WELCOME TO THE SUMMER SCHOOL

Probabilistic Methods in Combinatorics*

Graz Maria Trost, July 17-19

Course A Michael Drmota

The probabilistic method, random graphs and Stein's method

Course B Philippe Flajolet

Singularities and Random Combinatorial Structures

Course C Ralph Neininger

Distributional analysis of recursive algorithms and random trees

* supported by the Austrian Science Foundation FWF, National Research Network (grant S96) *Analytic Combinatorics and Probabilistic Number Theory*.

08:45 - 08:50	Opening		
08:50 - 09:35	A 1	B 2	C 3
09:35 - 09:45	Short Break		
09:45 - 10:30	A 1	B 2, Exercises	C 3
10:30 - 10:50	Break		
10:50 - 11:35	B 1	C 2	A 4
11:35 - 11:45	Short Break		
11:45 - 12:30	B 1	C 2, Exercises	A 4 Exercises
10.20	Lunch		
12:30	LUNCH		
12:30	LUNCH		
12:30	C 1	А З	B 4
12:30 14:50 - 15:35 15:35 - 15:45	C 1 Short Break	A 3	B 4
12:30 14:50 - 15:35 15:35 - 15:45 15:45 - 16:30	C 1 Short Break C 1	A 3 A 3	B 4 B 4 Exercises
12:30 $14:50 - 15:35$ $15:35 - 15:45$ $15:45 - 16:30$ $16:30 - 16:50$	C 1 Short Break C 1 Break	A 3 A 3	B 4 B 4 Exercises
12.30 14:50 - 15:35 15:35 - 15:45 15:45 - 16:30 16:30 - 16:50 16:50 - 17:35	C 1 Short Break C 1 Break A 2	A 3 A 3 B 3	B 4 B 4 Exercises C 4
12.30 14:50 - 15:35 15:35 - 15:45 15:45 - 16:30 16:30 - 16:50 16:50 - 17:35 17:35 - 17:45	C 1 Short Break C 1 Break A 2 Short Break	A 3 A 3 B 3	B 4 B 4 Exercises C 4
12.30 $14:50 - 15:35$ $15:35 - 15:45$ $15:45 - 16:30$ $16:30 - 16:50$ $16:50 - 17:35$ $17:35 - 17:45$ $17:45 - 18:30$	C 1 Short Break C 1 Break A 2 Short Break A 2 Exercises	A 3 A 3 B 3 B 3	B 4 B 4 Exercises C 4 C 4 Exercises

18:30 Dinner

SUMMER SCHOOL ON PROBABILISTIC METHODS IN COMBINATORICS

The Probabilistic Method, Random Graphs and Stein's Method

Michael Drmota*

Institut für Diskrete Mathematik und Geometrie TU Wien michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/

* supported by the Austrian Science Foundation FWF, National Research Network Analytic Combinatorics and Probabilistic Number Theory, grant S96.

Graz Maria Trost, July 17-19, 2006

Contents

- Introduction
- Lower Bound for the Ramsey Number
- First Moment Method
- Second Moment Method
- Random Graphs
- Central Limit Theorem
- Stein's Method
- Application to Random Graphs

Introduction

The **Probabilistic Method** has been initiated by Paul Erdős (1947) in order to prove the existence of certain combinatorial objects. The principle idea is to define a proper probability distribution on a class of (discrete) objects and to show that the probability of a certain property is positive. Of course this also proves that there exists such an object with this property. We will apply this approach to various problems on **random graphs**.

However, the main goal of this course is to give an introduction to **Stein's method** that proves asymptotic normality for sums of (in some sense) weakly dependent random variables. This method has turned out to be very successful, in particular in random graph problems.

Noga Alon and Joel H. Spencer. *The probabilistic method.* Second edition. Wiley-Interscience, New York, 2000

Béla Bollobás, *Random graphs*. Second edition. Cambridge Studies in Advanced Mathematics, 73. Cambridge University Press, Cambridge, 2001.

Svante Janson, Tomasz Łuczak, and Andrzej Rucinski, *Random graphs*. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000

Valentin F. Kolchin, *Random graphs*. Encyclopedia of Mathematics and its Applications, 53. Cambridge University Press, Cambridge, 1999.

Books

Charles Stein, *Approximate computation of expectations*. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 7. Institute of Mathematical Statistics, Hayward, CA, 1986.

Andrew D. Barbour, Lars Holst, and Svante Janson. *Poisson approximation*, Oxford Studies in Probability, 2. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1992.

Definition The **Ramsey number** R(k,l) is the smallest number n such that any 2-coloring of the edges on the conplete graph K_n on n vertices contains either a monochromatic K_k (in K_n) of the first color or a monochromatic K_l (in K_n) of the second color.

Ramsey's theorem: R(k,l) exists for all positive integers k and l.

Example: R(3,3) = 6.

Remark: $R(k,k) \le (4+o(1))^k$.

Theorem

$$\left| R(k,k) > 2^{k/2} \right|$$

for all $k \geq 3$.

Proof

 K_n ... complete graph with vertex set $\{1, 2, ...\}$

Take a random 2-coloring of the $\binom{n}{2}$ edges (Each edge is colored independently and with equal probability $\frac{1}{2}$.)

 $R \subseteq \{1, 2, \ldots\}, |R| = k$

 $A_R := \{ \text{the induced subgraph of } R \text{ is monochromatic} \}$

$$\implies \mathbb{P}(A_R) = 2\frac{1}{2\binom{k}{2}} = 2^{1-\binom{k}{2}}$$

$$\implies \mathbb{P}\{\exists R \subseteq \{1, 2, \ldots\} : |R| = k, A_R \text{ occurs}\} \le {n \choose k} 2^{1-{k \choose 2}}.$$

$$n = \lfloor 2^{k/2} \rfloor \text{ (and } k \ge 3)$$

$$\implies {\binom{n}{k}} 2^{1-{\binom{k}{2}}} < 2\frac{n^k}{k!} \frac{1}{2^{k^2/2-k/2}} \le 2\frac{2^{k/2}}{k!} < 1$$

$$\implies \mathbb{P}\{\forall R \subseteq \{1, 2, \ldots\} : |R| = k, R \text{ is not monochromatic}\} > 0$$

$$\implies \overline{R(k, k) > n}.$$

Notation: We use the notion *almost always* as an abbreviation for the property that the probability that a certain condition holds converges to 1 as the *size* of the problem goes to the infinity.

Remark.
$$n = \lfloor 2^{k/2} \rfloor \longleftrightarrow k = \lceil 2 \log_2 n \rceil,$$
$$\lim_{k \to \infty} 2 \frac{2^{k/2}}{k!} = 0$$

 \implies Almost always there exists no monochromatic $K_{\lceil 2 \log_2 n \rceil}$ in a randomly edge colored K_n .

Linearity of the expectation:

$$X = \sum_{i \in I} Y_i \implies \mathbb{E} X = \sum_{i \in I} \mathbb{E} Y_i$$

- The expected value is usually easy to compute.
- The dependence structure between the Y_i is irrelevant.

Theorem Suppose that $\mathbb{E} X$ ist finite.

$$\implies \mathbb{P}\{X \le \mathbb{E} X\} > 0 \quad \text{and} \quad \mathbb{P}\{X \ge \mathbb{E} X\} > 0.$$

Proof (indirect)

Suppose that $\mathbb{P}\{X \leq \mathbb{E} X\} = 0$

$$\implies \mathbb{P}\{X > \mathbb{E} X\} = 1$$

$$\implies \mathbb{E} X = \mathbb{E} \left(\mathbb{I}_{[X > \mathbb{E} X]} \cdot X \right) = \mathbb{E} X + \mathbb{E} \left(\underbrace{ \mathbb{I}_{[X > \mathbb{E} X]} \cdot (X - \mathbb{E} X) }_{>0} \right) > \mathbb{E} X$$

which is a contradiction!

