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1. Introduction

The Probabilistic Method has been initiated by Paul Erdős [6] in order
to prove the existence of certain combinatorial objects. The principle idea is
to define a proper probability distribution on a class of (discrete) objects and
to show that the probability of a certain property is positive. Of course this
also proves that there exists such an object with this property. We will apply
this approach to various problems on random graphs.

However, the main goal of this course is to give an introduction to Stein’s
method that proves asymptotic normality for sums of (in some sense) weakly
dependent random variables. This method has turned out to be very successful,
in particular in random graph problems.

There is vast literature on these topics. We just mention few books that are
exclusively devoted to them [1, 5, 9, 10].

2. Lower Bound for the Ramsey Number

Let us start with a classical example:

Definition 2.1. The Ramsey number R(k, l) is the smallest number n such
that any 2-coloring of the edges on the conplete graph Kn on n vertices contains
either a monochromatic Kk (in Kn) of the first color or a monochromatic Kl

(in Kn) of the second color.

Ramsey’s theorem says that R(k, l) exists for all positive integers k and l.
For example, it is known that R(k, k) ≤ (4 + o(1))k. However, we are more
interested in lower bounds.

Theorem 2.2. We have R(k, k) > 2k/2 for all k ≥ 3.

Proof. We consider a complete graph Kn with vertex set {1, 2, . . .} and a ran-
dom coloring of the

(
n
2

)
edges with 2 colors. (Each edge is colored indepen-

dently and with equal probability 1
2
.) Let R ⊆ {1, 2, . . .} a set of size k and

AR the event

AR = {the induced subgraph of R is monochromatic}.
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Then

P(AR) = 21−(k
2) = 2

1

2(k
2)
.

Consequently

P{∃R ⊆ {1, 2, . . .} : |R| = k, AR occurs} ≤
(
n

k

)
21−(k

2).

If n = b2k/2c then (
n

k

)
21−(k

2) < 2
nk

k!

1

2k2/2−k/2
≤ 2

2k/2

k!
< 1.

Thus

P{∀R ⊆ {1, 2, . . .} : |R| = k, R is not monochromatic} > 0

and it follows that there exists a 2-coloring of Kn for which each induced
subgraph of size k is not monochromatic. �

Note that the proof of Theorem 2.2 also shows that there almost always1

exists no monochromatic Kk in a random coloring of Kn with k = b2 log2 nc.
We just have to observe that 2 2k/2/k! → 0 as k →∞.

3. First Moment Method

The first moment EX of a random variable X gives only a partial informa-
tion on the behaviour of X. On the other hand it is (usually) easy to compute.
For example, if X can be written as a sum of random variables, X =

∑
Yi

then we have

EX =
∑

i

EYi

even if there is strong dependence between the Yi.
Nevertheless, there are at least some usueful properties for X that can be

deduced from EX.

Theorem 3.1. Suppose that EX is finite then

P{X ≤ EX} > 0 and P{X ≥ EX} > 0.

Proof. First note that if Y is random variable that is strictly positive, Y > 0,
then we also have EY > 0.

Now, if P{X ≤ EX} = 0 then P{X > EX} = 1 and

EX = E
(
I[X>E X] ·X

)
= EX + E

(
I[X>E X] · (X − EX)

)
> EX

leads to a contradiction. �

Another theorem that applies for non-negative integer values random vari-
ables is also quite useful.

1We use the notion almost always as an abbreviation for the property that the probability
that a certion condition holds converges to 1 as the size of the problem goes to the infinity.
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Theorem 3.2. Suppose that X is a discrete random variable with non-negative
integer values. Then

P{X > 0} ≤ EX.

Proof.

EX =
∑
k≥0

k P{X = k} ≤
∑
k≥1

P{X = k} = P{X > 0}.

�

As an first application we prove Theorem 3.2 a second time.
As above let Kn denote the complete graph of n nodes and adjust Kn with

a random edge coloring (with 2 colors). Fix k and let Sn,k denote the set of
all subgraphs of Kn with k nodes. Then

Xn :=
∑

R∈Sn,k

I[R is monochromatic]

is the (random) number of monochromatic subgraphs ofKn that are isomorphic
to Kk. Hence

EXn =
∑

R∈Sn,k

P{R is monochromatic}

=

(
n

k

)
2 2−(k

2).

Thus, by the first moment method it follows that

P{Xn > 0} ≤
(
n

k

)
21−(k

2)

and we can proceed as above.

We apply these first moment methods to three other problems.

Theorem 3.3. Let v1, . . . , vn ∈ Rn with unit length |vi| = 1. Then there exist
ε1, . . . , εn ∈ {−1,+1} with

|ε1v1 + · · ·+ εnvn| ≤
√
n

and also there exits ε1, . . . , εn ∈ {−1,+1} with

|ε1v1 + · · ·+ εnvn| ≥
√
n.

