
ORDER STATISTICS FOR THE

CANTOR-FIBONACCI DISTRIBUTION

LIGIA-LORETTA CRISTEA∗ AND HELMUT PRODINGER†

Abstract. The Cantor distribution is a probability distribution whose cumu-
lative distribution function is the Cantor function. It is obtained from strings
consisting of letters 0 and 1 and appropriately attaching a value to them. The
Cantor-Fibonacci distribution additionally rejects strings with two adjacent
letters 1. A probability model is associated by assuming that each admissible
string (word) of length m is equally likely; eventually the limit m → ∞ is
considered. In this way, one can work with discrete objects, which might not
be strictly necessary, but is easy to understand.

We assume that n random numbers (values of random strings) are drawn
independently. The interest is in order statistics of these n values: the (average
of) the smallest resp. largest of them. Recursions are obtained which are
evaluated asymptotically.

Generalisations to the d-smallest resp. d-largest element are also consid-
ered.

1. Introduction

The Cantor-Fibonacci distribution has been introduced in [8]. It is obtained
from the Cantor distribution (see (1.1), (1.2)) by imposing on the words over the
alphabet {0, 1} the additional condition (Fibonacci restriction) that two adjacent
letters “1” are not allowed to occur.

In this paper, the moments of the distributions were investigated, both, by giving
a recursion formula for them, as well as an asymptotic expansion. The methods
built on ones used in earlier papers on the (generalised) Cantor-distribution: The
paper by Grabner and the second author [3] investigated the moments, solving
open questions by [7]; the paper by Knopfmacher and the second author [6] dealt
with the average of the minimum element of n elements, drawn from the Cantor
distribution, again solving problems left open by [4].

Similar questions were also addressed in [1], where the interest was not in the
Cantor-distribution but rather in general q-ary expansions with missing digits.

Here, we want to go back to the Cantor-Fibonacci distribution, and consider the
(average of the) minimal element, when we draw n (independent) random elements.
Likewise, we are interested in the maximal element. (In previous research this
followed from the minimum by symmetry, but not here). We go, however, one step
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further, and consider general order statistics : We think about the n elements being
sorted as y1 ≤ y2 ≤ · · · ≤ yn. The minimum is then y1, the maximum yn, but we
consider more generally the element yd, the d-th order statistics. We get an exact
recursion for the average of it. We can solve this one asymptotically for a) fixed d,
and b) for fixed `, with d = n − `. Other regimes of d seem to be harder and are
left for future research.

The Cantor distribution with parameter θ, 0 < θ ≤ 1
2 was introduced in [7] by

the random series
θ̄

θ

∑

i≥1

Xiθ
i, (1.1)

where Xi are independent random variables with the distribution

P{Xi = 0} = P{Xi = 1} =
1

2
, (1.2)

and θ̄ = 1 − θ. The name of this distribution stems from the fact that for the
particular value θ = 1

3 one deals exactly with the numbers situated in the interval
[0, 1] that admit a ternary expansion consisting only of the digits 0 and 2, i.e., with
the numbers that constitute Cantor’s middle third set, a well known fractal.
A slightly different point of view is to consider infinite (random) words ω1ω2 . . .
over the alphabet {0, 1} (with the usual concatenation operation) and the mapping
value, defined by

value(ω1ω2 . . . ) :=
θ̄

θ

∑

i≥1

ωiθ
i. (1.3)

Remark. For θ ≤ 1
2 the mapping value is monotonically increasing with respect

to the lexicographic ordering of the set of infinite words ω1ω2 . . . over {0, 1}.

It is straightforward to prove the recursions

value(0ω) = θ · value(ω), value(1ω) = θ̄ + θ · value(ω). (1.4)

In many situations, restrictions imposed on the mentioned words are of rele-
vance. According to the Fibonacci restriction on words over the alphabet {0, 1},
two letters 1 are not allowed to occur in adjacent positions. In the sequel such
words will be referred to as Fibonacci words. Fibonacci words of given length are
enumerated by Fibonacci numbers, whence the name.

