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Introduction

The Probabilistic Method has been initiated by Paul Erdős (1947)

in order to prove the existence of certain combinatorial objects. The

principle idea is to define a proper probability distribution on a class of

(discrete) objects and to show that the probability of a certain property

is positive. Of course this also proves that there exists such an object

with this property. We will apply this approach to various problems on

random graphs.

However, the main goal of this course is to give an introduction to

Stein’s method that proves asymptotic normality for sums of (in some

sense) weakly dependent random variables. This method has turned

out to be very successful, in particular in random graph problems.
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Lower Bound for the Ramsey Number

DefinitionThe Ramsey number R(k, l) is the smallest number n such

that any 2-coloring of the edges on the conplete graph Kn on n vertices

contains either a monochromatic Kk (in Kn) of the first color or a

monochromatic Kl (in Kn) of the second color.

Ramsey’s theorem: R(k, l) exists for all positive integers k and l.

Example: R(3,3) = 6.

Remark: R(k, k) ≤ (4 + o(1))k.



Lower Bound for the Ramsey Number

Theorem

R(k, k) > 2k/2

for all k ≥ 3.

Proof

Kn ... complete graph with vertex set {1,2, . . .}

Take a random 2-coloring of the
(
n
2

)
edges

(Each edge is colored independently and with equal probability 1
2.)



Lower Bound for the Ramsey Number

R ⊆ {1,2, . . .}, |R| = k

AR := {the induced subgraph of R is monochromatic}

=⇒ P(AR) = 2
1

2(k2)
= 21−(k2)

=⇒ P{∃R ⊆ {1,2, . . .} : |R| = k, AR occurs} ≤
(n
k

)
21−(k2).



Lower Bound for the Ramsey Number

n = b2k/2c (and k ≥ 3)

=⇒
(n
k

)
21−(k2) < 2

nk

k!

1

2k
2/2−k/2 ≤ 2

2k/2

k!
< 1

=⇒ P{∀R ⊆ {1,2, . . .} : |R| = k, R is not monochromatic} > 0

=⇒ R(k, k) > n .



Lower Bound for the Ramsey Number

Notation: We use the notion almost always as an abbreviation for the

property that the probability that a certain condition holds converges

to 1 as the size of the problem goes to the infinity.

Remark. n = b2k/2c ←→ k = d2 log2 ne,

lim
k→∞

2
2k/2

k!
= 0

=⇒ Almost always there exists no monochromatic Kd2 log2 ne in a ran-

domly edge colored Kn.



First Moment Method

Linearity of the expectation:

X =
∑
i∈I

Yi =⇒ EX =
∑
i∈I

EYi

• The expected value is usually easy to compute.

• The dependence structure between the Yi is irrelevant.



First Moment Method

Theorem Suppose that EX ist finite.

=⇒ P{X ≤ EX} > 0 and P{X ≥ EX} > 0 .

Proof (indirect)

Suppose that P{X ≤ EX} = 0

=⇒ P{X > EX} = 1

=⇒ EX = E
(
I[X>EX] ·X

)
= EX + E

(
I[X>EX] · (X − EX)

)
︸ ︷︷ ︸

>0

> EX

which is a contradiction!



First Moment Method

Theorem

X ... discrete random variable on non-negative integers.

=⇒ P{X > 0} ≤ EX .

Proof

EX =
∑
k≥0

k P{X = k} ≤
∑
k≥1

P{X = k} = P{X > 0}.



First Moment Method

As an first application we prove R(k, k) > 2k/2 a second time:

Kn ... complete graph with vertex set {1,2, . . .}

Take a random 2-coloring of the
(
n
2

)
edges

Sn,k ... set of all subgraphs of Kn with k nodes

=⇒ Xn :=
∑

R∈Sn,k
I[R is monochromatic]

is the (random) number of monochromatic subgraphs of Kn that

are isomorphic to Kk.



First Moment Method

Xn =
∑

R∈Sn,k
I[R is monochromatic]

=⇒ EXn =
∑

R∈Sn,k
P{R is monochromatic} =

(n
k

)
2 2−(

k
2)

=⇒ P{Xn > 0} ≤
(n
k

)
21−(k2) < 2

2k/2

k!
< 1

=⇒ P{Xn = 0} > 0 .



First Moment Method

Theorem

v1, . . . , vn ... unit vectors in Rn

=⇒ ∃ ε1, . . . , εn ∈ {−1,+1}:

|ε1v1 + · · ·+ εnvn| ≤
√
n

=⇒ ∃ ε′1, . . . , ε
′
n ∈ {−1,+1}:

|ε′1v1 + · · ·+ ε′nvn| ≥
√
n .



First Moment Method

Proof

ε1, . . . , εn ∈ {−1,+1} random signs (independent equal probability 1
2)

X : =

∣∣∣∣∣∣
n∑
i=1

εivi

∣∣∣∣∣∣
2

=
n∑
i=1

n∑
j=1

εiεjvi · vj

E
(
εiεj

)
= δi,j

=⇒ EX =
n∑
i=1

n∑
j=1

E (εiεj) vi · vj =
n∑
i=1

vi · vi = n.