Proof. Consider the random number

X =

∣∣∣∣∣
n∑

i=1

εivi

∣∣∣∣∣
2

,

where ε ∈ {−1, 1} are independently and randomly chosen with equal proba-
bility 1

2
. Since

X =
n∑

i=1

n∑
j=1

εiεjvi · vj
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we have

EX =
n∑

i=1

n∑
j=1

E (εiεj)vi · vj =
n∑

i=1

vi · vi = n.

Hence, a direct application of Theorem 3.1 completes the proof. �

Definition 3.4. A set of nodes I in a graph G is called independent if no
two nodes of I are adjacent.

The independence number α(G) of G is the maximal size of an indepen-
dent set of nodes of G.

Theorem 3.5. Let G be a graph with n nodes and m ≥ n/2 edges. Then

α(G) ≥ n2

4m
.

Proof. We set p = n/(2m). By assumption 0 ≤ p ≤ 1. Let V = {v1, v2, . . . , vn}
denote the vertex set of G. We now choose a random subset S of V where
each vertex is chosen independently with probability p, that is P{vi ∈ S} = p.
Let X = |S| the (random) size of S and Y the (random) number of edges in
G|S. Equivalently,

Y =
∑
e∈E

I[both endpoints of e are in S],

where E denotes the edge set of G. Hence,

EY =
∑
e∈E

p2 = mp2.

Further EX = np and consequently

E (X − Y ) = np−mp2 =
n2

4m
.

Thus, there exists some specific S for which the number of vertices of S minus
the number of edges of S is at least n2/(4m). Select one vertex from each edge
of S and delete it. This leaves a set S∗ with at least n2/(4m) vertices. Since
all edges of S have been destroyed the set S∗ is an independent set. Hence
α(G) ≥ n2

4m
. �

Definition 3.6. The girth girth(G) of a graph G is the size of the shortest
cycle.

The chromatic number χ(G) of a graph G is the smallest number k such
that there exists a regular k-coloring of the vertices of G, that is, a coloring of
at k colors of the vertices such that adjacent vertices have different colors.

Theorem 3.7 (Erdős 1959). For all (positive integers) k and ` there exits a
graph G with girth(G) > ` and χ(G) > k.

Proof. Fix a positive θ < 1/` and set p = nθ−1, where n will be chosen suffi-
ciently large. Let {1, 2, . . . , n} denote the vertex set of a random graph where
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we include (undirected) edges between different vertices independently with
probability p. 2

Let X denote the number of cycles of size at most `. Then

EX =
∑̀
i=3

(n)i

2i
pi ≤

∑̀
i=3

ni

2i
n(θ−1)i =

∑̀
i=3

nθi

2i
= o(n)

as θ` < 1. In particular with

EX ≥ E
(
X · I[X≥n/2]

)
≥ n

2
P{X ≥ n/2}

this implies

P{X ≥ n/2} = o(1).

Next we use the fact that

P{α(G) ≥ m} = P{∃S ⊆ {1, 2, . . . , n} : |S| = m, S is independent}

≤ E

∑
|S|=m

I[S is independent]


=
∑
|S|=m

P{S is independent}

=

(
n

m

)
(1− p)(

m
2 )

≤ nm

m!
e−p(m

2 )

≤ (ne−p(m−1)/2)m

If we use m = d3
p
log ne then ne−p(m−1)/2 → 0 as n → ∞ and consequently

P{α(G) ≥ m} → 0.
Let n be sufficiently large so that both these events have probability less

that 1
2
. Then there is a specific G with less than n/2 cycles of length at most

` and with α(G) < 3n1−θ log n. Remove from G a vertex from each cycle of
length at most `. This gives a graph G∗ with at least n/2 vertices. G∗ has
girth greater that ` and α(G∗) ≤ α(G). Thus,

χ(G∗) ≥ |G∗|
α(G)

≥ n/2

3n1−θ log n
=

nθ

6 log n
.

Finally we just have to choose n sufficiently large that nθ/(6 log n) > k. �

4. Second Moment Method

The second moment E (X2) and the variance VX = E (X2) − (EX)2 =
E ((X − EX)2) give much more insight into the behaviour of X than the
first moment EX since the variance takes the deviation from the mean into

2This is exactly the random graph model G(n, p) that will be discussed in more detail later.
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account. This observation is quantified by Chebyshev’s Inequality. The use of
Chebyshev’s Inequality is also called the Second Moment Method.

Theorem 4.1 (Chebyshev’s Inequality). Suppose that X has finite second
moment. Then

(4.1) P{|X − EX| ≥ λ
√

VX} ≤ 1

λ2
.