Theorem

X ... discrete random variable on **non-negative integers**.

$$\implies \quad \mathbb{P}\{X > \mathsf{O}\} \le \mathbb{E}\,X\,.$$

Proof

$$\mathbb{E} X = \sum_{k \ge 0} k \mathbb{P} \{ X = k \} \le \sum_{k \ge 1} \mathbb{P} \{ X = k \} = \mathbb{P} \{ X > 0 \}.$$

As an first application we prove $R(k,k) > 2^{k/2}$ a second time:

 K_n ... complete graph with vertex set $\{1, 2, \ldots\}$

Take a random 2-coloring of the $\binom{n}{2}$ edges

 $\mathcal{S}_{n,k}$... set of all subgraphs of K_n with k nodes

$$\implies \qquad X_n := \sum_{R \in \mathcal{S}_{n,k}} \mathbb{I}_{[R \text{ is monochromatic}]}$$

is the (random) number of monochromatic subgraphs of K_n that are isomorphic to K_k .

$$X_n = \sum_{R \in \mathcal{S}_{n,k}} \mathbb{I}_{[R \text{ is monochromatic}]}$$

$$\implies \mathbb{E} X_n = \sum_{R \in \mathcal{S}_{n,k}} \mathbb{P} \{ R \text{ is monochromatic} \} = \binom{n}{k} 2 2^{-\binom{k}{2}}$$

$$\implies \mathbb{P}\{X_n > 0\} \le {\binom{n}{k}} 2^{1-{\binom{k}{2}}} < 2\frac{2^{k/2}}{k!} < 1$$
$$\implies \mathbb{P}\{X_n = 0\} > 0.$$

Theorem

 v_1,\ldots,v_n ... unit vectors in \mathbb{R}^n

$$\implies \exists \ \varepsilon_1, \dots, \varepsilon_n \in \{-1, +1\}:$$
$$|\varepsilon_1 v_1 + \dots + \varepsilon_n v_n| \leq \sqrt{n}$$

$$\implies \exists \ \varepsilon'_1, \dots, \varepsilon'_n \in \{-1, +1\}:$$
$$|\varepsilon'_1 v_1 + \dots + \varepsilon'_n v_n| \ge \sqrt{n}.$$

Proof

 $\varepsilon_1, \ldots, \varepsilon_n \in \{-1, +1\}$ random signs (independent equal probability $\frac{1}{2}$)

$$X := \left| \sum_{i=1}^{n} \varepsilon_{i} v_{i} \right|^{2}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \varepsilon_{i} \varepsilon_{j} v_{i} \cdot v_{j}$$

 $\mathbb{E}\left(\varepsilon_{i}\varepsilon_{j}\right) = \delta_{i,j}$ $\implies \mathbb{E}X = \sum_{i=1}^{n}\sum_{j=1}^{n}\mathbb{E}\left(\varepsilon_{i}\varepsilon_{j}\right)v_{i}\cdot v_{j} = \sum_{i=1}^{n}v_{i}\cdot v_{i} = n.$

+ application of first moment method.

Definition A set of nodes I in a graph G is called **independent** if no two nodes of I are adjacent.

The independence number $\alpha(G)$ of G is the maximal size of an independent set of nodes of G.

Theorem

G = (V, E) ... graph with |V| = n nodes and $|E| = m \ge n/2$ edges.

$$\implies \qquad \alpha(G) \ge \frac{n^2}{4m}.$$

Proof

 $p = n/(2m) \Longrightarrow 0 \le p \le 1.$

S ... random subset of vertices: $\mathbb{P}\{v \in S\} = p$ (independent)

$$X = |S| \dots$$
 (random) size of S , $\mathbb{E} X = np = \frac{n^2}{2m}$

Y .. (random) number of edges in $G|_S$ (= induced subgraph of G)

$$Y = \sum_{e \in E} \mathbb{I}_{[\text{both endpoints of } e \text{ are in } S]}$$

$$Y = \sum_{e \in E} \mathbb{I}_{\text{[both endpoints of } e \text{ are in } S]}$$

$$\implies \mathbb{E}Y = \sum_{e \in E} p^2 = mp^2 = \frac{n^2}{4m}$$

$$\implies \mathbb{E}(X - Y) = np - mp^2 = \frac{n^2}{2m} - \frac{n^2}{4m} = \frac{n^2}{4m}.$$

• There exists some specific S for which the number of vertices of S minus the number of edges of S is at least $n^2/(4m)$.

• Select one vertex from each edge of S and delete it. This leaves a set S^* with at least $n^2/(4m)$ vertices.

• S^* is an independent set (all edges of S have been destroyed)

$$\implies \qquad \boxed{\alpha(G) \ge \frac{n^2}{4m}}$$

Definition The girth girth(G) of a graph G is the size of the shortest cycle.

The chromatic number $\chi(G)$ of a graph G is the smallest number k such that there exists a regular k-coloring of the vertices of G, that is, a coloring of at k colors of the vertices such that adjacent vertices have different colors.

Theorem [Erdős 1959]

For all (positive integers) k and ℓ there exists a graph G with

Proof

 $p = n^{\theta-1}$ for some $0 < \theta < 1/\ell$ (*n* be chosen sufficiently large)

 $V = \{1, 2, \dots, n\}$... vertex set of a random graph:

 $\mathbb{P}\{e \in E(G)\} = p \qquad \text{(independently)}$

X ...number of cycles of size $\leq \ell$.

 $\theta\ell < 1$

$$\implies \mathbb{E} X = \sum_{i=3}^{\ell} \frac{(n)_i}{2i} p^i \le \sum_{i=3}^{\ell} \frac{n^i}{2i} n^{(\theta-1)i} = \sum_{i=3}^{\ell} \frac{n^{\theta i}}{2i} = o(n).$$

$$\mathbb{E} X \ge \mathbb{E} \left(X \cdot \mathbb{I}_{[X \ge n/2]} \right) \ge \frac{n}{2} \mathbb{P} \{ X \ge n/2 \}$$
$$\mathbb{E} X = o(n)$$
$$\implies \mathbb{P} \{ X \ge n/2 \} = o(1).$$

$$\begin{split} \mathbb{P}\{\alpha(G) \geq m\} &= \mathbb{P}\{\exists S \subseteq \{1, 2, \dots, n\} : |S| = m, \ S \text{ is independent}\}\\ &\leq \mathbb{E}\left(\sum_{|S|=m} \mathbb{I}_{[S \text{ is independent}]}\right)\\ &= \sum_{|S|=m} \mathbb{P}\{S \text{ is independent}\}\\ &= {n \choose m}(1-p){m \choose 2}\\ &\leq \frac{n^m}{m!}e^{-p{m \choose 2}}\\ &\leq (ne^{-p(m-1)/2})^m \end{split}$$

$$m = m(n) = \lceil \frac{3}{p} \log n \rceil \sim 3n^{1-\theta} \log n$$

$$\implies ne^{-p(m-1)/2} \to 0 \qquad (n \to \infty)$$

$$\implies \mathbb{P}\{\alpha(G) \ge m(n)\} \to 0 \qquad (n \to \infty)$$

n sufficiently large that $\mathbb{P}\{X \ge n/2\} < \frac{1}{2}$ and $\mathbb{P}\{\alpha(G) \ge m(n)\} < \frac{1}{2}$.

• Take G with X < n/2 (less than n/2 cycles of length at most ℓ) and $\alpha(G) < m(n) \sim 3n^{1-\theta} \log n$.