+ application of first moment method.



First Moment Method

Definition A set of nodes I in a graph G is called independent if no

two nodes of I are adjacent.

The independence number α(G) of G is the maximal size of an

independent set of nodes of G.

Theorem

G = (V,E) ... graph with |V | = n nodes and |E| = m ≥ n/2 edges.

=⇒ α(G) ≥
n2

4m
.



First Moment Method

Proof

p = n/(2m) =⇒ 0 ≤ p ≤ 1.

S ... random subset of vertices: P{v ∈ S} = p (independent)

X = |S| ... (random) size of S, EX = np =
n2

2m

Y .. (random) number of edges in G|S (= induced subgraph of G)

Y =
∑
e∈E

I[both endpoints of e are in S]



First Moment Method

Y =
∑
e∈E

I[both endpoints of e are in S]

=⇒ EY =
∑
e∈E

p2 = mp2 =
n2

4m

=⇒ E (X − Y ) = np−mp2 =
n2

2m
−
n2

4m
=

n2

4m
.



First Moment Method

• There exists some specific S for which the number of vertices of S

minus the number of edges of S is at least n2/(4m).

• Select one vertex from each edge of S and delete it. This leaves a

set S∗ with at least n2/(4m) vertices.

• S∗ is an independent set (all edges of S have been destroyed)

=⇒ α(G) ≥
n2

4m



First Moment Method

Definition The girth girth(G) of a graph G is the size of the shortest

cycle.

The chromatic number χ(G) of a graph G is the smallest number k

such that there exists a regular k-coloring of the vertices of G, that

is, a coloring of at k colors of the vertices such that adjacent vertices

have different colors.

Theorem [Erdős 1959]

For all (positive integers) k and ` there exists a graph G with

girth(G) > ` and χ(G) > k .



First Moment Method

Proof

p = nθ−1 for some 0 < θ < 1/` (n be chosen sufficiently large)

V = {1,2, . . . , n} ... vertex set of a random graph:

P{e ∈ E(G)} = p (independently)

X ...number of cycles of size ≤ `.

θ` < 1

=⇒ EX =
∑̀
i=3

(n)i
2i

pi ≤
∑̀
i=3

ni

2i
n(θ−1)i =

∑̀
i=3

nθi

2i
= o(n).



First Moment Method

EX ≥ E
(
X · I[X≥n/2]

)
≥
n

2
P{X ≥ n/2}

EX = o(n)

=⇒ P{X ≥ n/2} = o(1) .



First Moment Method

P{α(G) ≥ m} = P{∃S ⊆ {1,2, . . . , n} : |S| = m, S is independent}

≤ E

 ∑
|S|=m

I[S is independent]


=

∑
|S|=m

P{S is independent}

=
(n
m

)
(1− p)(

m
2)

≤
nm

m!
e−p(

m
2)

≤ (ne−p(m−1)/2)m



First Moment Method

m = m(n) = d3p logne ∼ 3n1−θ logn

=⇒ ne−p(m−1)/2 → 0 (n→∞)

=⇒ P{α(G) ≥ m(n)} → 0 (n→∞)



First Moment Method

n sufficiently large that P{X ≥ n/2} < 1
2 and P{α(G) ≥ m(n)} < 1

2.

• Take G with X < n/2 (less than n/2 cycles of length at most `)

and α(G) < m(n) ∼ 3n1−θ logn.

• Remove from G a vertex from each cycle of length at most `.

• New graph G∗ has at least n/2 vertices, girth(G∗) > `

• α(G∗) ≤ α(G)

=⇒ χ(G∗) ≥
|G∗|
α(G)

≥
n/2

3n1−θ logn
=

nθ

6 logn
.

• n sufficiently large that nθ/(6 logn) > k =⇒ χ(G) > k .



Second Moment Method

Second moment E (X2)

Variance VX = E (X2)− (EX)2 = E ((X − EX)2)

Theorem [Chebyshev’s Inequality] Suppose that E (X2) is finite.

=⇒ P{|X − EX| ≥ λ
√

VX} ≤ 1

λ2
.

Proof
VX = E ((X − EX)2)

≥ E
(
(X − EX)2I[|X−EX|≥κ]

)
≥ κ2P{|X − EX| ≥ κ}.

and use κ = λ ·
√

VX.



Second Moment Method

Theorem

X ... discrete random variable on non-negative integers

=⇒ P{X = 0} ≤
VX

(EX)2
.

Proof Set λ = EX/
√

VX in Chebyshev’s Inequality.

Then λ
√

VX = EX and consequently

P{X = 0} ≤ P{|X − EX| ≥ EX} ≤ 1

λ2
=

VX
(EX)2

.



Second Moment Method

Remark

Sharpened Version: EX = E (X · I[X>0]) ≤
√

EX2 ·
√

P{X > 0}.

=⇒ P{X > 0} ≥
(EX)2

EX2
.

=⇒ P{X = 0} ≤
VX
EX2

.

This complements the inequality P{X > 0} ≤ EX:

(EX)2

EX2
≤ P{X > 0} ≤ EX



Second Moment Method

Theorem

Xn ... sequence of random variables with

EXn →∞ and E (Xn)
2 ∼ (EXn)2

as n→∞.