Proof. By definition we have

VX = E ((X − EX)2)

≥ E
(
(X − EX)2I[|X−E X|≥κ]

)
≥ κ2P{|X − EX| ≥ κ}.

Hence, with κ = λ ·
√

VX we get (4.1). �

As a consequence we get the following very useful estimate that applies for
non-negative integer values random variables.

Theorem 4.2. Suppose that X is a discrete random variable with non-negative
integer values. Then

(4.2) P{X = 0} ≤ VX
(EX)2

.

Proof. Set λ = EX/
√

VX in (4.1). Then

P{X = 0} ≤ P{|X − EX| ≥ λ
√

VX} ≤ 1

λ2
=

VX
(EX)2

.

�

Note that (4.2) can be slightly sharpened. From EX = E (X · I[X>0]) ≤√
EX2 ·

√
P{X > 0} we get

P{X > 0} ≥ (EX)2

EX2

which is equivalent to P{X = 0} ≤ VX/EX2. This also complements the
inequality P{X > 0} ≤ EX.

Another application of Chebychev’s inequality is the following property.

Theorem 4.3. Suppose that Xn is a sequence of random variables with EXn →
∞ and E (Xn)2 ∼ (EXn)2 as n → ∞. Then we have almost always Xn > 0
and

Xn

EXn

→ 1.

Proof. For every ε > 0 (4.1) implies

P{|Xn − EXn| ≥ εEXn} ≤
VXn

ε2(EXn)2
.

Now note that E (Xn)2 ∼ (EXn)2 is equivalent to VXn = o((EXn)2). Thus,
P{|Xn−EXn| ≥ εEXn} → 0 and consequentlyXn ∼ EXn almost always. �
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The limit relation P{|Xn − EXn| ≥ εEXn} → 0 also says that X is con-
centrated around its mean. Thus, the property E (Xn)2 ∼ (EXn)2 implies this
concentration property.

We now apply this procedure to the above example, where X = Xn de-
notes the number of copies os Kk in a random graph G(n, p) (see below). For
simplicity we will only count triangles, that is, k = 3.

Let T denote the set of triangles in G(n, p). Then

X =
∑

1≤i<j<k≤n

I[(i,j,k)∈T ]

and

EX =
∑

1≤i<j<k≤n

P{(i, j, k) ∈ T } =

(
n

3

)
p3.

When we compute the second moment we have to be a little bit more careful.
Formally we have

EX2 = E

( ∑
1≤i1<i2<i3≤n

∑
1≤j1<j2<j3≤n

I[(i1,i2,i3)∈T ] · I[(j1,j2,j3)∈T ]

)

= E

( ∑
1≤i1<i2<i3≤n

∑
1≤j1<j2<j3≤n

I[(i1,i2,i3),(j1,j2,j3)∈T ]

)
=

∑
1≤i1<i2<i3≤n

∑
1≤j1<j2<j3≤n

P{(i1, i2, i3), (j1, j2, j3) ∈ T }

Here we have to distinguish between several cases.

(1) If |{i1, i2, i3} ∩ {j1, j2, j3}| = 3, that is, i1 = j1, i2 = j2, and i3 = j3
then

P{(i1, i2, i3), (j1, j2, j3) ∈ T } = p3

and there are
(

n
3

)
cases of that kind.

(2) If |{i1, i2, i3} ∩ {j1, j2, j3}| = 2 then

P{(i1, i2, i3), (j1, j2, j3) ∈ T } = p5

and there are 12
(

n
4

)
cases of that kind.

(3) If |{i1, i2, i3} ∩ {j1, j2, j3}| ≤ 1 then the events {(i1, j1, k1) ∈ T } and
{(i2, j2, k2) ∈ T } are independent and consequently

P{(i1, j1, k1), (i2, j2, k2) ∈ T } = p6.

Thus,

EX2 =

(
n

3

)
p3 + 12

(
n

4

)
p5 +

((
n

3

)2

−
(
n

3

)
− 12

(
n

4

))
p6

= (EX)2 +

(
n

3

)
p3(1− p3) + 12

(
n

4

)
p5(1− p).



8 MICHAEL DRMOTA

Here we have EX2 ∼ (EX)2 (and also EX → ∞) if and only if np → ∞.
Assuming that we obain that almost always the number of triangles X in
G(n, p) is approximated by the expected number of triangles EX =

(
n
3

)
p3.

Obviously the same procecure works for general k ≥ 3, and it is also possible
to cover the even more general case of counting subgraphs that are isomorphic
to a given graph H but we will not work out this case.

5. Random Graphs

In the previous examples we have usesd several times a random graph (or a
random coloring on the complete graph). We will now introduce a notion that
makes these things precise and has also become standard in the literature.