1.1. The Cantor-Fibonacci distribution. Here we recall how this distribution
was introduced in [8]: Let us consider the set of (finite) Fibonacci words F . This
set (language) can be described as

F = {0, 10}∗(ε+ 1), (1.5)

where “∗” denotes arbitrary repetitions and “ε” the empty word. It is easy to verify
the recurrence

F = ε+ 1 + {0, 10}F .
The next step is to define a distribution, i.e., to introduce probabilities on the space
of Fibonacci words.

When defining the Cantor distribution, probabilities are simply introduced by
assuming that each of the letters 0 and 1 can appear with probability 1

2 . See [7, 4]
for more details.
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In the case of the Cantor-Fibonacci distribution we deal with a more complicated
situation. Here the assumption is that all Fm+2 Fibonacci words of length m appear
with the same probability 1/Fm+2, where Fm+2 denotes the (m+ 2)-nd Fibonacci
number, since they count Fibonacci words of length m. The idea in the sequel is
to work with finite words, and then let the word length m tend to infinity.

We will often use the generating function

F (z) =
∑

m≥0

Fm+2z
m =

1 + z

1− z − z2
, (1.6)

where

Fk =
1√
5

(αk − βk), with α =
1 +
√

5

2
and β =

1−
√

5

2
. (1.7)

As it will be shown, the constant α plays an important role in the considerations
to follow.

Remark. For θ ≤ 1
α ≈ 0.618 the mapping value is monotonically increasing with

respect to the lexicographic ordering on the infinite Fibonacci words (for θ < 1
α it

is even strictly increasing), whereas for θ > 1
α this does not hold.

In all the considerations to follow throughout this paper we assume θ ≤ 1
α .

1.2. Order statistics for Fibonacci words. As already mentioned, the aim of
this paper is to study several problems of order statistics for Fibonacci words with
respect to the Cantor-Fibonacci distribution.

The problem setting for the average d-th minimum can be described as follows:
Let d ≥ 1 be a fixed integer. For an integer n ≥ d we choose at random (with
respect to the Cantor-Fibonacci distribution) n Fibonacci words and evaluate the
function value for each of them. We choose the string (or one of the strings, if
there are more of them) for which the minimal value is attained. We repeat this
procedure for the other n − 1 words left and choose thus a second string. Af-
ter repeating this d times we select the d-th string whose value we call the d-th
minimum. For d = 1 one gets the (usual) minimum among the n strings. For
given integers n and d as above we denote by Mn,d the average value (with respect
to the Cantor-Fibonacci distribution) of the d-th minimum among n random Fi-
bonacci words. We study the asymptotic behaviour of Mn,d for n→∞ and d fixed.

The problem of the (`+ 1)-st maximum can be formulated in the following way:
Let ` ≥ 0 be a fixed integer. For n ≥ `+1 we consider at random n Fibonacci words.
Among these we choose a string with the maximal value and call it the maximum
(or first maximum). We repeat the procedure for the n− 1 strings left, inductively,
and after `+ 1 steps we obtain a (`+ 1)-th string whose value we call the (`+ 1)-st
maximum. For ` = 0 one gets the (usual) maximum value among the n Fibonacci
words. We denote by Mn,n−` the average value of the (` + 1)-th maximum value
among n random Fibonacci words. We study the asymptotic behaviour of Mn,n−`
for n→∞ and ` fixed.

Remark. It is clear that Mn,d is for d = 1 the average value of the (usual)
minimum among n random Fibonacci words. Similarly is Mn,n−` for ` = 0 the
average value of the maximum value among n random Fibonacci words.
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In order to make the material more accessible to the reader we first approach, in
Sections 2 and 3, in detail the most simple cases: the average minimum an (= Mn,1)
and the average maximum bn (= Mn,n). In the last section we pass to the more
general setting in order to study the asymptotic behaviour of Mn,d and Mn,n−`, for
d resp. l fixed and n→∞. These messier computations will then only be sketched.