=⇒ Xn > 0 and
Xn

EXn
→ 1

almost always.



Second Moment Method

Proof

• E (Xn)
2 ∼ (EXn)2 =⇒ VXn = o((EXn)2).

• P{|Xn − EXn| ≥ εEXn} ≤
VXn

ε2(EXn)2

(Take λ = εEXn/
√

VXn in Chebyshev’s inequality.)

=⇒ P{|Xn − EXn| ≥ εEXn} → 0 .

Remark. A relation of the kind P{|Xn − EXn| ≥ εEXn} → 0 is a

so-called concentration property of Xn.



Second Moment Method

Application

X = Xn ... number of triangles in random graph G(n, p).

P{e ∈ E(G)} = p (independently)

T ... (random) set of triangles in G(n, p):

X =
∑

1≤i1<i2<i3≤n
I[(i1,i2,i3)∈T ]

EX =
∑

1≤i1<i2<i3≤n
P{(i1, i2, i3) ∈ T } =

(n
3

)
p3.



Second Moment Method

E (X2) = E

 ∑
1≤i1<i2<i3≤n

∑
1≤j1<j2<j3≤n

I[(i1,i2,i3)∈T ] · I[(j1,j2,j3)∈T ]



= E

 ∑
1≤i1<i2<i3≤n

∑
1≤j1<j2<j3≤n

I[(i1,i2,i3),(j1,j2,j3)∈T ]



=
∑

1≤i1<i2<i3≤n

∑
1≤j1<j2<j3≤n

P{(i1, i2, i3), (j1, j2, j3) ∈ T }



Second Moment Method

1. If |{i1, i2, i3} ∩ {j1, j2, j3}| = 3, that is, i1 = j1, i2 = j2, and i3 = j3
then

P{(i1, i2, i3), (j1, j2, j3) ∈ T } = p3

and there are
(
n
3

)
cases of that kind.

2. If |{i1, i2, i3} ∩ {j1, j2, j3}| = 2 then

P{(i1, i2, i3), (j1, j2, j3) ∈ T } = p5

and there are 12
(
n
4

)
cases of that kind.

3. If |{i1, i2, i3} ∩ {j1, j2, j3}| ≤ 1 then the events {(i1, j1, k1) ∈ T } and

{(i2, j2, k2) ∈ T } are independent and consequently

P{(i1, j1, k1), (i2, j2, k2) ∈ T } = p6.



Second Moment Method

E (X2) =
(n
3

)
p3 + 12

(n
4

)
p5 +

((n
3

)2
−
(n
3

)
− 12

(n
4

))
p6

= (EX)2 +
(n
3

)
p3(1− p3) + 12

(n
4

)
p5(1− p).

np→∞ ⇐⇒ EX2 ∼ (EX)2

Proposition

If np → ∞ then almost always the number of triangles in G(n, p) is

approximated by the their expected number
(
n
3

)
p3.



Random Graphs

Definition Let n be a positive integer and p a real number with 0 ≤
p ≤ 1. The random graph G(n, p) is a probability space over the set

of graphs on the vertex set {1,2, . . . , n} determined by

P{(i, j) ∈ G} = p

for all possible (undirected) edges (i, j) with 1 ≤ i, j ≤ n and i 6= j with

these events mutually independent.

Similarly one also considers random graphs G(n,m), where m is also

a given integer with 0 ≤ m ≤
(
n
2

)
. Here one considers the set of all

graphs on the set of vertices {1,2, . . . , n} with exactly m (undirected)

edges where each of these graphs is equally likely. Due to the law of

large numbers G(n,m) will have very similar properties as G(n, p) with

p = m/
(
n
2

)
.



Random Graphs

Definition

A martingale is a sequence X0, X1, . . . , Xm of random variables with

E (Xi+1|Xi, Xi−1, . . . , X0) = Xi (0 ≤ i < m)

“Fair Game”



Random Graphs

Edge Exposure Martingale

V = {1,2, . . . , n}, E = {e1, e2, . . . , em} with m =
(
n
2

)
.

f ... graph theoretic function (e.g. chromatic number), G ∼ G(n, p)

X0(H) := E f(G)

X1(H) := E (f(G)|e1 ∈ G⇐⇒ e1 ∈ H)

X2(H) := E (f(G)|e1 ∈ G⇐⇒ e1 ∈ H, e2 ∈ G⇐⇒ e2 ∈ H)

...

Xm(H) := f(H)



Random Graphs

Edge exposure martingale for
the chromatic
number χ



Random Graphs

Lemma

f ... graph theoretic function with the property that

• if H,H ′ differ in one edge then |f(H)− f(H ′)| ≤ 1.

X0, X1, . . . Xm edge exposure martingale on G(n, p)

=⇒ |Xi+1 −Xi| ≤ 1 .

Proof (Idea)

Pairing H,H ′ that differ exactly by edge ei+1.



Random Graphs

Theorem [Azuma’s Inequality]

Suppose that 0 = X0, X1, . . . , Xm is a martingale with |Xi+1 −Xi| ≤ 1.