Definition 5.1. Let n be a positive integer and p a real number with 0 ≤ p ≤ 1.
The random graph G(n, p) is a probability space over the set of graphs on
the vertex set {1, 2, . . . , n} determined by

P{(i, j) ∈ G} = p

for all possible (undirected) edges (i, j) with 1 ≤ i, j ≤ and i 6= j with these
events mutually independent.

Similarly one also considers random graphs G(n,m), where m is also a given
integer with 0 ≤ m ≤

(
n
2

)
. Here one considers the set of all graphs on the set

of vertices {1, 2, . . . , n} with exactly m (undirected) edges where each of these
graphs is equally likely. Due to the law of large numbers G(n,m) will have
very similar properties as G(n, p) with p = m/

(
n
2

)
. However, in this course we

will only work the the G(n, p)-model.
We have implicitly used this kind of notion in several previous examples.

For example a random coloring is modelled by G(n, 1
2
). In this context we

have counted (more or less) the number X of subgraphs that are isomorphic
to as complete graph Kk and have determined its expected value. For general
p we get (in completely the same way)

EX =

(
n

k

)
p(

k
2).

We now come back to coloring problems. The next property for the chro-
matic number in G(n, 1

2
) is due to Bollobas.

Theorem 5.2. We have, almost always in G(n, 1
2
),

χ(G) ∼ n

2 log2 n
.

Sketch of the proof. We will give a full proof of the upper bound. The (com-
plicated) proof of the lower bound is just indicated.

Let α(G) denote the independece number of G. The proof of Theorem 2.2
also shows (and that has been also noted after its proof) that almost always
there exists no complete subgraph Kb2 log2 nc in G(n, 1

2
). This also holds for the
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complement. Consequently almost always there is no independent set of size
b2 log2 nc. Hence,

χ(G) ≥ n

α(G)
≥ n

2 log2 n
.

For the proof of the lower bound we use the abbreviation m = bn/(log n)4c.
For any set S of m vertices let G|S denote the restriction of to G to S. Ob-
viously, G|S has the distribution G(m, 1

2
). Let k = k(m) = k0(m) − 4, where

k0 = k0(n) is defined by(
n

k0 − 1

)
2−(k0−1

2 ) > 1 >

(
n

k0

)
2−(k0

2 )

and note that k ∼ 2 log2m ∼ 2 log2 n.
The crutial step is to show an inequality of the form

(5.1) P{α(G|S) < k} < e−m2+o(1)

.

The proof of (5.1) goes beyond the scope of this course (it can be either proved
via Azuma’s inequality on martingales or with help of correlation estimates).

There are now
(

n
m

)
< 2n = 2m1+o(1)

such sets S. Hence

P{α(G|S) < k for some m-set S} < 2m1+o(1)

e−m2+o(1)

= o(1).

That is, always always every m vertices contain a k-element independent set.
Now suppose that G has this property. We pull out k-element independent

sets and give each a distint color until there are less than m vertices left. Then
we give each point a distinct color. By this procedure

χ(G) ≤
⌈
n−m

k

⌉
+m ≤ n

k
+m

=
n

2 log2 n
(1 + o(1)) + o

(
n

log2 n

)
=

n

2 log2 n
(1 + o(1)),

and this occurs for almost all G. �

6. Central Limit Theorem

Definition 6.1. A random variable Z is said to be normally distributed (or
Gaussian) with mean µ and variance σ2 if its distribution function FZ(x) =
P{Z ≤ x} is given by

FZ(x) = Φ

(
x− µ

σ

)
,

where

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt.
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We will write L(Z) = N(µ, σ2).
Note that the density of Z is given by

fZ(x) =
1√
2πσ

e−(x−µ)2/(2σ2)

and the characteristic function by

ϕZ(t) = E eitZ = eiµt− 1
2
σ2t2 .

Definition 6.2. We say that a sequence of random variables Xn converges
weakly to a random variable X:

Xn
d−→ X

if we have

Eh(Xn) → Eh(X)

for all continuous and bounded functions h : R → R.

It is well known that Xn
d−→ X is equivalent to

(6.1) lim
n→∞

FXn(x) = FX(x)

for all points of continuity of FX(x). If X is a continuous random variable,
that is, FX(x) is continuous, then convergence in (6.1) is uniform. This means
that

‖FXn − FX‖∞ = sup
x∈R

|FXn(x)− FX(x)| → 0.

Another criterion is that

(6.2) E eitXn → E eitX

for all t ∈ R (Levy’s criterion). This criterion is even more powerful. Suppose
that Xn is a sequence of random variables such that for all t ∈ R the limit

ψ(t) := lim
n→∞

E eitXn

exists and ψ(t) is a function that is continous at t = 0. Then ψ(t) is the

characteristic function of a random variable X for which we have Xn
d−→ X.