- Remove from G a vertex from each cycle of length at most ℓ .
- New graph G^* has at least n/2 vertices, $|girth(G^*) > \ell|$
- $\alpha(G^*) \leq \alpha(G)$

$$\implies \chi(G^*) \ge \frac{|G^*|}{\alpha(G)} \ge \frac{n/2}{3n^{1-\theta}\log n} = \frac{n^{\theta}}{6\log n}$$

• *n* sufficiently large that $n^{\theta}/(6\log n) > k \Longrightarrow \left[\chi(G) > k\right]$

Second moment $\mathbb{E}(X^2)$

Variance
$$\mathbb{V}X = \mathbb{E}(X^2) - (EX)^2 = \mathbb{E}((X - \mathbb{E}X)^2)$$

Theorem [Chebyshev's Inequality] Suppose that $\mathbb{E}(X^2)$ is finite.

$$\implies \mathbb{P}\{|X - \mathbb{E} X| \ge \lambda \sqrt{\mathbb{V} X}\} \le \frac{1}{\lambda^2}$$

Proof

$$\mathbb{V} X = \mathbb{E} \left((X - \mathbb{E} X)^2 \right)$$

$$\geq \mathbb{E} \left((X - \mathbb{E} X)^2 \mathbb{I}_{[|X - \mathbb{E} X| \ge \kappa]} \right)$$

$$\geq \kappa^2 \mathbb{P} \{ |X - \mathbb{E} X| \ge \kappa \}.$$

and use $\kappa = \lambda \cdot \sqrt{\mathbb{V} X}$.

Theorem

X ... discrete random variable on **non-negative integers**

$$\implies \mathbb{P}\{X=0\} \leq \frac{\mathbb{V}X}{(\mathbb{E}X)^2}.$$

Proof Set $\lambda = \mathbb{E} X / \sqrt{\mathbb{V} X}$ in Chebyshev's Inequality. Then $\lambda \sqrt{\mathbb{V} X} = \mathbb{E} X$ and consequently

$$\mathbb{P}\{X=0\} \le \mathbb{P}\{|X-\mathbb{E}X| \ge \mathbb{E}X\} \le \frac{1}{\lambda^2} = \frac{\mathbb{V}X}{(\mathbb{E}X)^2}$$

Remark

Sharpened Version: $\mathbb{E} X = \mathbb{E} (X \cdot \mathbb{I}_{[X>0]}) \leq \sqrt{\mathbb{E} X^2} \cdot \sqrt{\mathbb{P} \{X>0\}}.$

$$\implies \mathbb{P}\{X > 0\} \ge \frac{(\mathbb{E} X)^2}{\mathbb{E} X^2}.$$
$$\implies \mathbb{P}\{X = 0\} \le \frac{\mathbb{V} X}{\mathbb{E} X^2}.$$

This complements the inequality $\mathbb{P}\{X > 0\} \leq \mathbb{E}X$:

$$\frac{(\mathbb{E}X)^2}{\mathbb{E}X^2} \le \mathbb{P}\{X > 0\} \le \mathbb{E}X$$

Theorem

 $X_n \dots$ sequence of random variables with

 $\mathbb{E} X_n \to \infty$ and $\mathbb{E} (X_n)^2 \sim (\mathbb{E} X_n)^2$

as $n \to \infty$.

$$\implies$$
 $X_n > 0$ and $\frac{X_n}{\mathbb{E} X_n} \to 1$

almost always.

Proof

•
$$\mathbb{E}(X_n)^2 \sim (\mathbb{E}X_n)^2 \implies \mathbb{V}X_n = o((\mathbb{E}X_n)^2).$$

•
$$\mathbb{P}\{|X_n - \mathbb{E} X_n| \ge \varepsilon \mathbb{E} X_n\} \le \frac{\mathbb{V} X_n}{\varepsilon^2 (\mathbb{E} X_n)^2}$$

(Take $\lambda = \varepsilon \mathbb{E} X_n / \sqrt{\mathbb{V} X_n}$ in Chebyshev's inequality.)

$$\implies \mathbb{P}\{|X_n - \mathbb{E} X_n| \ge \varepsilon \mathbb{E} X_n\} \to 0.$$

_ _ _ _

Remark. A relation of the kind $\mathbb{P}\{|X_n - \mathbb{E}X_n| \ge \varepsilon \mathbb{E}X_n\} \to 0$ is a so-called **concentration property** of X_n .

Application

 $X = X_n \dots$ number of **triangles** in random graph G(n, p). $\mathbb{P}\{e \in E(G)\} = p$ (independently)

 \mathcal{T} ... (random) set of triangles in G(n, p):

$$X = \sum_{1 \le i_1 < i_2 < i_3 \le n} \mathbb{I}_{[(i_1, i_2, i_3) \in \mathcal{T}]}$$

$$\mathbb{E} X = \sum_{1 \le i_1 < i_2 < i_3 \le n} \mathbb{P}\{(i_1, i_2, i_3) \in \mathcal{T}\} = \binom{n}{3} p^3.$$

$$\mathbb{E}(X^2) = \mathbb{E}\left(\sum_{1 \le i_1 < i_2 < i_3 \le n} \sum_{1 \le j_1 < j_2 < j_3 \le n} \mathbb{I}_{[(i_1, i_2, i_3) \in \mathcal{T}]} \cdot \mathbb{I}_{[(j_1, j_2, j_3) \in \mathcal{T}]}\right)$$
$$= \mathbb{E}\left(\sum_{1 \le i_1 < i_2 < i_3 \le n} \sum_{1 \le j_1 < j_2 < j_3 \le n} \mathbb{I}_{[(i_1, i_2, i_3), (j_1, j_2, j_3) \in \mathcal{T}]}\right)$$
$$= \sum_{1 \le i_1 < i_2 < i_3 \le n} \sum_{1 \le j_1 < j_2 < j_3 \le n} \mathbb{P}\{(i_1, i_2, i_3), (j_1, j_2, j_3) \in \mathcal{T}\}$$
Second Moment Method

1. If $|\{i_1, i_2, i_3\} \cap \{j_1, j_2, j_3\}| = 3$, that is, $i_1 = j_1$, $i_2 = j_2$, and $i_3 = j_3$ then

 $\mathbb{P}\{(i_1, i_2, i_3), (j_1, j_2, j_3) \in \mathcal{T}\} = p^3$

and there are $\binom{n}{3}$ cases of that kind.

- 2. If $|\{i_1, i_2, i_3\} \cap \{j_1, j_2, j_3\}| = 2$ then $\mathbb{P}\{(i_1, i_2, i_3), (j_1, j_2, j_3) \in \mathcal{T}\} = p^5$ and there are $12\binom{n}{4}$ cases of that kind.
- 3. If $|\{i_1, i_2, i_3\} \cap \{j_1, j_2, j_3\}| \leq 1$ then the events $\{(i_1, j_1, k_1) \in \mathcal{T}\}$ and $\{(i_2, j_2, k_2) \in \mathcal{T}\}$ are independent and consequently

 $\mathbb{P}\{(i_1, j_1, k_1), (i_2, j_2, k_2) \in \mathcal{T}\} = p^6.$

Second Moment Method

$$\mathbb{E}(X^2) = \binom{n}{3}p^3 + 12\binom{n}{4}p^5 + \left(\binom{n}{3}^2 - \binom{n}{3} - 12\binom{n}{4}\right)p^6$$

= $(\mathbb{E}X)^2 + \binom{n}{3}p^3(1-p^3) + 12\binom{n}{4}p^5(1-p).$

$$np \to \infty \quad \Longleftrightarrow \quad \mathbb{E} X^2 \sim (\mathbb{E} X)^2$$

Proposition

If $np \to \infty$ then almost always the number of triangles in G(n,p) is approximated by the their expected number $\binom{n}{3}p^3$.