=⇒ P{Xm > λ
√
m} < e−

1
2λ

2
.

Proof

x ∈ [−1,1] =⇒ eλx ≤ cosh(λ) + x sinh(λ)

Yi := Xi −Xi−1 =⇒ E (Yi|Xi−1, . . . , X0) = 0.

=⇒ E
(
eαYi|Xi−1, . . . , X0

)
≤ cosh(α) + 0 · sinh(α) ≤ e

1
2α

2



Random Graphs

E (eαXm) = E

 m∏
i=1

eαYi


= E

m−1∏
i=1

eαYi · E
(
eαYm|Xm−1, . . . , X0

)
≤ E

m−1∏
i=1

eαYi

 · e1
2α

2

≤ e
1
2α

2m

P{Xm > λ
√
m} = P{eαXm > eαλ

√
m}

< E (eαXm) · e−αλ
√
m

≤ e
1
2α

2m−αλ
√
m

= e−
1
2λ

2
(α = λ/

√
m)



Random Graphs

k = k(n) = k0(n)− 4, where k0 = k0(n) is defined by( n

k0 − 1

)
2−(

k0−1
2 ) > 1 >

( n
k0

)
2−(

k0
2 )

k = k(n) ∼ 2 log2 n,
( n

k(n)

)
2−(

k(n)
2 ) > n3+(1)



Random Graphs

Lemma

Y ... maximal size of a family of edge disjoint cliques (= complete
subgraph) of size k.

=⇒ EY ≥ n2

2k4
(1 + o(1)) .

Proof

K ... (random) set of k-cliques of G, µ := E (|K|) =
(n
k

)
2−(

k
2)

W ... (unordered) pairs {A,B} of k-cliques of G with 2 ≤ |A ∩B| < k.

EW =
∆

2
∼
µ2k4

2n2

with ∆ =
k−1∑
i=2

(k
i

)(n− k
k − i

)
2( i2)−(

k
2).



Random Graphs

q := µ/∆.

C ... random subfamily of K with P{A ∈ C} = q.

W ′ ... (random) number of (unordered) pairs {A,B}, A,B ∈ C with

2 ≤ |A ∩B| < k.

EW ′ = q2EW = q2∆/2.

Delete from C one set from each such pair. This gives a set C∗ of edge

disjoint k-cliques of G and

EY ≥ E (|C∗|) ≥ E (|C|)− EW ′ = µq − q2∆/2 =
µ2

2∆
∼

n2

2k4
.



Random Graphs

Lemma

ω(G) ... size of the maximum clique of G

=⇒ P{ω(G) < k} < e
−(c+o(1)) n2

(logn)8 .

Proof

Y0, Y1, . . . , Ym ... edge exposure martingale on G(n, 12) with Y from

above.

• |Yi− Yi−1| ≤ 1 (a single edge can add at most one clique to a family

of edge disjoint cliques)

• G has no k-clique ⇐⇒ Y = 0.



Random Graphs

Azuma’s inequality: m =
(
n
2

)
∼ 1

2n
2, EY ≥ n2

2k4
(1 + o(1)).

P{ω(G) < k} = P{Y = 0} ≤ P{|Y − EY | ≤ EY }

≤ e−(EY )2/2(n2) ≤ e−(c′+o(1))n2/k8

= e
−(c+o(1)) n2

(logn)8 .



Random Graphs

Theorem [Bollobas] We have, almost always in G(n, 12),

χ(G) ∼
n

2 log2 n
.

Proof (Lower bound)

Almost always there exists no complete subgraph Kb2 log2 nc in G(n, 12).

The same holds for the complement. Consequently almost always

there is no independent set of size b2 log2 nc.

=⇒ χ(G) ≥
n

α(G)
≥

n

2 log2 n
.

(α(G) ... independece number of G.)



Random Graphs

Proof (Upper bound)

m = bn/(logn)4c.

S .. set of m vertices

G|S ... restriction of to G to S. G|S has the distribution G(m, 12).

k = k(m) = k0(m)− 4 ∼ 2 log2 as above.

P{α(G|S) < k} < e−m
2+o(1)

.

(α(G) has the same distribution as ω(G) for p = 1
2.)



Random Graphs

There are now
(
n
m

)
< 2n = 2m

1+o(1)
such sets S. Hence

P{α(G|S) < k for some m-set S} < 2m
1+o(1)

e−m
2+o(1)

= o(1).

Always always every m vertices contain a k-element independent set.

Take G with this property.

Pull out k-element independent sets and give each a distint color until
there are less than m vertices left.

Give each remaining point a distinct color.

=⇒ χ(G) ≤
⌈
n−m
k

⌉
+m ≤

n

k
+m

=
n

2 log2 n
(1 + o(1)) + o

(
n

log2 n

)
=

n

2 log2 n
(1 + o(1)),

This proves the upper bound (almost always).



Central Limit Theorem

Definition

A random variable Z is said to be normally distributed (or Gaussian)

with mean µ and variance σ2 if its distribution function

FZ(x) = P{Z ≤ x} is given by

FZ(x) = Φ
(
x− µ
σ

)
,

where

Φ(x) =
1√
2π

∫ x
−∞

e−
t2
2 dt.