With help of these preliminaries we formulate the most easy variant of a
central limit theorem.

Theorem 6.3. Suppose that Y1, Y2, . . . are iid3 random variables with finite
second moment EY 2

i < ∞. Then Sn = Y1 + Y2 + . . . + Yn satisfies a central
limit theorem, that is,

(6.3) S̃n =
Sn − ESn√

VSn

d−→ N(0, 1).

3The abbreviation iid denotes independently and identically distributed.
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Proof. The proof usues Levy’s criterion (6.2). Set µ = EYi, σ
2 = VYi =

E (Y 2
i )− (EYi)

2 and note that ESn = nµ and VSn = nσ2.
By definition we have

ϕYi
(t) = E eitYi = eitµ− 1

2
σ2t2 (1+o(1))

as t→ 0. Hence, we get, as n→∞,

ϕS̃n
(t) = E eitS̃n

= e−it
√

nµ/σE e(it/(
√

nσ)(Y1+···+Yn)

= e−it
√

nµ/σ
(
E e(it/(

√
nσ)Y1

)n

= e−it
√

nµ/σeit
√

nµ/σ− 1
2
t2 (1+o(1))

= e−
1
2
t2 (1+o(1)) → e−

1
2
t2 .

Thus, by Levy’s criterion we have proved (6.3). (Note that the o(1)-term is
first used for t → 0 and then for n → ∞ since we use apply the first limit
relation for t/

√
n.) �

We can be much more precise. For example, if the third moments E |Yi|3 are
bounded then also get a uniform approximation of the form

(6.4) P{Sn ≤ nµ+ x
√
nσ} = Φ(x) +O

(
E |Yi − µ|3

σ3
√
n

)
.

7. Stein’s Method

In contract to the preceding method that makes use of Levi’s theorem,
Stein’s method is based on a completely different approach.

Lemma 7.1. A random variable Z is normally distributed with mean µ and
variance σ2 (that is, L(Z) = N(µ, σ2)4) if and only if

(7.1) E (Z − µ)f(Z) = σ2E f ′(Z)

holds for all smooth functions f with f(x)e−
1
2
x2 → 0 as |x| → ∞ and finite

integral
∫∞
−∞ |xf(x)|e− 1

2
x2
dx.

Proof. We just give a proof for µ = 0 and σ2 = 1.
First suppose that L(Z) = N(0, 1). Hence,

E f ′(Z) =
1√
2π

∫ ∞

−∞
f ′(x)e−

1
2
x2

dx

=
1√
2π
f(x)e−

1
2
x2

∣∣∣∣∞
−∞

+
1√
2π

∫ ∞

−∞
xf(x)e−

1
2
x2

dx

= 0 + EZf(Z).

4We denote by L(X) the law of a random variable X, that is, the probability measure on R
that is induced by X.
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Conversely, suppose that (7.1) holds. Then for every bounded (and abso-

lutely integrable) function g(x) with
∫∞
−∞ g(x)e−

1
2
x2
dx = 0 there exists f(x)

with

f ′(x)− xf(x) = g(x)

that satisfies f(x)e−
1
2
x2 → 0 as |x| → ∞ and

∫∞
−∞ |xf(x)|e− 1

2
x2
dx < ∞, too.

We just have to set

f(x) = e
1
2
x2

∫ x

−∞
g(y)e−

1
2
y2

dy

or equivalently

f(x) = −e
1
2
x2

∫ ∞

x

g(y)e−
1
2
y2

dy

Thus, if we use

g(x) = I[x≤x0] − Φ(x0)

then

0 = E f ′(Z)− EZf(Z) = P{Z ≤ x0} − Φ(x0)

which says that L(Z) = N(0, 1). �

For every bounded absolutely integrable function h we set

Nh = Eh(Z/σ) =
1√
2π

∫ ∞

−∞
h(x/σ)e−

1
2
x2

dx.

Lemma 7.2. For every bounded function h with bounded derivative there exists
a function f with bouded second derivative with

(7.2) σ2f ′(w)− wf(w) = h(w/σ)−Nh.

f is explicitly given by

(7.3) f(x) = e
1
2
x2

∫ x

−∞
(h(y/σ)−Nh) e−

1
2
y2

dy

and satisfies

(7.4) ‖f ′′‖∞ ≤ Kuniv · (‖h‖∞ + ‖h′‖∞)

for a universal constant Kuniv > 0.

The equation (7.2) is also called Stein’s equation.

Proof. Formula (7.3) is obvious, compare to the proof of the preceding Lemma 7.1.
The non-trivial part is the proof of (7.4).