2. minimum

2.1. The problem setting. Let Fm denote the set of all Fibonacci words of length
m and by F∞ the set of infinite Fibonacci words. We pick at random (with respect
to the Cantor-Fibonacci distribution), independently, n Fibonacci words from Fm,
for n ≥ 1. We apply the function value defined in (1.3) to each of the chosen words
and look for the minimum among these n values. The same can be done with all

random choices of n words of F∞. Let us denote by a
(m)
n the average minimal value

among all possible choices of n Fibonacci words of length m. By taking the limit

an := limm→∞ a
(m)
n we obtain the average minimal value among all choices of n

words of F∞. We are interested in the study of the asymptotic behaviour of an,
for n→∞.
The first step is to establish the recurrence relation

a(m)
n = θ

n∑

k=1

(
n

k

)(
Fm+1

Fm+2

)k(
Fm
Fm+2

)n−k
a

(m−1)
k +

(
Fm
Fm+2

)n(
θ̄ + θ2a(m−2)

n

)
.

This recursion is obtained based on the following idea: if among the n random
Fibonacci strings there are any strings having the first digit 0 then the minimum
value will be attained by (at least) one of these strings. In this case the first

digit scales the recursively determined minimum a
(m−1)
n by the factor θ. If all n

random Fibonacci strings start with 10 then the value of the recursively determined

minimum a
(m−2)
n is scaled by the factor θ2 and increased by the value θ̄. These

observations easily follow from (1.4).
Now by taking the limit m→∞ we get:

an = θ

n∑

k=1

(
n

k

)
α−kα−2(n−k)ak + α−2n

(
θ̄ + θ2an

)
, for all integers n ≥ 1. (2.1)

Thus we have proven the following

Theorem 1. The average minimum value among n Fibonacci words with respect
to the Cantor-Fibonacci distribution satisfies the recursion

an = θ

n∑

k=1

(
n

k

)
α−kα−2(n−k)ak + α−2n

(
θ̄ + θ2an

)
, for all integers n ≥ 1.

Remarks. For computational reasons it is convenient to set a0 = 0.
In order to compute the elements an inductively, for n = 1, 2, . . . , one can rewrite
the recursion (2.1):

an =
1

1− α−nθ − α−2nθ2

(
θ
n−1∑

k=1

(
n

k

)
α−kα−2(n−k)ak + α−2nθ̄

)
. (2.2)
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2.2. The asymptotics of the average minimum an. The recurrence in (2.1) is
useful for the study of the asymptotic behaviour of the average minimum an, for
n→∞.

We introduce the exponential generating function

A(z) =
∑

n≥0

an
zn

n!
.

From (2.1) we obtain, by multiplication by α2n,

α2nan = θ

n∑

k=1

(
n

k

)
αkak + θ̄ + θ2an,

implying

A(α2z) = θezA(αz) + θ̄(ez − 1) + θ2A(z).

This yields, by multiplication with e−α
2z,

e−α
2zA(α2z) = θe−α

2zezA(αz) + e−α
2z θ̄(ez − 1) + e−α

2zθ2A(z)

= θe−αzA(αz) + θ̄(e−αz − e−α2z) + e−α
2zθ2A(z).

Thus, for the Poisson transformed function Â(z) := e−zA(z) we have

Â(α2z) = θÂ(αz) + θ̄(e−αz − e−α2z) + e−αzθ2Â(z). (2.3)

As we are looking for the asymptotics of the average minimum an we are going to

study the behaviour of Â(z) for z →∞. This is based on the fact that an ∼ Â(n),
which can be justified by using the technique of depoissonisation (for details about
depoissonisation we refer to [5, 9]). The idea is to extract the coefficients an from
A(z) using Cauchy’s integral formula and the saddle point method.
Let us rewrite (2.3) as

Â(α2z) = θÂ(αz) +R(z), (2.4)

where R(z) = θ̄(e−αz−e−α2z)+e−αzθ2Â(z) is considered to be an auxiliary function
which we treat as a known function. These techniques have already been used in
earlier papers, see the references given in the introduction.