Definition Let n be a positive integer and p a real number with $0 \le p \le 1$. The random graph G(n,p) is a probability space over the set of graphs on the vertex set $\{1, 2, ..., n\}$ determined by

 $\mathbb{P}\{(i,j)\in G\}=p$

for all possible (undirected) edges (i, j) with $1 \le i, j \le n$ and $i \ne j$ with these events mutually independent.

Similarly one also considers random graphs G(n,m), where m is also a given integer with $0 \le m \le {n \choose 2}$. Here one considers the set of all graphs on the set of vertices $\{1, 2, \ldots, n\}$ with exactly m (undirected) edges where each of these graphs is equally likely. Due to the law of large numbers G(n,m) will have very similar properties as G(n,p) with $p = m/{n \choose 2}$.

Definition

A martingale is a sequence X_0, X_1, \ldots, X_m of random variables with

 $\mathbb{E}(X_{i+1}|X_i, X_{i-1}, \dots, X_0) = X_i$ ($0 \le i < m$)

"Fair Game"

Edge Exposure Martingale

$$V = \{1, 2, \dots, n\}, E = \{e_1, e_2, \dots, e_m\}$$
 with $m = \binom{n}{2}$.

f ... graph theoretic function (e.g. chromatic number), $G \sim G(n, p)$

 $X_{\mathsf{0}}(H) := \mathbb{E}f(G)$

 $X_1(H) := \mathbb{E}\left(f(G)|e_1 \in G \iff e_1 \in H\right)$

 $X_2(H) := \mathbb{E}\left(f(G)|e_1 \in G \iff e_1 \in H, e_2 \in G \iff e_2 \in H\right)$

 $X_m(H) := f(H)$

. . .

Lemma

 $f\ \ldots\ {\rm graph}$ theoretic function with the property that

• if H, H' differ in one edge then $|f(H) - f(H')| \le 1$.

 $X_0, X_1, \ldots X_m$ edge exposure martingale on G(n, p)

$$\implies |X_{i+1} - X_i| \le 1.$$

Proof (Idea)

Pairing H, H' that differ exactly by edge e_{i+1} .

Theorem [Azuma's Inequality]

Suppose that $0 = X_0, X_1, \ldots, X_m$ is a martingale with $|X_{i+1} - X_i| \le 1$.

$$\implies \mathbb{P}\{X_m > \lambda \sqrt{m}\} < e^{-\frac{1}{2}\lambda^2}.$$

Proof

 $x \in [-1, 1] \implies e^{\lambda x} \le \cosh(\lambda) + x \sinh(\lambda)$

 $Y_i := X_i - X_{i-1} \implies \mathbb{E}(Y_i | X_{i-1}, \dots, X_0) = 0.$

$$\implies \mathbb{E}\left(e^{\alpha Y_{i}}|X_{i-1},\ldots,X_{0}\right) \leq \cosh(\alpha) + 0 \cdot \sinh(\alpha) \leq e^{\frac{1}{2}\alpha^{2}}$$

$$\mathbb{E} (e^{\alpha X_m}) = \mathbb{E} \left(\prod_{i=1}^m e^{\alpha Y_i} \right)$$
$$= \mathbb{E} \left(\prod_{i=1}^{m-1} e^{\alpha Y_i} \cdot \mathbb{E} \left(e^{\alpha Y_m} | X_{m-1}, \dots, X_0 \right) \right)$$
$$\leq \mathbb{E} \left(\prod_{i=1}^{m-1} e^{\alpha Y_i} \right) \cdot e^{\frac{1}{2}\alpha^2}$$
$$< e^{\frac{1}{2}\alpha^2 m}$$

$$\mathbb{P}\{X_m > \lambda\sqrt{m}\} = \mathbb{P}\{e^{\alpha X_m} > e^{\alpha\lambda\sqrt{m}}\} \\ < \mathbb{E}\left(e^{\alpha X_m}\right) \cdot e^{-\alpha\lambda\sqrt{m}} \\ \le e^{\frac{1}{2}\alpha^2 m - \alpha\lambda\sqrt{m}} \\ = e^{-\frac{1}{2}\lambda^2} \qquad (\alpha = \lambda/\sqrt{m})$$

$$k = k(n) = k_0(n) - 4$$
, where $k_0 = k_0(n)$ is defined by
 $\binom{n}{k_0 - 1} 2^{-\binom{k_0 - 1}{2}} > 1 > \binom{n}{k_0} 2^{-\binom{k_0}{2}}$

$$k = k(n) \sim 2\log_2 n, \quad {\binom{n}{k(n)}} 2^{-\binom{k(n)}{2}} > n^{3+(1)}$$

Lemma

Y ... maximal size of a family of edge disjoint cliques (= complete subgraph) of size k.

$$\implies \qquad \mathbb{E} Y \ge \frac{n^2}{2k^4} (1 + o(1)).$$

Proof

$$\mathcal{K}$$
 ... (random) set of k-cliques of G, $\mu := \mathbb{E}(|\mathcal{K}|) = {n \choose k} 2^{-{k \choose 2}}$

W ... (unordered) pairs $\{A, B\}$ of k-cliques of G with $2 \le |A \cap B| < k$.

$$\mathbb{E} W = \frac{\Delta}{2} \sim \frac{\mu^2 k^4}{2n^2}$$

with
$$\Delta = \sum_{i=2}^{k-1} {k \choose i} {n-k \choose k-i} 2^{\binom{i}{2} - \binom{k}{2}}.$$

 $q := \mu / \Delta.$

 \mathcal{C} ... random subfamily of \mathcal{K} with $\mathbb{P}\{A \in \mathcal{C}\} = q$.

W' ... (random) number of (unordered) pairs $\{A, B\}$, $A, B \in C$ with $2 \leq |A \cap B| < k$.

$$\mathbb{E} W' = q^2 \mathbb{E} W = q^2 \Delta/2.$$

Delete from C one set from each such pair. This gives a set C^* of edge disjoint k-cliques of G and

$$\mathbb{E} Y \ge \mathbb{E} \left(|\mathcal{C}^*| \right) \ge \mathbb{E} \left(|\mathcal{C}| \right) - \mathbb{E} W' = \mu q - q^2 \Delta/2 = \frac{\mu^2}{2\Delta} \sim \frac{n^2}{2k^4}.$$

Lemma

 $\omega(G)$... size of the maximum clique of G

$$\implies \mathbb{P}\{\omega(G) < k\} < e^{-(c+o(1))\frac{n^2}{(\log n)^8}}.$$

Proof

 Y_0, Y_1, \ldots, Y_m ... edge exposure martingale on $G(n, \frac{1}{2})$ with Y from above.

• $|Y_i - Y_{i-1}| \le 1$ (a single edge can add at most one clique to a family of edge disjoint cliques)

• G has no k-clique $\iff Y = 0$.

Azuma's inequality: $m = \binom{n}{2} \sim \frac{1}{2}n^2$, $\mathbb{E}Y \ge \frac{n^2}{2k^4}(1+o(1))$.

$$\mathbb{P}\{\omega(G) < k\} = \mathbb{P}\{Y = 0\} \le \mathbb{P}\{|Y - \mathbb{E}Y| \le \mathbb{E}Y\}$$

$$\le e^{-(\mathbb{E}Y)^2/2\binom{n}{2}} \le e^{-(c'+o(1))n^2/k^8}$$

$$= e^{-(c+o(1))\frac{n^2}{(\log n)^8}}.$$

Theorem [Bollobas] We have, almost always in $G(n, \frac{1}{2})$,

$$\chi(G) \sim \frac{n}{2\log_2 n}$$

Proof (Lower bound)

Almost always there exists no complete subgraph $K_{\lfloor 2 \log_2 n \rfloor}$ in $G(n, \frac{1}{2})$.