Again we restrict ourselves to the case σ2 = 1. We set h(x) = h(x) − Nh.
(Observe that Nh = 0 and that ‖h‖∞ ≤ 2‖h‖.) We use the abbreviations

H0 = ‖h‖∞, H1 = ‖h′‖∞ = ‖h′‖∞
and

F0 = ‖f‖∞, F1‖f ′‖∞, F11 = ‖(xf)′‖∞, F2 = ‖f ′′‖∞.
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Further we set

c1 = sup
x≥0

∣∣∣∣x(1− xe
1
2
x2

∫ ∞

x

e−
1
2
u2

du

)∣∣∣∣ ,
c2 = sup

x≥0
e

1
2
x2

∫ ∞

x

e−
1
2
u2

du,

c3 = sup
x≥0

x e
1
2
x2

∫ ∞

x

e−
1
2
u2

du.

(The values of these constants is of no importance, however, note that c3 = 1.)
The essence of the proof is to show relations betweenH0, H1 and F0, F1, F11, F2.

In particular we show that

(1) F0 ≤ c2H0,
(2) F1 ≤ 2H0,
(3) F11 ≤ (c1 + c2)H0 +H1,
(4) F2 ≤ (c1 + c2)H0 + 2H1.

Of course, (4) implies (7.4) and proves the lemma.
First, (1) follows directly from (7.3). We just note that we also have

f(x) = −e
1
2
x2

∫ ∞

x

(
h(y)

)
e−

1
2
y2

dy.

For the proof of (2) we just have to use the relation f ′(x) = xf(x) + h(x)
which gives F1 ≤ ‖xf(x)‖∞ +H0. Further (7.3) directly implies ‖xf(x)‖∞ ≤
c3H0 = H0 and consequently (2).

Next observe that (xf(x))′ = f(x) +x2f(x) +xh(x). We already know that
F0 ≤ c2H0. Thus, we can concentrate on x2f(x)+xh(x). Here we use the fact
that

x2f(x) + xh(x) = −x2e
1
2
x2

∫ ∞

x

h(y)e−
1
2
y2

dy + xh(x)

= −x2e
1
2
x2

∫ ∞

x

h(y)e−
1
2
y2

dy + xe
1
2
x2

∫ ∞

x

yh(y)e−
1
2
y2

dy

− xe
1
2
x2

∫ ∞

x

yh(y)e−
1
2
y2

dy + xh(x)

= x2e
1
2
x2

∫ ∞

x

h(y)
(y
x
− 1
)
e−

1
2
y2

dy

− xe
1
2
x2

∫ ∞

x

h
′
(y)e−

1
2
y2

dy.

From this representation we obtain

‖x2f(x) + xh(x)‖∞ ≤ c1H0 +H1

and, thus, (3).
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Finally, by applying (3) we have

|f ′(x+ t)− f ′(x)| = |h(x+ t)− h(x) + (x+ t)f(x+ t)− xf(x)|
≤ |t|H1 + |t|F11

≤ |t| ((c1 + c2)H0 + 2H1).

which implies F2 ≤ (c1 + c2)H0 + 2H1 as proposed. �

In what follows we will use the following norm ‖h‖ of a function h that is
defined by

‖h‖ := Kuniv · (‖h‖∞ + ‖h′‖∞) .

Further, if P and Q are two probability measures then we introduce the dis-
tance

d1(P,Q) := sup
‖h‖≤1

|Eh(X)− Eh(Y )|

in which X and Y are random variables with L(X) = P and L(Y ) = Q. This
norm is maybe a little unusual but it perfectly fits to Stein’s method.

We note that d1(L(Xn),L(X)) → 0 is equivalent to weak convergence

Xn
d−→ X. There are also inequalities between this norm and several other

kinds of norms but we do not stress this problem here.

We now formulate the general situation. Suppose that a random variable
W can be composed in the following way: There is a finite (index) set I and
for every i ∈ I there is Ki ⊆ I, a subset of I with i ∈ Ki. Further there
are Xi,Wi, Zi, Zik,Wik, Vik square integrable random variables for i ∈ I and
k ∈ Ki with the following conditions:

(1) W =
∑
i∈I

Xi,

(2) EXi = 0 for i ∈ I,
(3) VW = 1,
(4) W = Wi + Zi for all i ∈ I and Wi is independent of Xi,

(5) Zi =
∑
k∈Ki

Zik for i ∈ I,

(6) Wi = Wik + Vik for i ∈ I and k ∈ Ki,
(7) Wik is independent of the pair (Xi, Zik) for i ∈ I and k ∈ Ki.

