Zogj<n 7Tn,jA,27,j, Apji= pj + fn—1 — tn-

Asymptotic transfer: a, = a,_1 + Zog@ Tnj@n—1—j + bn
If b, ~ n°(log n)~f(n)*, where o > 1, 3, x € R, then

sz’ aplogn bn.

j<n
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ASYMPTOTICS OF THE VARIANCE

Asymptotics of T,: by elementary means

2

T, ~ q 'pp*n~3(log n)*f(n)?.
Applying the asymptotic transfer

o2 ~ Cn~2(log n)%f(n)?.
where C := pp®/(29).
Variance (log n)®

~C
Mean? n2
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ASYMPTOTIC NORMALITY OF X,

Convergence in distribution
The distribution of X, is asymptotically normal

Xn = tn 4 (0, 1),

On
with convergence of all moments.
Proof by the method of moments

— Derive recurrence for E(X, — ).

— Prove by induction (using the asymptotic
transfer) that

(m!  m
B0 — oy~ G R #21m
= o(cM), if 2+ m,



A STRAIGHTFORWARD EXTENSION

d *
Xn = Xn-b+ Xn—b—Binom(n—b;p)7
with X, =0forn< band X, = 1.



A NATURAL VARIANT

What happens if X, g X1 + X

?
uniform[0,n-1] *

1
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A NATURAL VARIANT

What happens if X, g X1 + X

uniform[o,n—1]?
_ o L S w
Hn = Hn—1 n 2 M
ogj<n
satisfies 1, ~ cn~1/4e?Vn,
Limit law not Gaussian (by method of moments)

ﬁiX,
Hn

where g(z) := >, E(X™)z"/(m - m!) satisfies

Z2g// 4 Zg, . g — Zgg/-



CONCLUSION

Random graph algorithms:
a rich source of interesting recurrences