We compute the Mellin transform Â∗(s) of the function Â(z):

α−2sÂ∗(s) = θα−sÂ∗(s) +R∗(s),

i.e.,

Â∗(s) =
R∗(s)

α−2s − θα−s .

From here the function Â(z) can be obtained by the Mellin inversion formula (for
details regarding the Mellin transform we refer to [2]),

Â(z) =
1

2πi

∫ c+i∞

c−i∞
Â∗(s) · z−sds =

1

2πi

∫ c+i∞

c−i∞

R∗(s)
α−2s − θα−s · z

−sds,

where 0 < c < − logα θ.
We shift the integral to the right and take the residues with negative sign into

account in order to estimate Â(z). The function under the integral has simple
poles at
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sk = − logα θ + 2πik
logα , k ∈ Z. Thus its residues with negative sign in sk, k ∈ Z,

are
1

logα
θ−2R∗

(
− logα θ +

2kπi

logα

)
zlogα θ− 2kπi

logα ,

with R∗(s) =
∫∞

0

(
θ̄(e−αz − e−α2z) + e−αzθ2Â(z)

)
zs−1dz.

In particular, for k = 0 the residue with negative sign is

1

logα
zlogα θ θ−2

∫ ∞

0

(
θ̄(e−αz − e−α2z) + e−αzθ2Â(z)

)
z− logα θ−1dz.

This term plays an essential role in the asymptotic behaviour of the average min-
imum an, as the contributions from the other poles only constitute small fluctua-
tions. By collecting all these residues into a periodic function, one gets the series

logα

θ2

∑

k∈Z
zlogα θ− 2kπi

logα

∫ ∞

0

(
θ̄(e−αz − e−αz) + e−α

2zθ2Â(z)
)
z− logα θ+

2kπi
logα−1dz.

Putting everything together, we have obtained the following result.

Theorem 2. The average an of the minimum value among n random sequences
with respect to the Cantor-Fibonacci distribution admits the asymptotic estimate

an = Φ(− logα n) · nlogα θ
(

1 +O
( 1

n

))
, (2.5)

for n → ∞, where Φ(x) is a periodic function having period 1 and known Fourier
coefficients. The mean (zeroth Fourier coefficient) of Φ is given by the expression

1

θ2 logα

∫ ∞

0

(
θ̄(e−αz − e−α2z) + e−αzθ2Â(z)

)
z− logα θ−1dz. (2.6)

Remark. One can compute this integral numerically by taking for Â(z) the
first few terms of its Taylor expansion, which can be found from the recurrence
(2.1) for the numbers an. In order to do this we rewrite (2.6) as

1

logα

(
θ̄2

θ
Γ(− logα θ) + θ2

∑

n≥0

an
n! α2n

Γ(n− logα θ)

)
.

For instance, for θ = 1
3 , this sum evaluates to 3.31661 . . . , and the quantity

a300/300logα θ to 3.27556 . . . .
Remark. The residues at sk for k 6= 0 may also be expressed in terms of

the Gamma function and involve the term Γ(n − sk). Since the Gamma function
decreases fast on vertical lines, these Fourier coefficients are small and the periodic
component of the asymptotic expansion has small amplitude. More about this can
be found in [9].

3. maximum

3.1. The problem setting. We use the notations of the previous section. Again
we pick at random (with respect to the Cantor-Fibonacci distribution), indepen-
dently, n Fibonacci words from Fm, for n ≥ 1. We apply the function value defined
in (1.3) to each of the chosen words and look for the maximum among these n
values. The same can be done with all random choices of n words of F∞. Let us
denote by b

(m)
n the average maximal value among all possible choices of n Fibonacci

words of length m. By taking the limit bn := limm→∞ b
(m)
n we obtain the average
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maximal value among all choices of n words of F∞. We are interested in the study
of the asymptotic behaviour of bn, for n→∞.