Theorem 7.3. Suppose that a random variable W decomposes as introduced
above. Then

d1 (L(W ), N(0, 1)) ≤ 1

2

∑
i∈I

E
(
|Xi|Z2

i

)
(7.5)

+
∑
i∈I

∑
k∈Ki

(
E |XiZikVik|+ E |XiZik| · E |Zi + Vik|

)
.
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Proof. The core of the proof is to show that

|EWf(W )− E f ′(W )|

≤ ‖f ′′‖∞ ·

(
1

2

∑
i∈I

E
(
|Xi|Z2

i

)
(7.6)

+
∑
i∈I

∑
k∈Ki

(
E |XiZikVik|+ E |XiZik| · E |Zi + Vik|

))
.

Now, if h is a smooth bounded function with bounded derivative then we can
find f(x) with f ′(x) − xf(x) = h(x) − Nh = h(x). Hence, if L(Z) = N(0, 1)
then

Eh(W )− Eh(Z) = E f ′(W )− EWf(W )

and (7.5) follows from Lemma 7.2.
The proof of (7.6) relies on Taylor’s expansion. First write

EWf(W )− E f ′(W ) = EWf(W )−
∑
i∈I

E (XiZif
′(Wi))

+
∑
i∈I

E (XiZif
′(Wi)−

∑
i∈I

∑
k∈Ki

E (XiZik) E f ′(Wik)(7.7)

+
∑
i∈I

∑
k∈Ki

E (XiZik) (E f ′(Wik)− E f ′(W )) ,

which is possible since

1 = EW 2 =
∑
i∈I

E (XiW )

=
∑
i∈I

E (Xi)E (Wi) +
∑
i∈I

E (XiZi)

=
∑
i∈I

E (XiZi)

=
∑
i∈I

∑
k∈Ki

E (XiZik).

First we have

Wf(W ) =
∑
i∈I

Xif(W )

=
∑
i∈I

Xi

(
f(Wi) + Zif

′(Wi) +
1

2
Z2

i f
′′(Wi + θiZi)

)
for some θi ∈ [0, 1]. Since Xi and Wi are independent we have E (Xif(Wi)) =
EXi · E f(Wi) and consequently

(7.8)

∣∣∣∣∣EWf(W )−
∑
i∈I

E (XiZif
′(Wi))

∣∣∣∣∣ ≤ ‖f ′′‖
2

·
∑
i∈I

E (|Xi|Z2
i ).
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Moreover,

XiZif
′(Wi) =

∑
k∈Ki

XiZikf
′(Wi)

=
∑
k∈Ki

XiZik (f ′(Wik + Vikf
′′(Wik + θikVik))

and, thus, ∣∣∣∣∣∑
i∈I

E (XiZif
′(Wi)−

∑
i∈I

∑
k∈Ki

E (XiZik) E f ′(Wik)

∣∣∣∣∣(7.9)

≤ ‖f ′′‖ ·
∑
i∈I

∑
k∈Ki

E |XiZikVik|

Finally, we use the decomposition Wik = Wi − Vik = W − Zi − Vik so that

f ′(Wik) = f ′(W )− (Zi + Vik)f
′′(W − θ(Zi + Vik))

which implies

(7.10) |E f ′(Wik)− E f ′(W )| ≤ ‖f ′′‖ · E |(Zi + Vik|.
Putting the three estimates (7.8), (7.9), and (7.10) together and inserting

them into the decomposition (7.7) we directly obtain (7.6). This completes
the proof of the theorem. �

The assumptions of the theorem look a little bit confusing and notationally
overloaded at a first sight. Therefore we will discuss it (and several modifica-
tions) in detail.

Suppose that we have iid random variables Y1, Y2, . . . with finite third mo-
ment. As above we set µ = EYi and σ2 = VYi. If we set

Xi =
Yi − µ√
nσ

then W = X1 + · · ·+Xn is exactly

W =
Y1 + · · ·+ Yn − µn√

nσ
.

Note that the Xi are iid, too. Further we can use the above decomposition
with Ki = {i} and

Zi = Xi,

Wik = Xk,

Vik = 0.

Then all assumptions are satisfied and we get the bound

d1 (L(W ), N(0, 1)) ≤ 1

σ3
√
n

(
1

2
E
(
|Yi − µ|3

)
+ E |Yi − µ|

)
.

This estimate is of the same form as (6.4).