The same holds for the complement. Consequently almost always there is no independent set of size $\lfloor 2 \log_2 n \rfloor$.

$$\implies \chi(G) \ge \frac{n}{\alpha(G)} \ge \frac{n}{2\log_2 n}.$$

 $(\alpha(G) \dots$ independece number of G.)

Proof (Upper bound)

 $m = \lfloor n/(\log n)^4 \rfloor.$

 \boldsymbol{S} .. set of \boldsymbol{m} vertices

 $G|_S$... restriction of to G to S. $G|_S$ has the distribution $G(m, \frac{1}{2})$.

 $k = k(m) = k_0(m) - 4 \sim 2 \log_2$ as above.

$$\mathbb{P}\{\alpha(G|_S) < k\} < e^{-m^{2+o(1)}}$$

 $(\alpha(G) \text{ has the same distribution as } \omega(G) \text{ for } p = \frac{1}{2}.)$

There are now $\binom{n}{m} < 2^n = 2^{m^{1+o(1)}}$ such sets S. Hence $\mathbb{P}\{\alpha(G|_S) < k \text{ for some } m\text{-set } S\} < 2^{m^{1+o(1)}}e^{-m^{2+o(1)}} = o(1).$ Always always every m vertices contain a k-element independent set.

Take G with this property.

Pull out k-element independent sets and give each a distint color until there are less than m vertices left.

Give each remaining point a distinct color.

$$\implies \chi(G) \leq \left\lceil \frac{n-m}{k} \right\rceil + m \leq \frac{n}{k} + m$$
$$= \frac{n}{2\log_2 n} (1+o(1)) + o\left(\frac{n}{\log_2 n}\right)$$
$$= \frac{n}{2\log_2 n} (1+o(1)),$$

This proves the upper bound (almost always).

Definition

A random variable Z is said to be **normally distributed** (or Gaussian) with mean μ and variance σ^2 if its distribution function $F_Z(x) = \mathbb{P}\{Z \le x\}$ is given by

$$F_Z(x) = \Phi\left(\frac{x-\mu}{\sigma}\right),$$

where

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$$

Notation. $\mathcal{L}(Z) = N(\mu, \sigma^2)$.

Density of Z:

$$f_Z(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/(2\sigma^2)}$$

Characteristic function of *Z*:

$$\varphi_Z(t) = \mathbb{E} e^{itZ} = e^{i\mu t - \frac{1}{2}\sigma^2 t^2}.$$

Definition

Weak convergence:

$$X_n \xrightarrow{\mathsf{d}} X \iff \overline{\mathbb{E} h(X_n) \to \mathbb{E} h(X)}$$

for all continuous and bounded $h:\mathbb{R}\to\mathbb{R}$

Equivalently:

 $\lim_{n\to\infty} F_{X_n}(x) = F_X(x) \quad \text{for all points of continuity of } F_X(x)$

If X is a continuous then convergence is uniform:

$$||F_{X_n} - F_X||_{\infty} = \sup_{x \in \mathbb{R}} |F_{X_n}(x) - F_X(x)| \to 0.$$

Levy's Criterion

$$X_n \xrightarrow{\mathsf{d}} X \quad \Longleftrightarrow \quad \mathbb{E} e^{itX_n} \to \mathbb{E} e^{itX} \quad (t \in \mathbb{R})$$

Moreover, if for all $t \in \mathbb{R}$

$$\psi(t) := \lim_{n \to \infty} \mathbb{E} e^{itX_n}$$

exists and $\psi(t)$ is continous at t = 0 then $\psi(t)$ is the characteristic function of a random variable X for which we have $X_n \xrightarrow{d} X$.

Notation. "iid" ... independently and identically distributed

Theorem

Remark. $\mathbb{P}\{S_n \leq \mathbb{E} S_n + x\sqrt{\mathbb{V}S_n}\} \to \Phi(x).$

Proof

$$\mu = \mathbb{E} Y_i, \ \sigma^2 = \mathbb{V} Y_i = \mathbb{E} (Y_i^2) - (\mathbb{E} Y_i)^2 \implies \mathbb{E} S_n = n\mu, \ \mathbb{V} S_n = n\sigma^2.$$

$$\varphi_{Y_i}(t) = \mathbb{E} e^{itY_i} = e^{it\mu - \frac{1}{2}\sigma^2 t^2 (1 + o(1))} \quad (t \to 0)$$

$$\Longrightarrow \overline{\varphi_{\tilde{S}_n}(t)} = \mathbb{E} e^{it\tilde{S}_n}$$

$$= e^{-it\sqrt{n}\mu/\sigma} \cdot \mathbb{E} \left(e^{(it/(\sqrt{n}\sigma))(Y_1 + \dots + Y_n)} \right)$$

$$= e^{-it\sqrt{n}\mu/\sigma} \cdot \left(\mathbb{E} e^{(it/(\sqrt{n}\sigma)Y_1)} \right)^n$$

$$= e^{-it\sqrt{n}\mu/\sigma} \cdot e^{it\sqrt{n}\mu/\sigma - \frac{1}{2}t^2(1+o(1))}$$

$$= e^{-\frac{1}{2}t^2(1+o(1))} \rightarrow \boxed{e^{-\frac{1}{2}t^2}}.$$

+ Levy's criterion.

Quantified version for finite third moments $\mathbb{E} |Y_i|^3$:

$$\mathbb{P}\{S_n \le n\mu + x\sqrt{n}\,\sigma\} = \Phi(x) + O\left(\frac{\mathbb{E}\,|Y_i - \mu|^3}{\sigma^3\sqrt{n}}\right).$$

uniformly for $x \in \mathbb{R}$.

Lemma

$$\mathcal{L}(Z) = N(\mu, \sigma^2) \quad \iff \quad \mathbb{E}(Z - \mu)f(Z) = \sigma^2 \mathbb{E}f'(Z)$$

for all smooth functions fwith $f(x)e^{-\frac{1}{2}x^2} \to 0$ as $|x| \to \infty$ and $\int_{-\infty}^{\infty} |xf(x)|e^{-\frac{1}{2}x^2} dx < \infty$.

Proof

Wlog $\mu = 0$ and $\sigma^2 = 1$.

$$\mathcal{L}(Z) = N(0, 1)$$

$$\implies \mathbb{E} f'(Z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f'(x) e^{-\frac{1}{2}x^2} dx$$

$$= \frac{1}{\sqrt{2\pi}} f(x) e^{-\frac{1}{2}x^2} \Big|_{-\infty}^{\infty} + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x f(x) e^{-\frac{1}{2}x^2} dx$$

$$= 0 + \mathbb{E} Z f(Z).$$

$$\mathbb{E} Z f(Z) = \mathbb{E} f'(Z)$$

$$g(x)$$
 bounded with $\int_{-\infty}^{\infty} g(x)e^{-\frac{1}{2}x^2} dx = 0$

$$\implies f(x) := e^{\frac{1}{2}x^2} \int_{-\infty}^{x} g(y) e^{-\frac{1}{2}y^2} dy$$
$$= -e^{\frac{1}{2}x^2} \int_{x}^{\infty} g(y) e^{-\frac{1}{2}y^2} dy$$

satisfies

$$f'(x) - xf(x) = g(x),$$

$$f(x)e^{-\frac{1}{2}x^2} \to 0 \text{ as } |x| \to \infty \text{ and } \int_{-\infty}^{\infty} |xf(x)|e^{-\frac{1}{2}x^2} dx < \infty.$$

$$g(x) := \mathbb{I}_{[x \le x_0]} - \Phi(x_0)$$

$$f(x) := e^{\frac{1}{2}x^2} \int_{-\infty}^x \left(\mathbb{I}_{[x \le x_0]} - \Phi(x_0) \right) e^{-\frac{1}{2}y^2} dy$$

$$f'(x) - xf(x) = \mathbb{I}_{[x \le x_0]} - \Phi(x_0)$$

$$\mathbb{E} f'(Z) - \mathbb{E} Zf(Z) = \mathbb{P} \{ Z \le x_0 \} - \Phi(x_0)$$

$$\implies 0 = \mathbb{P} \{ Z \le x_0 \} - \Phi(x_0)$$

$$\implies \mathcal{L}(Z) = N(0, 1).$$

Notation. *h* bounded, absolutely integrable:

$$Nh = \mathbb{E}h(Z/\sigma) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} h(x/\sigma) e^{-\frac{1}{2}x^2} dx.$$

Lemma h ... bounded with bounded first derivative.