Notation. L(Z) = N(µ, σ2).



Central Limit Theorem

Density of Z:

fZ(x) =
1√
2πσ

e−(x−µ)2/(2σ2)

Characteristic function of Z:

ϕZ(t) = E eitZ = eiµt−
1
2σ

2t2.



Central Limit Theorem

Definition

Weak convergence:

Xn
d−→ X ⇐⇒ Eh(Xn)→ Eh(X)

for all continuous and bounded h : R→ R

Equivalently:

lim
n→∞FXn(x) = FX(x) for all points of continuity of FX(x)

If X is a continuous then convergence is uniform:

‖FXn − FX‖∞ = sup
x∈R
|FXn(x)− FX(x)| → 0.



Central Limit Theorem

Levy’s Criterion

Xn
d−→ X ⇐⇒ E eitXn → E eitX (t ∈ R)

Moreover, if for all t ∈ R

ψ(t) := lim
n→∞E eitXn

exists and ψ(t) is continous at t = 0 then ψ(t) is the characteristic

function of a random variable X for which we have Xn
d−→ X.



Central Limit Theorem

Notation. “iid” ... independently and identically distributed

Theorem

Y1, Y2, . . . iid, EY 2
i <∞, Sn = Y1 + Y2 + . . .+ Yn

=⇒ S̃n :=
Sn − ESn√

VSn
d−→ N(0,1)

Remark. P{Sn ≤ ESn + x
√

VSn} → Φ(x).

Proof

µ = EYi, σ2 = VYi = E (Y 2
i )− (EYi)2 =⇒ ESn = nµ, VSn = nσ2.



Central Limit Theorem

ϕYi(t) = E eitYi = eitµ−
1
2σ

2t2 (1+o(1)) (t→ 0)

=⇒ ϕS̃n(t) = E eitS̃n

= e−it
√
nµ/σ · E

(
e(it/(

√
nσ))(Y1+···+Yn)

)
= e−it

√
nµ/σ ·

(
E e(it/(

√
nσ)Y1

)n
= e−it

√
nµ/σ · eit

√
nµ/σ−1

2t
2 (1+o(1))

= e−
1
2t

2 (1+o(1)) → e−
1
2t

2
.

+ Levy’s criterion.



Central Limit Theorem

Quantified version for finite third moments E |Yi|3:

P{Sn ≤ nµ+ x
√
nσ} = Φ(x) +O

(
E |Yi − µ|3

σ3√n

)
.

uniformly for x ∈ R.



Stein’s Method

Lemma

L(Z) = N(µ, σ2) ⇐⇒ E (Z − µ)f(Z) = σ2E f ′(Z)

for all smooth functions f

with f(x)e−
1
2x

2
→ 0 as |x| → ∞

and
∫ ∞
−∞
|xf(x)|e−

1
2x

2
dx <∞.



Stein’s Method

Proof

Wlog µ = 0 and σ2 = 1.

L(Z) = N(0,1)

=⇒ E f ′(Z) =
1√
2π

∫ ∞
−∞

f ′(x)e−
1
2x

2
dx

=
1√
2π
f(x)e−

1
2x

2
∣∣∣∣∣
∞

−∞
+

1√
2π

∫ ∞
−∞

xf(x)e−
1
2x

2
dx

= 0 + EZf(Z).



Stein’s Method

EZf(Z) = E f ′(Z)

g(x) bounded with
∫ ∞
−∞

g(x)e−
1
2x

2
dx = 0

=⇒ f(x) : = e
1
2x

2
∫ x
−∞

g(y)e−
1
2y

2
dy

= −e
1
2x

2
∫ ∞
x

g(y)e−
1
2y

2
dy

satisfies

f ′(x)− xf(x) = g(x) ,

f(x)e−
1
2x

2
→ 0 as |x| → ∞ and

∫ ∞
−∞
|xf(x)|e−

1
2x

2
dx <∞.



Stein’s Method

g(x) : = I[x≤x0] −Φ(x0)

f(x) : = e
1
2x

2
∫ x
−∞

(
I[x≤x0] −Φ(x0)

)
e−

1
2y

2
dy

f ′(x)− xf(x) = I[x≤x0] −Φ(x0)

E f ′(Z)− EZf(Z) = P{Z ≤ x0} −Φ(x0)

=⇒ 0 = P{Z ≤ x0} −Φ(x0)

=⇒ L(Z) = N(0,1).



Stein’s Method

Notation. h bounded, absolutely integrable:

Nh = Eh(Z/σ) =
1√
2π

∫ ∞
−∞

h(x/σ)e−
1
2x

2
dx.

Lemma h ... bounded with bounded first derivative.

Then there exists f with bounded second derivative with

σ2f ′(w)− wf(w) = h(w/σ)−Nh (Stein’s equation)

and

‖f ′′‖∞ ≤ Kuniv ·
(
‖h‖∞+ ‖h′‖∞

)
for a universal constant Kuniv > 0.