THE PROBABILISTIC METHOD, RANDOM GRAPHS AND STEIN’S METHOD 17

Next we make a slight simplification. We call the decomposition of W
dissociated if we have Zik = Xk and (also a simple representation of Vik).
More precisely, this means that there are square integrabel random variables
Xi,Wi, Zi,Wik, Vik for i ∈ I and k ∈ Ki with the following conditions:

(1) W =
∑
i∈I

Xi,

(2) EXi = 0 for i ∈ I,
(3) VW = 1,

(4) W = Wi + Zi with Zi =
∑
k∈Ki

Xk for i ∈ I,

(5) Wi = W −
∑
k∈Ki

Xk is independent of Xi for i ∈ I,

(6) Wi = Wik + Vik with Vik =
∑

j∈Kk\Ki

Xj for i ∈ I and k ∈ Ki,

(7) Wik = W −
∑

j∈Ki∪Kk

Xj is independent of (Xi, Xk) for i ∈ I and k ∈ Ki.

In this case, Theorem 7.3 simplifies in the following way.

Theorem 7.4. Suppose that a random variable W decomposes in an dissoci-
ated way with the property that k ∈ Ki iff k ∈ Ki. Then

(7.11) d1 (L(W ), N(0, 1)) ≤ 2
∑
i∈I

∑
j,k∈Ki

(
E (|XiXjXk|)+E (|XiXj|) E |Xk|

)
.

Sketch of the Proof. One just has to show that

1

2

∑
i∈I

E
(
|Xi|Z2

i

)
+
∑
i∈I

∑
k∈Ki

(
E |XiZikVik|+ E |XiZik| · E |Zi + Vik|

)
≤ 2

∑
i∈I

∑
j,k∈Ki

(
E (|XiXjXk|) + E (|XiXj|) E |Xk|

)
,

where Zik = Xk, Zi =
∑

k∈Ki
Xk, and Vik =

∑
j∈Kk\Ki

Xj. We leave the details
to the reader. �

The situation gets even more transparent if we use the notion of a depen-
dency graph. Suppose that we have an index set I and as system of random
variables Xi for i ∈ I. A dependency graph L for this system is a graph with
vertex set I that has the property that whenever A,B are subsets of I that
are not inter connected by an edge then two subsystems (Xi : i ∈ A) and
(Xj : j ∈ B) are independent.

For every i ∈ I let Ki consists of i and of the neighbors of i in L. Then
the above decomposition (with Zi =

∑
k∈Ki

Xk, and Vik =
∑

j∈Kk\Ki
Xj) is

dissociated. Thus, we can directly apply Theorem 7.4 if we have a proper
dependency graph.
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8. Application to Random Graphs

We will finally apply Stein’s method to an example on random graphs. Let

I = {i = (i1, i2, i3) : 1 ≤ i1 < i2 < i3 ≤ n}
be the set of all subsets of {1, 2, . . . , n} of size 3. and et T denote the set of
triangles in G(n, p). Then

X =
∑
i∈I

I[i=(i1,i2,i3)∈T ]

counts the number of triangles. We already know that

EX =

(
n

3

)
p3

and

σ2 := VX =

(
n

3

)
p3(1− p3) + 12

(
n

4

)
p5(1− p).

We are only interested in the case where p ≤ 1
2

and EX →∞, that is,

np→∞ and 0 ≤ p ≤ 1

2
.

In this case we also have σ2 = VX →∞ We then set

Xi :=
1

σ

(
I[i=(i1,i2,i3)∈T ] − p3

)
and

W =
∑
i∈I

Xi =
X − EX√

VX
.

It is now possible to define a dependency graph L. The vertex set is (of
course) V (L) = I, and the edge set is given by

E(L) = {(i, j) : |{i1, i2, i3} ∩ {j1, j2, j3}| ≥ 2}.
It is immediately clear that L satisfies the proposed properties of a dependency
graph.

Now for every i = (i1, i2, i3) ∈ I we define

Ki = {k = (k1, k2, k3) ∈ I : |{i1, i2, i3} ∩ {k1, k2, k3}| ≥ 2}.
Note that |Ki| = 1 + 3(n − 3) for all i ∈ I. In particular we can apply
Theorem 7.4.

For this purpose we have to estimate∑
i∈I

∑
j,k∈Ki

(
E (|XiXjXk|) + E (|XiXj|) E |Xk|

)
.

For example, if i = j = k then we have

E (|XiXjXk|) = E (|Xi|3) =
1

σ3

(
p3(1− p3)3 + (1− p3)p9

)
≤ 2p3

σ3
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which contributes to
1

σ3

(
n

3

)
p3 = O

(
n3p3

σ3

)
.

In a similar way we can deal with the other cases and end up with an upper
bound of the form

d1 (L(W ), N(0, 1)) = O

(
n3p3(1 + np2)2

n9/2p9/2(1 + np2)3/2

)
= O

(
(np)−3/2(1 + np)1/2

)
.

Thus, we have proved the following theorem.

Theorem 8.1. Suppose that 0 < p ≤ 1
2

and np → ∞. Then the number of
triangles in a random graph G(n, p) satisfies a central limit theorem.
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