GRAZ, July 2006

Singularities and Random Combinatorial Structures

Philippe FLAJOLET
INRIA, France.

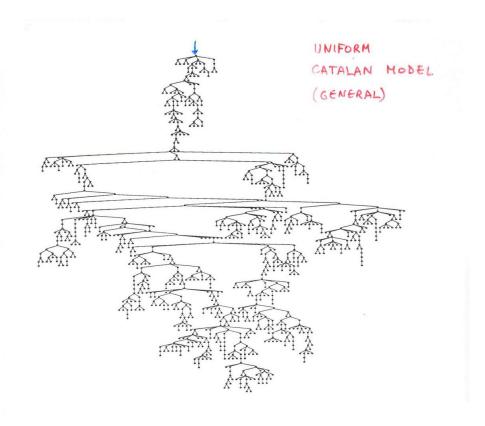
ANALYTIC COMBINATORICS

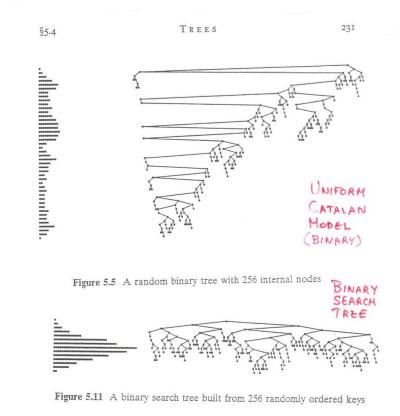
- B1
- Symbolic methods
 Complex asymptotic methods
- B2-83

· Random structures

1

Book by P.F+R. Sedgemick (2007)

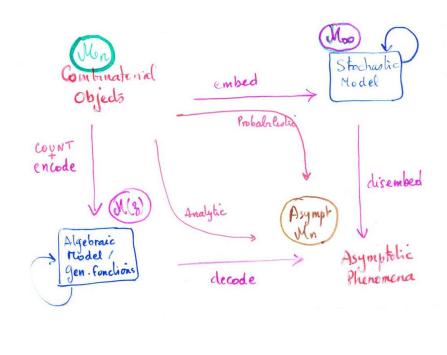


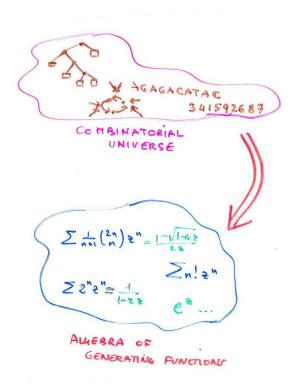


Sedgewick & Flajolet: An Introduction to the Analysis of Algorithms

Figure 3.1 All binary trees with 1, 2, 3, 4, and 5 external nodes

5





CHAPTER 1

Unla belled Structures and Ordinary generating functions

Ordinary Generating Function OGF

$$(f_n) \longrightarrow f(z) = \sum_{n=0}^{\infty} f_n z^n$$

number sequence e.g., counting sequence

7

(tn) $\rightarrow \sum f_n \frac{2^n}{n!}$

C=a combinatorial class (at most denumerable pet w/ SIZE function)

En = subdan of objects of size in

Cn = # objects of rize n = card (Bn)

Naturally: Count up to combinatorial nomorphism ($G \equiv \mathfrak{D}$ y 3 size-preserving hijections).

B = Z + B²

Solve the quadratic equation

$$B(z) = \frac{1 - \sqrt{1 - 4z}}{2} = \frac{1}{2} - \frac{1}{2} (1 - 4z)^{1/2}$$
The number of trees with N external modes is

$$B_N = \frac{1}{N} \left(\frac{2N - 2}{N - 1} \right)$$
(Cabalan numbers)

OUTLINE

Define a collection of set. theoretic combinatorial Constructions
union, product, sequence, set, cycle (...)

allowing RECURSIVE DEFINITIONS

Then:

meta-THMA: Generaling functions are automatically computable (equations!)

meta-TMM2: Counting sequences are also automatically computable $O(N^2)$ $\hookrightarrow O(N^{1+\epsilon})$

meta-THM3: Random generation is O(N log N)

arillmetic complexity

Theorem 1.1 There exists a dictionary

{ Combinatorial }

{ Combinatorial }

{ operations }

UNLABELLED

Construction	Translation (OGF)
$\mathcal{F} = \mathcal{G} \cup \mathcal{H}$	F(z) = G(z) + H(z)
$\mathcal{F} = \mathcal{G} \times \mathcal{H}$	$F(z) = G(z) \cdot H(z)$
$\mathcal{F} = \mathtt{sequence}(\mathcal{G})$	$F(z) = \frac{1}{1 - G(z)}$
$\mathcal{F} = \mathtt{set}(\mathcal{G})$	$F(z) = \exp(G(z) - \frac{1}{2}G(z^2) + \frac{1}{3}G(z^2) - \cdots)$
$\mathcal{F} = \mathtt{multiset}(\mathcal{G})$	$F(z) = \exp(G(z) + \frac{1}{2}G(z^2) + \frac{1}{3}G(z^2) + \cdots)$
$\mathcal{F} = \operatorname{cycle}(\mathcal{G})$	$F(z) = \log(1 - G(z))^{-1} + \cdots$
$\mathcal{F} = \mathcal{G}[\mathcal{H}]$	F(z) = G(H(z))

E or 1: neutral class formed with one element of size 0 [4 empty word] → E(2)=1.