Stein’s Method

Proof

The solution of Stein’s equation has been already determined (see the

previous lemma).

f(x) = e
1
2x

2
∫ x
−∞

(h(y/σ)−Nh) e−
1
2y

2
dy.

Wlog σ2 = 1

h(x) := h(x)−Nh. (=⇒ Nh = 0, ‖h‖∞ ≤ 2‖h‖.)



Stein’s Method

Abbreviations:

H0 = ‖h‖∞,

H1 = ‖h′‖∞ = ‖h′‖∞

F0 = ‖f‖∞, F1‖f ′‖∞,

F11 = ‖(xf)′‖∞,

F2 = ‖f ′′‖∞,

c1 = sup
x≥0

∣∣∣∣x(1− xe1
2x

2
∫ ∞
x

e−
1
2u

2
du

)∣∣∣∣ ,
c2 = sup

x≥0
e
1
2x

2
∫ ∞
x

e−
1
2u

2
du,

c3 = sup
x≥0

x e
1
2x

2
∫ ∞
x

e−
1
2u

2
du = 1



Stein’s Method

1. F0 ≤ c2H0,

2. F1 ≤ 2H0,

3. F11 ≤ (c1 + c2)H0 +H1,

4. F2 ≤ (c1 + c2)H0 + 2H1.

4. implies upper bound for ‖f ′′‖∞ and proves the lemma.



Stein’s Method

1.

f(x) = −e
1
2x

2
∫ ∞
x

(
h(y)

)
e−

1
2y

2
dy (x > 0)

=⇒ F0 ≤ c2H0.

Recall: c2 = sup
x≥0

e
1
2x

2
∫ ∞
x

e−
1
2u

2
du



Stein’s Method

2.

f ′(x) = xf(x) + h(x) =⇒ F1 ≤ ‖xf(x)‖∞+H0.

xf(x) = −xe
1
2x

2
∫ ∞
x

(
h(y)

)
e−

1
2y

2
dy (x > 0)

=⇒ ‖xf(x)‖∞ ≤ c3H0 = H0.

=⇒ F1 ≤ 2H0



Stein’s Method

3.

(xf(x))′ = f(x) + x2f(x) + xh(x), F0 ≤ c2H0.

x2f(x) + xh(x) = −x2e
1
2x

2
∫ ∞
x

h(y)e−
1
2y

2
dy+ xh(x)

= −x2e
1
2x

2
∫ ∞
x

h(y)e−
1
2y

2
dy+ xe

1
2x

2
∫ ∞
x

yh(y)e−
1
2y

2
dy

− xe
1
2x

2
∫ ∞
x

yh(y)e−
1
2y

2
dy+ xh(x)

= x2e
1
2x

2
∫ ∞
x

h(y)
(
y

x
− 1

)
e−

1
2y

2
dy

− xe
1
2x

2
∫ ∞
x

h
′
(y)e−

1
2y

2
dy.

=⇒ ‖x2f(x) + xh(x)‖∞ ≤ c1H0 +H1

=⇒ F11 ≤ (c1 + c2)H0 +H1.



Stein’s Method

4.

f ′(x) = h(x) + xf(x).

|f ′(x+ t)− f ′(x)| = |h(x+ t)− h(x) + (x+ t)f(x+ t)− xf(x)|
≤ |t|H1 + |t|F11

≤ |t| ((c1 + c2)H0 + 2H1).

=⇒ F2 ≤ (c1 + c2)H0 + 2H1.



Stein’s Method

Norm ‖h‖

‖h‖ := Kuniv ·
(
‖h‖∞+ ‖h′‖∞

)
.

This norm is maybe a little unusual but it perfectly fits to Stein’s

method.

Distance of two probability measures P and Q

d1(P,Q) := sup
‖h‖≤1

|Eh(X)− Eh(Y )|

where L(X) = P and L(Y ) = Q.

Remark

d1(L(Xn),L(X))→ 0 ⇐⇒ Xn
d−→ X



Stein’s Method

General situation

W can be composed in the following way
(I ... finite index set, Ki ... finite index set (i ∈ I)
Xi,Wi, Zi, Zik,Wik, Vik square integrable, i ∈ I and k ∈ Ki):

1. W =
∑
i∈I

Xi , 2. EXi = 0 (i ∈ I), 3. VW = 1,

4. W = Zi +Wi (i ∈ I), Wi is independent of Xi,

5. Zi =
∑
k∈Ki

Zik (i ∈ I),

6. Wi = Wik + Vik (i ∈ I, k ∈ Ki),

7. Wik is independent of the pair (Xi, Zik) (i ∈ I, k ∈ Ki.



Stein’s Method

Theorem

Suppose that a random variable W decomposes as introduced above.

Then

d1 (L(W ), N(0,1)) ≤
1

2

∑
i∈I

E
(
|Xi|Z2

i

)

+
∑
i∈I

∑
k∈Ki

(
E |XiZikVik|+ E |XiZik| · E |Zi + Vik|

)
.

Remark. If the right hand side goes to 0 then W
d−→ N(0,1).