First we find a recurrence relation between bn and bk with 1 ≤ k ≤ n:

b(m)
n =

n∑

k=1

(
n

k

)(
Fm
Fm+2

)k(
Fm+1

Fm+2

)n−k(
θ̄ + θ2b

(m−2)
k

)
+

(
Fm+1

Fm+2

)n
θb(m−1)
n .

One can deduce the above relation proceeding analogously as in the study of the
minimum: If among the n random Fibonacci strings there are any strings starting
with 1, i.e., with 10, then the maximum value will be attained for (at least) one of

these strings and the value of the recursively determined maximum b
(m−2)
n is scaled

by the factor θ2 and increased by θ̄ . In the complementary case the value of the

recursively determined maximum b
(m−1)
n is scaled by the factor θ. By taking the

limit for m→∞ we obtain the relation

bn =

n∑

k=1

(
n

k

)
α−2kα−(n−k)

(
θ̄ + θ2bk

)
+ α−nθbn, (3.1)

and by rearrangement of terms we get the following

Theorem 3. The average maximum value among n Fibonacci words with respect
to the Cantor-Fibonacci distribution satisfies the recursion

bn = θ̄
(

1− 1

αn

)
+ θ2

n∑

k=1

(
n

k

)
α−2kα−(n−k)bk + α−nθbn, (3.2)

for all integers n ≥ 1.

Remarks. It is convenient to set b0 := 1
1+θ .

In order to compute the elements bn, for n = 1, 2, . . . , one can rewrite the above
recursion as

bn =
1

1− α−2nθ2 − α−nθ

(
θ̄
(

1− 1

αn

)
+θ2

n−1∑

k=1

(
n

k

)
α−2kα−(n−k)bk

)
, n ≥ 1. (3.3)

3.2. The asymptotics of the average maximum bn. Our goal is now to study
the asymptotic behaviour of bn, for n→∞. We proceed analogously to the previous
section, but here R and Φ denote new functions, related to the behaviour of the
average maximum.
Since we expect bn to approach value(0.10101010 . . . ) = 1

1+θ , we set bn := 1
1+θ − cn

for all integers n ≥ 0 and study the behaviour of cn in order to get the desired
information about bn.

We look for a recurrence relation for cn. We rewrite (3.3) as

1

1 + θ
− cn = θ

(
1− 1

αn

)
+ α−nθ2

n∑

k=1

(
n

k

)
α−k

( 1

1 + θ
− ck

)
+ α−nθ

( 1

1 + θ
− cn

)
,

which leads us to
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cn = −θ
(

1− 1

αn

)
− α−n θ2

1 + θ

n∑

k=1

(
n

k

)
α−k

+ α−n θ2
n∑

k=1

(
n

k

)
α−kck −

θ

1 + θ
α−n +

1

1 + θ
+ α−nθcn,

and herefrom

cn = α−n
(
θ̄ − θ

1 + θ

)
− θ +

1

1 + θ
− α−n θ2

1 + θ

((
1 +

1

α

)n
− 1

)

+ α−nθ2
n∑

k=1

(
n

k

)
α−kck + α−nθcn,

which finally leads us to

αncn =
θ̄

1 + θ
+ θ2

n∑

k=1

(
n

k

)
α−kck + θcn. (3.4)

Now we proceed analogously to the case of the minimum.

We rewrite (3.4) in terms of the exponential generating function C(z) =
∑
n≥0 cn

zn

n! ,

and get for the Poisson transformed function Ĉ(z) = C(z) · e−z,

Ĉ(z) = θ2Ĉ
( z
α2

)
+R(z), (3.5)

where R(z) = θ̄
1+θ (e−

z
α2 − e−z) + θ e−

z
α2 Ĉ

(
z
α

)
is considered to be an auxiliary

function which we treat as a known function.