Z: atomic class formed with one element of Mye 1, an ATOM. $\rightarrow Z(3) = 3$

Proof (s)

$$A \longmapsto A(2) = \sum_{\alpha \in A} A_{\alpha} \geq^{m}$$

$$A(2) = \sum_{\alpha \in A} z^{|\alpha|}$$

$$\sum_{\alpha \in A} z^{|\alpha|} = \sum_{\alpha \in A} z^{|\alpha|} + \sum_{\beta \in B} z^{|\beta|}$$

$$CARTESIAN PRODUCT$$

$$C(3) = A \times B$$

$$Z z^{|\alpha|} = \sum_{(\alpha,\beta) \in A \times B} z^{|\alpha|+|\beta|}$$

$$Z z^{|\alpha|} = \sum_{(\alpha,\beta) \in A \times B} z^{|\alpha|+|\beta|}$$

$$C(3) = A(3) \times B(3)$$

$$C(3$$

SET
$$G = Set(A)$$
 $\cong TI(A+fal)$
 $\alpha \in A$
 $C(2) = TI(A+3^n)^{An}$
 $C(2) = TI(A+3^n)^{An} = \exp\left(\sum_{n} A_n \log_2(A+2^n)\right) = \dots$

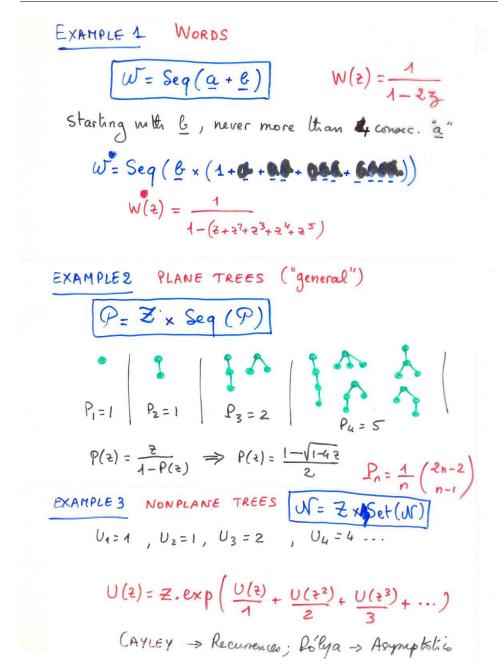
MULTISET $G = MSet(A) \cong \prod_{n \in A} Seq(\{a\})$
 $C(2) = \prod_{n \in A} (A-2^n)^{-An} = \exp(A(2) + \frac{1}{2} A(2^2) + \dots)$

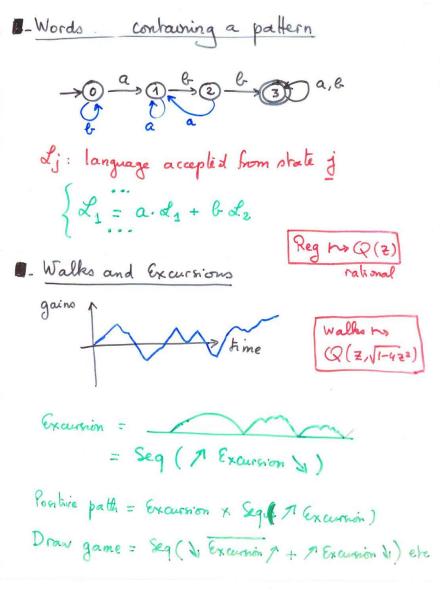
Find of Proof

This theorem permits us to unite Automatically for Grang trees

 $G = \prod_{n \in A} (A-2^n)^{-An} = \exp(A(2) + \frac{1}{2} A(2^2) + \dots)$
 $G = \prod_{n \in A} (A-2^n)^{-An} = \exp(A(2) + \frac{1}{2} A(2^n) + \dots)$
 $G = \prod_{n \in A} (A-2^n)^{-An} = \exp(A(2) + \frac{1}{2} A(2^n) + \dots)$
 $G = \prod_{n \in A} (A-2^n)^{-An} = \exp(A(2) + \frac{1}{2} A(2^n) + \dots)$

15





Exercise: Integer compositions • a sequence $(x_1, ..., x_k)$ with $x_j \in \mathbb{Z}_{\geq 1}$ is a composition of y if $x_1, ..., x_k = n$. (Order of summands count) 4: How many compositions of unteger n, for n = 1,2,3,4 - for general M? think: Argue that & = Seq(W); W=Z×Seq(Z) Excuse: Denumerants. In how many ways can you arrange to give a change for n Euro-cents Knowing that you have an artitrary supply of ans of 1¢, 2¢, 5¢, 10¢? (1: Prove that OGF is 1 (1-2)(1-2)(1-2)) ? (Complexity?)

Exercise: Unary-binary trees are (plane) trees where nodes have degree either 0,1,02 2. Q1: How many U-B trees of age 1,2,3,4? Using { u= • × (1 + u + u × u) lu: + + + + hu Sind equation for DGF and solve it.. Q? Jeneralization: Let I >0 and let y be the dan of trees with nodes having (out) degrees constrained by -2. Establish for the OGF the equalion (Y= Y(21) Y= = \$\phi(Y). Lagrange Inversion Theorem: (2") Y(2) = 1 [w"-1] $\phi(w)^{M}$.

(3: Ω finite \Rightarrow Yn is a wm of products of mallhornial coefficients.