Stein’s Method

Y1, Y2, . . . iid, E |Yi|3 <∞

µ = EYi, σ2 = VYi

Xi :=
Yi − µ√
nσ

(also iid)

W := X1 + · · ·+Xn

=⇒ W =
Y1 + · · ·+ Yn − µn√

nσ



Stein’s Method

Ki = {i}
Zi = Xi,

Wik = Xk,

Vik = 0.

E
(
|Xi|Z2

i

)
= E |Xi|3,

E |XiZikVik| = 0,

E |XiZik| · E |Zi + Vik| = EX2
i · E |Xi| =

1

n
E |Xi|.

=⇒ d1 (L(W ), N(0,1)) ≤
1

σ3√n

(
1

2
E
(
|Yi − µ|3

)
+ E |Yi − µ|

)
.



Stein’s Method

Proof

Goal:∣∣∣EWf(W )− E f ′(W )
∣∣∣

≤ ‖f ′′‖∞ ·

1

2

∑
i∈I

E
(
|Xi|Z2

i

)

+
∑
i∈I

∑
k∈Ki

(
E |XiZikVik|+ E |XiZik| · E |Zi + Vik|

).



Stein’s Method

Choose h with ‖h‖ ≤ 1 and use f(x) with

f ′(x)− xf(x) = h(x)−Nh = h(x)

(Recall: Nh = Eh(Z) with L(Z) = N(0,1)).

=⇒ Eh(W )− Eh(Z) = E f ′(W )− EWf(W )

=⇒ |Eh(W )− Eh(Z)| = |E f ′(W )− EWf(W )|

≤ ‖f ′′‖∞ ·

· · · · · ·


≤

· · · · · ·


for all h with ‖h‖ ≤ 1. (Recall that ‖f ′′‖∞ ≤ ‖h‖ ≤ 1.)



Stein’s Method

Rewrite the difference:

EWf(W )− E f ′(W ) = EWf(W )−
∑
i∈I

E (XiZif
′(Wi))

+
∑
i∈I

E (XiZif
′(Wi)−

∑
i∈I

∑
k∈Ki

E (XiZik)E f ′(Wik)

+
∑
i∈I

∑
k∈Ki

E (XiZik)
(
E f ′(Wik)− E f ′(W )

)
,

Here we used

1 = EW2 =
∑
i∈I

E (XiW )

=
∑
i∈I

E (Xi)E (Wi) +
∑
i∈I

E (XiZi)

=
∑
i∈I

E (XiZi)

=
∑
i∈I

∑
k∈Ki

E (XiZik).



Stein’s Method

First by Taylor’s expansion:

f(x+ t) = f(x) + tf ′(x) + 1
2t

2f ′′(x+ θt) for some θ ∈ [0,1].

Wf(W ) =
∑
i∈I

Xif(W )

=
∑
i∈I

Xi

(
f(Wi) + Zif

′(Wi) +
1

2
Z2
i f
′′(Wi + θiZi)

)
Xi and Wi are independent =⇒E (Xif(Wi)) = EXi · E f(Wi)

=⇒

∣∣∣∣∣∣EWf(W )−
∑
i∈I

E (XiZif
′(Wi))

∣∣∣∣∣∣ ≤ ‖f
′′‖
2
·
∑
i∈I

E (|Xi|Z2
i ).



Stein’s Method

Second:

XiZif
′(Wi) =

∑
k∈Ki

XiZikf
′(Wi)

=
∑
k∈Ki

XiZik
(
f ′(Wik + Vikf

′′(Wik + θikVik)
)

=⇒

∣∣∣∣∣∣
∑
i∈I

E (XiZif
′(Wi)−

∑
i∈I

∑
k∈Ki

E (XiZik)E f ′(Wik)

∣∣∣∣∣∣
≤ ‖f ′′‖ ·

∑
i∈I

∑
k∈Ki

E |XiZikVik|



Stein’s Method

Third:

Wik = Wi − Vik = W − Zi − Vik:

f ′(Wik) = f ′(W )− (Zi + Vik)f
′′(W − θ(Zi + Vik))

=⇒
∣∣∣E f ′(Wik)− E f ′(W )

∣∣∣ ≤ ‖f ′′‖ · E |(Zi + Vik)|.

Putting the three estimates together we get the proposed estimate for

|EWf(W )− E f ′(W )|.



Stein’s Method

Simplified Version (dissociated composition: Zik = Xk, i ∈ Ki ⊆ I)

... more precisely:

1. W =
∑
i∈I

Xi , 2. EXi = 0 (i ∈ I), 3. VW = 1,

4. W = Zi +Wi (i ∈ I), Wi is independent of Xi,

5. Zi =
∑
k∈Ki

Xk , Wi =
∑

k∈I\Ki
Xk (i ∈ I),

6. Wi = Wik + Vik Vik =
∑

j∈Kk\Ki
Xj (i ∈ I, k ∈ Ki),

7. Wik = W −
∑

j∈Ki∪Kk
Xj is independent of (Xi, Xk) (i ∈ I, k ∈ Ki).



Stein’s Method

Dependency Graph L

I ... vertices, Xi random variable (i ∈ I)

• If A,B are disjoint subsets of I that are not interconnected by

an edge then two subsystems (Xi : i ∈ A) and (Xj : j ∈ B) are

independent.