Then there exists f with bounded second derivative with

$$\sigma^2 f'(w) - wf(w) = h(w/\sigma) - Nh$$
 (Stein's equation)

and

$$||f''||_{\infty} \le K_{\mathsf{univ}} \cdot \left(||h||_{\infty} + ||h'||_{\infty}\right)$$

for a universal constant $K_{\text{univ}} > 0$.

Proof

The solution of Stein's equation has been already determined (see the previous lemma).

$$f(x) = e^{\frac{1}{2}x^2} \int_{-\infty}^{x} (h(y/\sigma) - Nh) e^{-\frac{1}{2}y^2} dy.$$

Wlog $\sigma^2 = 1$

 $\overline{h}(x) := h(x) - Nh. \iff N\overline{h} = 0, \|\overline{h}\|_{\infty} \le 2\|h\|.)$

Abbreviations:

$$H_{0} = \|\overline{h}\|_{\infty},$$

$$H_{1} = \|\overline{h}'\|_{\infty} = \|h'\|_{\infty}$$

$$F_{0} = \|f\|_{\infty}, \quad F_{1}\|f'\|_{\infty},$$

$$F_{11} = \|(xf)'\|_{\infty},$$

$$F_{2} = \|f''\|_{\infty},$$

$$c_{1} = \sup_{x \ge 0} \left| x \left(1 - xe^{\frac{1}{2}x^{2}} \int_{x}^{\infty} e^{-\frac{1}{2}u^{2}} du \right) \right|,$$

$$c_{2} = \sup_{x \ge 0} e^{\frac{1}{2}x^{2}} \int_{x}^{\infty} e^{-\frac{1}{2}u^{2}} du,$$

$$c_{3} = \sup_{x \ge 0} x e^{\frac{1}{2}x^{2}} \int_{x}^{\infty} e^{-\frac{1}{2}u^{2}} du = 1$$

- 1. $F_0 \le c_2 H_0$,
- 2. $F_1 \leq 2H_0$,
- 3. $F_{11} \leq (c_1 + c_2)H_0 + H_1$,
- 4. $F_2 \leq (c_1 + c_2)H_0 + 2H_1$.
- 4. implies upper bound for $||f''||_{\infty}$ and proves the lemma.

1.

$$f(x) = -e^{\frac{1}{2}x^2} \int_x^\infty \left(\overline{h}(y)\right) e^{-\frac{1}{2}y^2} dy \quad (x > 0)$$
$$\implies F_0 \le c_2 H_0.$$

Recall: $c_2 = \sup_{x \ge 0} e^{\frac{1}{2}x^2} \int_x^{\infty} e^{-\frac{1}{2}u^2} du$

2.

$$f'(x) = xf(x) + \overline{h}(x) \implies F_1 \le ||xf(x)||_{\infty} + H_0.$$

$$xf(x) = -xe^{\frac{1}{2}x^2} \int_x^\infty \left(\overline{h}(y)\right) e^{-\frac{1}{2}y^2} dy \quad (x > 0)$$
$$\implies \|xf(x)\|_\infty \le c_3 H_0 = H_0.$$
$$\implies F_1 \le 2H_0$$

3.

$$\begin{aligned} (xf(x))' &= f(x) + x^2 f(x) + x\overline{h}(x), \quad F_0 \leq c_2 H_0. \\ x^2 f(x) + x\overline{h}(x) &= -x^2 e^{\frac{1}{2}x^2} \int_x^{\infty} \overline{h}(y) e^{-\frac{1}{2}y^2} \, dy + x\overline{h}(x) \\ &= -x^2 e^{\frac{1}{2}x^2} \int_x^{\infty} \overline{h}(y) e^{-\frac{1}{2}y^2} \, dy + x e^{\frac{1}{2}x^2} \int_x^{\infty} y\overline{h}(y) e^{-\frac{1}{2}y^2} \, dy \\ &- x e^{\frac{1}{2}x^2} \int_x^{\infty} y\overline{h}(y) e^{-\frac{1}{2}y^2} \, dy + xh(x) \\ &= x^2 e^{\frac{1}{2}x^2} \int_x^{\infty} \overline{h}(y) \left(\frac{y}{x} - 1\right) e^{-\frac{1}{2}y^2} \, dy \\ &- x e^{\frac{1}{2}x^2} \int_x^{\infty} \overline{h}'(y) e^{-\frac{1}{2}y^2} \, dy. \end{aligned}$$

$$\implies \|x^2 f(x) + x\overline{h}(x)\|_{\infty} \leq c_1 H_0 + H_1 \\ \implies F_{11} \leq (c_1 + c_2) H_0 + H_1. \end{aligned}$$

4.

 $f'(x) = \overline{h}(x) + xf(x).$

$$|f'(x+t) - f'(x)| = |\overline{h}(x+t) - \overline{h}(x) + (x+t)f(x+t) - xf(x)|$$

$$\leq |t|H_1 + |t|F_{11}$$

$$\leq |t|((c_1 + c_2)H_0 + 2H_1).$$

 $\implies F_2 \le (c_1 + c_2)H_0 + 2H_1.$
Norm ||h||

$$\|h\| := K_{\text{univ}} \cdot \left(\|h\|_{\infty} + \|h'\|_{\infty}\right).$$

This norm is maybe a little unusual but it perfectly fits to Stein's method.

Distance of two probability measures P and Q

$$d_1(P,Q) := \sup_{\|h\| \le 1} |\mathbb{E} h(X) - \mathbb{E} h(Y)|$$

where $\mathcal{L}(X) = P$ and $\mathcal{L}(Y) = Q$.

Remark

$$d_1(\mathcal{L}(X_n), \mathcal{L}(X)) \to 0 \quad \iff \quad X_n \stackrel{\mathsf{d}}{\longrightarrow} X$$

General situation

W can be composed in the following way $(I \dots \text{ finite index set, } K_i \dots \text{ finite index set } (i \in I)$ $X_i, W_i, Z_i, Z_{ik}, W_{ik}, V_{ik} \text{ square integrable, } i \in I \text{ and } k \in K_i)$:

1.
$$W = \sum_{i \in I} X_i$$
, 2. $\mathbb{E} X_i = 0$ $(i \in I)$, 3. $\mathbb{V} W = 1$,

4.
$$W = Z_i + W_i$$
 $(i \in I)$, W_i is independent of X_i ,

5.
$$\left| Z_i = \sum_{k \in K_i} Z_{ik} \right| \quad (i \in I),$$

6.
$$W_i = W_{ik} + V_{ik}$$
 $(i \in I, k \in K_i),$

7. W_{ik} is independent of the pair (X_i, Z_{ik}) $(i \in I, k \in K_i)$.

Theorem

Suppose that a random variable W decomposes as introduced above. Then

$$d_1 \left(\mathcal{L}(W), N(0, 1) \right) \leq \frac{1}{2} \sum_{i \in I} \mathbb{E} \left(|X_i| Z_i^2 \right) + \sum_{i \in I} \sum_{k \in K_i} \left(\mathbb{E} \left| X_i Z_{ik} V_{ik} \right| + \mathbb{E} \left| X_i Z_{ik} \right| \cdot \mathbb{E} \left| Z_i + V_{ik} \right| \right).$$

Remark. If the right hand side goes to 0 then $W \xrightarrow{d} N(0, 1)$.