The next step is to compute the Mellin transform Ĉ∗(s) of the function Ĉ(z) and
then to apply the Mellin inversion formula in order to “recuperate” the function

Ĉ(z). By proceeding for cn analogously to the previous section we get for bn =
1

1+θ − cn the following

Theorem 4. The average bn of the maximum value among n random sequences
with respect to the Cantor-Fibonacci distribution admits the asymptotic estimate

bn =
1

1 + θ
− Φ(− logα2 n) · nlogα θ

(
1 +O

( 1

n

))
, (3.6)

for n → ∞, where Φ(x) is a periodic function having period 1 and known Fourier
coefficients. The mean (zeroth Fourier coefficient) of Φ is given by the expression

1

logα2

∫ ∞

0

( θ̄

1 + θ
(e−

z
α2 − e−z) + θe−

z
α2 Ĉ

( z
α

))
z− logα θ−1dz. (3.7)

Remark. One can compute this integral numerically by taking for Ĉ(z) the
first few terms of its Taylor expansion, which can be found by taking into account
the relation cn = 1

1+θ − bn, for n ≥ 0 and the recurrence (3.2) for bn, for n ≥ 1.

For this purpose we can rewrite the expression in (3.7) as

θ̄2

θ2 logα2
Γ(− logα θ) +

θ

logα2

∑

n≥0

cn
n! αn

Γ(n− logα θ).
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Again, for θ = 1
3 , this series evaluates to 5.35114 . . . , and c300/300logα θ to

5.27105 . . . .

4. Generalisations

4.1. The d-th minimum, d ≥ 1. Let d ≥ 1 be a fixed integer. For n ≥ d let Mn,d

be the average value of the d-smallest element. In the notation of the previous
sections, an = Mn,1 and bn = Mn,n.

Here is the general recursion:

Theorem 5. Let d ≥ 1 be a fixed integer. The average value of the d-th minimum
among n random Fibonacci words with respect to the Cantor-Fibonacci distribution
satisfies the recursion

Mn,d = θ

n∑

k=d

(
n

k

)
α−kα−2(n−k)Mk,d +

d−1∑

k=0

(
n

k

)
α−kα−2(n−k)

(
θ̄ + θ2Mn−k,d−k

)
,

(4.1)
for all integers n ≥ d.

Our aim is now to pass, analogously to the previous sections, from the above
recurrence to an equation in terms of generating functions.
We define the exponential generating function

Ad(z) :=
∑

n≥d
Mn,d

zn

n!
,

for any fixed integer d ≥ 1.
By multiplying (4.1) by α2n zn

n! and then summing up for n ≥ d we obtain

Ad(α
2z) = θezAd(αz) +Kd(z),

where

Kd(z) :=
∑

n≥d

zn

n!

d−1∑

k=0

(
n

k

)
αk
(
θ̄ + θ2Mn−k,d−k

)
.

This implies

e−α
2zAd(α

2z) = θe(1−α2)zAd(αz) + e−α
2zKd(z),

i.e., for the Poisson transformed function Âd(z) := e−zAd(z),

Âd(α
2z) = θÂd(αz) +Rd(z), (4.2)

with Rd(z) = e−α
2zKd(z).

Remark. One can easily check that, as expected, for d = 1 the function Rd(z)
coincides with R(z) occurring in Section 2.
It is easy to see that from here on the computations leading to the asymptotic
behaviour of Mn,d follow exactly those shown in Section 2, whereas in all formulæ
containing R(z) we will replace this by the function Rd(z) defined above. (We
leave these details to the reader as a straightforward exercise.) Thus we obtain the
following result.
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Theorem 6. The average Mn,d of the d-th minimum value among n random se-
quences with respect to the Cantor-Fibonacci distribution admits the asymptotic
estimate

Mn,d = Φd(− logα n) · nlogα θ
(

1 +O
( 1

n

))
, (4.3)

for n→∞, where Φd(x) is a periodic function having period 1 and known Fourier
coefficients. The mean (zeroth Fourier coefficient) of Φd is given by the expression

1

θ2 logα

∫ ∞

0

(
e−α

2z
∑

n≥d

zn

n!

d−1∑

k=0

(
n

k

)
αk
(
θ̄ + θ2Mn−k,d−k

))
z− logα θ−1dz. (4.4)