Application to Stein’s Theorem

Ki : = {neighbors of i in L}

Wi =
∑

k∈I\Ki
Xk =⇒ Xi,Wi ind.

Wik =
∑

j∈I\(Ki∪Kk)
Xj =⇒ (Xi, Xk),Wik ind.



Stein’s Method

Theorem

Suppose that a random variable W decomposes in a dissociated way

that is induced by a dependency graph.

Then

d1 (L(W ), N(0,1)) ≤ 2
∑
i∈I

∑
j,k∈Ki

(
E
(
|XiXjXk|

)
+ E

(
|XiXj|

)
E |Xk|

)
.



Stein’s Method

Proof

Zi =
∑
k∈Ki

Xk

=⇒ |Xi|Z2
i = |Xi|

∑
j,k∈Ki

XjXk ≤
∑

j,k∈Ki
|XiXjXk|

=⇒
∑
i∈I

E
(
|Xi|Z2

i

)
≤
∑
i∈I

∑
j,k∈Ki

E
(
|XiXjXk|

)
.



Stein’s Method

Zik = Xk

Vik =
∑

j∈Kk\Ki
Xj

=⇒ |XiZikVik| ≤
∑
j∈Kk

|XiXkXj|

=⇒
∑
i∈I

∑
k∈Ki

E |XiZikVik| ≤
∑
i∈I

∑
k∈Ki

∑
j∈Kk

E |XiXkXj|

=
∑
k∈I

∑
i∈Kk

∑
j∈Kk

E |XiXkXj|

=
∑
k∈I

∑
i,j∈Kk

E |XiXkXj|.



Stein’s Method

Zik = Xk

Zi + Vik =
∑

j∈Kk∪Ki
Xj

=⇒ E |XiZik| · E |Zi + Vik| ≤
∑
j∈Kk

E |XiXk| · E |Xj|+
∑
j∈Ki

E |XiXk| · E |Xj|

=⇒
∑
i∈I

∑
k∈Ki

E |XiZik| · E |Zi + Vik|

≤
∑
i∈I

∑
k∈Ki

∑
j∈Kk

E |XiXk| · E |Xj|+
∑
i∈I

∑
k∈Ki

∑
j∈Ki

E |XiXk| · E |Xj|

= 2
∑
i∈I

∑
j,k∈Ki

E
(
|XiXj|

)
E |Xk|



Stein’s Method

=⇒ 1

2

∑
i∈I

E
(
|Xi|Z2

i

)
+
∑
i∈I

∑
k∈Ki

(
E |XiZikVik|+ E |XiZik| · E |Zi + Vik|

)

≤ 2
∑
i∈I

∑
j,k∈Ki

(
E
(
|XiXjXk|

)
+ E

(
|XiXj|

)
E |Xk|

)
,



Application to Random Graphs

G(n, p) ... random graph

T ... triangles in G(n, p)

I = {i = (i1, i2, i3) : 1 ≤ i1 < i2 < i3 ≤ n}

X = |T | =
∑
i∈I

I[i=(i1,i2,i3)∈T ] number of triangles in G(n, p)

EX =
(n
3

)
p3

σ2 : = VX =
(n
3

)
p3(1− p3) + 12

(n
4

)
p5(1− p).

Simplification: p ≤
1

2
, np→∞ =⇒ EX →∞, VX →∞



Application to Random Graphs

Xi :=
1

σ

(
I[i=(i1,i2,i3)∈T ] − p

3
)

W =
∑
i∈I

Xi =
X − EX√

VX
.

Dependency graph L.

V (L) = I

E(L) = {(i, j) : |{i1, i2, i3} ∩ {j1, j2, j3}| ≥ 2}

Ki = {k = (k1, k2, k3) ∈ I : |{i1, i2, i3} ∩ {k1, k2, k3}| ≥ 2}.



Application to Random Graphs

∑
i∈I

∑
j,k∈Ki

(
E
(
|XiXjXk|

)
+ E

(
|XiXj|

)
E |Xk|

)
=???

(Recall: Xi :=
1
σ

(
I[i=(i1,i2,i3)∈T ] − p3

)
)

• i = j = k:

E
(
|XiXjXk|

)
= E (|Xi|3) =

1

σ3

(
p3(1− p3)3 + (1− p3)p9

)
≤

2p3

σ3

• other case are similar ...



Application to Random Graphs

=⇒
∑
i∈I

∑
j,k∈Ki

(
E
(
|XiXjXk|

)
+E

(
|XiXj|

)
E |Xk|

)
= O

(
1

σ3

(
n3p3(1 + np2)2

))

VX = σ2 ≥ c n3p3(1 + np2)

=⇒ d1 (L(W ), N(0,1)) = O

(
n3p3(1 + np2)2

n9/2p9/2((1 + np2)3/2

)
= O

(
(np)−3/2(1 + np)1/2

)
→ 0.



Application to Random Graphs

Theorem

Suppose that 0 < p ≤ 1
2 and np→∞.

Then the number of triangles in a random graph G(n, p) satisfies a

central limit theorem.

Remark. Similar properties hold for general subgraph counting.