 Y_1,Y_2,\ldots iid, $\mathbb{E}\,|Y_i|^3<\infty$

 $\mu = \mathbb{E} Y_i, \quad \sigma^2 = \mathbb{V} Y_i$

$$X_{i} := \frac{Y_{i} - \mu}{\sqrt{n} \sigma} \quad \text{(also iid)}$$
$$W := X_{1} + \dots + X_{n}$$
$$\implies W = \frac{Y_{1} + \dots + Y_{n} - \mu n}{\sqrt{n} \sigma}$$

$$K_i = \{i\}$$
$$Z_i = X_i,$$
$$W_{ik} = X_k,$$
$$V_{ik} = 0.$$

$$\mathbb{E}\left(|X_i|Z_i^2\right) = \mathbb{E}|X_i|^3,$$
$$\mathbb{E}|X_iZ_{ik}V_{ik}| = 0,$$
$$\mathbb{E}|X_iZ_{ik}| \cdot \mathbb{E}|Z_i + V_{ik}| = \mathbb{E}X_i^2 \cdot \mathbb{E}|X_i| = \frac{1}{n}\mathbb{E}|X_i|.$$
$$\implies d_1\left(\mathcal{L}(W), N(0, 1)\right) \le \frac{1}{\sigma^3\sqrt{n}}\left(\frac{1}{2}\mathbb{E}\left(|Y_i - \mu|^3\right) + \mathbb{E}|Y_i - \mu|\right).$$

Proof

Goal:

$$\begin{aligned} \left| \mathbb{E} W f(W) - \mathbb{E} f'(W) \right| \\ &\leq \|f''\|_{\infty} \cdot \left(\frac{1}{2} \sum_{i \in I} \mathbb{E} \left(|X_i| Z_i^2 \right) \right. \\ &\qquad + \sum_{i \in I} \sum_{k \in K_i} \left(\mathbb{E} \left| X_i Z_{ik} V_{ik} \right| + \mathbb{E} \left| X_i Z_{ik} \right| \cdot \mathbb{E} \left| Z_i + V_{ik} \right| \right) \right). \end{aligned}$$

Choose h with $||h|| \leq 1$ and use f(x) with

$$f'(x) - xf(x) = h(x) - Nh = \overline{h}(x)$$

(Recall: $Nh = \mathbb{E}h(Z)$ with $\mathcal{L}(Z) = N(0, 1)$).

$$\implies \mathbb{E} h(W) - \mathbb{E} h(Z) = \mathbb{E} f'(W) - \mathbb{E} W f(W)$$
$$\implies |\mathbb{E} h(W) - \mathbb{E} h(Z)| = |\mathbb{E} f'(W) - \mathbb{E} W f(W)|$$
$$\leq ||f''||_{\infty} \cdot \left(\cdots \right)$$
$$\leq \left(\cdots \right)$$

for all h with $||h|| \leq 1$. (Recall that $||f''||_{\infty} \leq ||h|| \leq 1$.)

Rewrite the difference:

$$\mathbb{E} Wf(W) - \mathbb{E} f'(W) = \mathbb{E} Wf(W) - \sum_{i \in I} \mathbb{E} \left(X_i Z_i f'(W_i) \right) + \sum_{i \in I} \mathbb{E} \left(X_i Z_i f'(W_i) - \sum_{i \in I} \sum_{k \in K_i} \mathbb{E} \left(X_i Z_{ik} \right) \mathbb{E} f'(W_{ik}) + \sum_{i \in I} \sum_{k \in K_i} \mathbb{E} \left(X_i Z_{ik} \right) \left(\mathbb{E} f'(W_{ik}) - \mathbb{E} f'(W) \right),$$

Here we used

$$1 = \mathbb{E} W^{2} = \sum_{i \in I} \mathbb{E} (X_{i}W)$$
$$= \sum_{i \in I} \mathbb{E} (X_{i})\mathbb{E} (W_{i}) + \sum_{i \in I} \mathbb{E} (X_{i}Z_{i})$$
$$= \sum_{i \in I} \mathbb{E} (X_{i}Z_{i})$$
$$= \sum_{i \in I} \sum_{k \in K_{i}} \mathbb{E} (X_{i}Z_{ik}).$$

First by Taylor's expansion:

$$f(x+t) = f(x) + tf'(x) + \frac{1}{2}t^2f''(x+\theta t) \text{ for some } \theta \in [0,1].$$

$$Wf(W) = \sum_{i \in I} X_i f(W)$$

$$= \sum_{i \in I} X_i \left(f(W_i) + Z_i f'(W_i) + \frac{1}{2}Z_i^2 f''(W_i + \theta_i Z_i) \right)$$

 X_i and W_i are independent $\Longrightarrow \mathbb{E}(X_i f(W_i)) = \mathbb{E} X_i \cdot \mathbb{E} f(W_i)$

$$\implies \left| \mathbb{E} W f(W) - \sum_{i \in I} \mathbb{E} \left(X_i Z_i f'(W_i) \right) \right| \leq \frac{\|f''\|}{2} \cdot \sum_{i \in I} \mathbb{E} \left(|X_i| Z_i^2 \right).$$

Second:

$$X_i Z_i f'(W_i) = \sum_{k \in K_i} X_i Z_{ik} f'(W_i)$$
$$= \sum_{k \in K_i} X_i Z_{ik} \left(f'(W_{ik} + V_{ik} f''(W_{ik} + \theta_{ik} V_{ik})) \right)$$

$$\implies \left| \sum_{i \in I} \mathbb{E} \left(X_i Z_i f'(W_i) - \sum_{i \in I} \sum_{k \in K_i} \mathbb{E} \left(X_i Z_{ik} \right) \mathbb{E} f'(W_{ik}) \right| \\ \leq \|f''\| \cdot \sum_{i \in I} \sum_{k \in K_i} \mathbb{E} \left| X_i Z_{ik} V_{ik} \right|$$

Third:

$$W_{ik} = W_i - V_{ik} = W - Z_i - V_{ik}:$$

$$f'(W_{ik}) = f'(W) - (Z_i + V_{ik})f''(W - \theta(Z_i + V_{ik}))$$

$$\implies \left| \mathbb{E} f'(W_{ik}) - \mathbb{E} f'(W) \right| \le \|f''\| \cdot \mathbb{E} |(Z_i + V_{ik})|.$$

Putting the three estimates together we get the proposed estimate for $|\mathbb{E} W f(W) - \mathbb{E} f'(W)|$.

Simplified Version (dissociated composition: $Z_{ik} = X_k, i \in K_i \subseteq I$)

... more precisely:

1.
$$W = \sum_{i \in I} X_i$$
, 2. $\mathbb{E} X_i = 0$ ($i \in I$), 3. $\mathbb{V} W = 1$,

4.
$$W = Z_i + W_i$$
 $(i \in I)$, W_i is independent of X_i ,

5.
$$Z_i = \sum_{k \in K_i} X_k$$
, $W_i = \sum_{k \in I \setminus K_i} X_k$ $(i \in I)$,

6.
$$W_i = W_{ik} + V_{ik}$$
$$V_{ik} = \sum_{j \in K_k \setminus K_i} X_j \quad (i \in I, k \in K_i),$$

7. $W_{ik} = W - \sum_{j \in K_i \cup K_k} X_j$ is independent of (X_i, X_k) $(i \in I, k \in K_i)$.