4.2. The (`+1)-st maximum Mn,n−`, ` ≥ 0. Rewriting (4.1) in terms of Mn,n−`,
we get

Theorem 7. Let l ≥ 0 be a fixed integer. The average value Mn,n−` of the (`+1)-
st maximum among n random Fibonacci words with respect to the Cantor-Fibonacci
distribution satisfies the recursion

Mn,n−` =

n∑

k=`+1

(
n

k

)
α−2kα−(n−k)(θ̄+θ2Mk,k−l)+θ

∑̀

k=0

(
n

k

)
α−2kα−(n−k)Mn−k,n−`,

(4.5)
for all n ≥ `+ 1.

As in the previous sections, we use the recursion (4.5) in order to deduce an
equation for the generating functions.
Since we expect Mn,n−` to approach value(0.10101010 . . . ) = 1

1+θ for n → ∞, we

set, analogously to Section 3, Mn,n−` := 1
1+θ − Pn,n−` for all integers n ≥ ` + 1,

and study the behaviour of Pn,n−` for n→∞.

With the above substitution (4.5) becomes

1

1 + θ
− Pn,n−` =

n∑

k=`+1

(
n

k

)
α−2kα−(n−k)

(
θ̄ + θ2

( 1

1 + θ
− Pk,k−`

))

+ θ
∑̀

k=0

(
n

k

)
α−2kα−(n−k)

( 1

1 + θ
− Pn−k,n−`

)
,

for all integers n ≥ `+ 1.
We rearrange some terms, multiply by αn z

n

n! and sum up for n ≥ `+ 1, and finally
introduce the exponential generating function

C`(z) =
∑

n≥`+1

Pn,n−`
zn

n!

to obtain

C`(αz) = θ2ezC`(
z

α
) +H`(z),
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where

H`(z) =
1

1 + θ

∑

n≥`+1

αnzn

n!

+
∑

n≥`+1

(
θ
∑̀

k=0

(
n

k

)
α−kPn−k,n−` −

θ

1 + θ

∑̀

k=0

(
n

k

)
α−k − 1

1 + θ

n∑

k=`+1

(
n

k

)
α−k

)
zn

n!

=
∑

n≥`+1

zn

n!

∑̀

k=0

(
n

k

)
α−k

(
θPn−k,n−` +

θ̄

1 + θ

)
.

Thus for the Poisson transformed function Ĉ`(z) = C(z) · e−z we deduce

Ĉ`(αz) = θ2Ĉ`(
z

α
) + e−αzH`(z), (4.6)

Herefrom we obtain, by substituting z = z/α,

Ĉ`(z) = θ2Ĉ`(
z

α2
) +Q`(z), (4.7)

where Q`(z) = e−zH`(
z
α ).

Remark. As one would expect, for ` = 0, Q`(z) coincides with the auxiliary
function R(z) that occurs in Section 3.
As in the generalisation of the average minimum, from here on the computations
leading to the asymptotic behaviour of Mn,n−` follow exactly those from the study
of the average maximum bn in Section 3, whereas in all formulæ in Section 3 con-
taining R(z) we will replace this by the function Q`(z) defined above. Thus one
gets the proof of the following theorem:

Theorem 8. The average Mn,n−` of the (`+1)-st maximum value among n random
sequences with respect to the Cantor-Fibonacci distribution admits the asymptotic
estimate

Mn,n−` =
1

1 + θ
− Φ`(− logα2 n) · nlogα θ

(
1 +O

( 1

n

))
, (4.8)

for n→∞, where Φ`(x) is a periodic function having period 1 and known Fourier
coefficients. The mean (zeroth Fourier coefficient) of Φ` is given by the expression

1

logα2

∫ ∞

0

(
e−z

∑

n≥`+1

zn

n!αn

∑̀

k=0

(
n

k

)
α−k

(
θPn−k,n−l +

θ̄

1 + θ

))
z− logα θ−1dz.

(4.9)

Of course, for numerical purposes, the constants in (4.4) and in (4.9) could be
expressed as a series involving Gamma functions.
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