Dependency Graph \mathcal{L}

 $I \dots$ vertices, X_i random variable $(i \in I)$

• If A, B are disjoint subsets of I that are not interconnected by an edge then two subsystems $(X_i : i \in A)$ and $(X_j : j \in B)$ are independent.

Application to Stein's Theorem

$$K_i := \{ \text{neighbors of } i \text{ in } \mathcal{L} \}$$

$$W_i = \sum_{k \in I \setminus K_i} X_k \Longrightarrow X_i, W_i \text{ ind.}$$

$$W_{ik} = \sum_{j \in I \setminus (K_i \cup K_k)} X_j \Longrightarrow (X_i, X_k), W_{ik} \text{ ind.}$$

Theorem

Suppose that a random variable W decomposes in a dissociated way that is induced by a dependency graph.

Then

$$d_1\left(\mathcal{L}(W), N(0, 1)\right) \le 2\sum_{i \in I} \sum_{j,k \in K_i} \left(\mathbb{E}\left(|X_i X_j X_k| \right) + \mathbb{E}\left(|X_i X_j| \right) \mathbb{E} |X_k| \right).$$

Proof

$$Z_{i} = \sum_{k \in K_{i}} X_{k}$$

$$\implies |X_{i}|Z_{i}^{2} = |X_{i}| \sum_{j,k \in K_{i}} X_{j}X_{k} \leq \sum_{j,k \in K_{i}} |X_{i}X_{j}X_{k}|$$

$$\implies \sum_{i \in I} \mathbb{E} \left(|X_{i}|Z_{i}^{2} \right) \leq \sum_{i \in I} \sum_{j,k \in K_{i}} \mathbb{E} \left(|X_{i}X_{j}X_{k}| \right).$$

$$Z_{ik} = X_k$$

$$V_{ik} = \sum_{j \in K_k \setminus K_i} X_j$$

$$\implies |X_i Z_{ik} V_{ik}| \le \sum_{j \in K_k} |X_i X_k X_j|$$

$$\implies \sum_{i \in I} \sum_{k \in K_i} \mathbb{E} |X_i Z_{ik} V_{ik}| \le \sum_{i \in I} \sum_{k \in K_i} \sum_{j \in K_k} \mathbb{E} |X_i X_k X_j|$$

$$= \sum_{k \in I} \sum_{i \in K_k} \sum_{j \in K_k} \mathbb{E} |X_i X_k X_j|$$

$$= \sum_{k \in I} \sum_{i,j \in K_k} \mathbb{E} |X_i X_k X_j|.$$

$$Z_{ik} = X_k$$
$$Z_i + V_{ik} = \sum_{j \in K_k \cup K_i} X_j$$

$$\implies \mathbb{E} |X_i Z_{ik}| \cdot \mathbb{E} |Z_i + V_{ik}| \le \sum_{j \in K_k} \mathbb{E} |X_i X_k| \cdot \mathbb{E} |X_j| + \sum_{j \in K_i} \mathbb{E} |X_i X_k| \cdot \mathbb{E} |X_j|$$

$$\implies \sum_{i \in I} \sum_{k \in K_i} \mathbb{E} |X_i Z_{ik}| \cdot \mathbb{E} |Z_i + V_{ik}|$$

$$\leq \sum_{i \in I} \sum_{k \in K_i} \sum_{j \in K_k} \mathbb{E} |X_i X_k| \cdot \mathbb{E} |X_j| + \sum_{i \in I} \sum_{k \in K_i} \sum_{j \in K_i} \mathbb{E} |X_i X_k| \cdot \mathbb{E} |X_j|$$

$$= 2 \sum_{i \in I} \sum_{j,k \in K_i} \mathbb{E} \left(|X_i X_j| \right) \mathbb{E} |X_k|$$

$$\implies \frac{1}{2} \sum_{i \in I} \mathbb{E} \left(|X_i| Z_i^2 \right) + \sum_{i \in I} \sum_{k \in K_i} \left(\mathbb{E} \left| X_i Z_{ik} V_{ik} \right| + \mathbb{E} \left| X_i Z_{ik} \right| \cdot \mathbb{E} \left| Z_i + V_{ik} \right| \right)$$
$$\le 2 \sum_{i \in I} \sum_{j,k \in K_i} \left(\mathbb{E} \left(|X_i X_j X_k| \right) + \mathbb{E} \left(|X_i X_j| \right) \mathbb{E} \left| X_k \right| \right),$$

G(n,p) ... random graph

 \mathcal{T} ... triangles in G(n,p)

$$I = \{i = (i_1, i_2, i_3) : 1 \le i_1 < i_2 < i_3 \le n\}$$

 $X = |\mathcal{T}| = \sum_{i \in I} \mathbb{I}_{[i=(i_1, i_2, i_3) \in \mathcal{T}]}$

number of triangles in G(n,p)

$$\mathbb{E} X = \binom{n}{3} p^3$$

$$\sigma^2 := \mathbb{V} X = \binom{n}{3} p^3 (1 - p^3) + 12 \binom{n}{4} p^5 (1 - p).$$

Simplification: $p \leq \frac{1}{2}, np \to \infty \implies \mathbb{E} X \to \infty, \mathbb{V} X \to \infty$

$$X_{i} := \frac{1}{\sigma} \left(\mathbb{I}_{[i=(i_{1},i_{2},i_{3})\in\mathcal{T}]} - p^{3} \right)$$

$$W = \sum_{i \in I} X_i = \frac{X - \mathbb{E} X}{\sqrt{\mathbb{V} X}}.$$

Dependency graph \mathcal{L} .

$$V(\mathcal{L}) = I$$

$$E(\mathcal{L}) = \{(i, j) : |\{i_1, i_2, i_3\} \cap \{j_1, j_2, j_3\}| \ge 2\}$$

$$K_i = \{k = (k_1, k_2, k_3) \in I : |\{i_1, i_2, i_3\} \cap \{k_1, k_2, k_3\}| \ge 2\}.$$

$$\sum_{i \in I} \sum_{j,k \in K_i} \left(\mathbb{E} \left(|X_i X_j X_k| \right) + \mathbb{E} \left(|X_i X_j| \right) \mathbb{E} |X_k| \right) = ???$$

(Recall: $X_i := \frac{1}{\sigma} \left(\mathbb{I}_{[i=(i_1, i_2, i_3) \in \mathcal{T}]} - p^3 \right)$)

•
$$i = j = k$$
:
 $\mathbb{E}\left(|X_i X_j X_k|\right) = \mathbb{E}\left(|X_i|^3\right) = \frac{1}{\sigma^3}\left(p^3(1-p^3)^3 + (1-p^3)p^9\right) \le \frac{2p^3}{\sigma^3}$

• other case are similar ...

$$\implies \sum_{i \in I} \sum_{j,k \in K_i} \left(\mathbb{E} \left(|X_i X_j X_k| \right) + \mathbb{E} \left(|X_i X_j| \right) \mathbb{E} |X_k| \right) = O \left(\frac{1}{\sigma^3} \left(n^3 p^3 (1+np^2)^2 \right) \right)$$
$$\mathbb{V} X = \sigma^2 \ge c n^3 p^3 (1+np^2)$$

$$\implies d_1(\mathcal{L}(W), N(0, 1)) = O\left(\frac{n^3 p^3 (1+np^2)^2}{n^{9/2} p^{9/2} ((1+np^2)^{3/2}}\right)$$
$$= O\left((np)^{-3/2} (1+np)^{1/2}\right)$$
$$\to 0.$$

Theorem

Suppose that $0 and <math>np \to \infty$.

Then the number of triangles in a random graph G(n,p) satisfies a central limit theorem.

Remark. Similar properties hold for general subgraph counting.