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Abstract. It is known that a countable ω-categorical structure interprets all finite struc-
tures primitively positively if and only if its polymorphism clone maps to the clone of pro-
jections on a two-element set via a continuous clone homomorphism. We investigate the
relationship between the existence of a clone homomorphism to the projection clone, and the
existence of such a homomorphism which is continuous and thus meets the above criterion.

1. Introduction

A function clone is a set of finitary functions on a fixed domain which is closed under com-
position and which contains all projections. There are two main sources of function clones:
the set of term operations of any algebra A is a function clone, and in fact every function
clone is of this form; moreover, the polymorphism clone Pol(Γ) of any first-order structure Γ,
consisting of all finitary functions which preserve Γ, forms a function clone. Reminiscent of
automorphism groups and endomorphism monoids, polymorphism clones carry information
about the structure that induces them, and are a powerful tool in the study of first-order struc-
tures. And similarly to the situation for permutation groups and transformation monoids, a
function clone is a polymorphism clone if and only if it is closed in the topology of pointwise
convergence on the set of all finitary functions on a fixed domain. This topology is obtained
by viewing the domain as a discrete space, and equipping for all n ≥ 1 the n-ary functions
on it with the product topology; finally, the set of all finitary functions is the sum space of
these spaces (cf. for example [BP, BP11a]). In the sequel, we shall simply say that a function
clone is closed iff it is closed in this topological space.

Again bearing analogy to automorphism groups, abstract properties of the polymorphism
clone of a structure or of the term clone of an algebra can translate into properties of the
structure or algebra, respectively. Such abstract properties can be purely algebraic, e.g., given
by equations which hold in the function clone, or algebraic and topological, i.e., captured if we
consider in addition the topological structure of a clone given by pointwise convergence. In
the analogy with permutation groups where the latter kind of abstraction leads to the notion
of a topological group, we here obtain topological clones [BPP13].

On every set there is a smallest function clone, namely the function clone which consists
precisely of the finitary projections over this set. For any two sets of at least two elements,
these projection clones are isomorphic algebraically and topologically; in fact, the topology
on any such projection clone is discrete. We write 1 for the topological clone induced by any
such projection clone, and denote for 1 ≤ k ≤ n its n-ary projection to the k-th coordinate by
πnk . The topological clone 1 is related to a crucial abstract property function clones can have.
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More precisely, given a function clone C , it is an important property whether or not there
exists a continuous clone homomorphism to the clone 1, i.e., a continuous mapping ξ : C → 1
which

• sends functions of C to functions of the same arity in 1,
• sends projections in C to the corresponding projections in 1, and
• preserves composition, i.e., ξ(f(g1, . . . , gn)) = ξ(f)(ξ(g1), . . . , ξ(gn)) for all f, g1, . . . , gn ∈

C .

We call clone homomorphisms to 1 projective. For countable ω-categorical structures (cf. [Hod97]
for standard model theoretic definitions), the importance of the existence of a continuous pro-
jective homomorphism is given by the following observation. Here, a primitive positive inter-
pretation of a structure ∆ in a structure Γ is an interpretation in the sense of classical model
theory (cf. [Hod97]) in which all involved formulas are primitive positive, i.e., existentially
quantified conjunctions of atomic formulas.

Proposition 1.1 (Bodirsky and Pinsker [BP]). Let Γ be a countable ω-categorical structure.
Then the following are equivalent:

• Pol(Γ) has a continuous projective homomorphism;
• all finite structures have a primitive positive interpretation in Γ;
• the structure ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)}) has a primitive positive interpreta-

tion in Γ.

When all finite structures have a primitive positive interpretation in a structure Γ, then Γ
can be considered at least as complicated as all finite structures in the quasiorder of primitive
positive interpretations on first-order structures. This property is of particular interest in
constraint satisfaction in theoretical computer science. For any structure Γ in a finite rela-
tional language, the constraint satisfaction problem of Γ, denoted by CSP(Γ), is the problem
of deciding whether or not a given conjunction of atomic formulas in the language of Γ has
a solution in Γ. It is not hard to see from the definitions that when a structure ∆ has a
primitive positive interpretation in a structure Γ, then CSP(∆) is polynomial-time reducible
to CSP(Γ). Therefore, if the conditions of Proposition 1.1 hold for a structure Γ, then CSP(Γ)
is, up to polynomial time, at least as hard as the constraint satisfaction problem of any finite
structure, and in particular NP-hard.

In many situations, the existence of a continuous projective homomorphism is even believed
to be the only possible source of NP-hardness: for finite Γ, the famous tractability conjecture
states that under certain conditions on Γ which can be assumed without loss of generality,
CSP(Γ) is NP-complete if Pol(Γ) has such a homomorphism, and in P otherwise. Note that
in the finite case, the existence of a continuous projective homomorphism is a purely algebraic
property of Pol(Γ), since the topology of any function clone on a finite set is discrete. For a
large and natural class of infinite structures Γ, a similar conjecture has been formulated. A
Fräıssé class of finite structures in a finite relational language τ is called finitely bounded iff
there exist finitely many finite “forbidden” τ -structures such that the class consists precisely
of those finite τ -structures which do not embed any of the forbidden structures. Of particular
interest in constraint satisfaction are structures which are first-order definable in Fräıssé-
limits of finitely bounded Fräıssé classes; such structures are ω-categorical. For every ω-
categorical structure Γ there is an ω-categorical structure ∆ whose automorphisms are dense
in its endomorphisms (in the above topology) and which is homomorphically equivalent to
Γ, i.e., Γ can be homomorphically mapped into ∆ and vice versa [Bod07, BHM10]. The
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structure ∆ is called the model-complete core of Γ, and CSP(∆) has the same true instances
as CSP(Γ).

Conjecture 1.2 (Bodirsky and Pinsker, 2012). Let Γ be the model-complete core of a struc-
ture which is first-order definable in the Fräıssé-limit of a finitely bounded Fräıssé class. Then
precisely one of the following holds:

• there exists an expansion Γ′of Γ by finitely many constants such that Pol(Γ′) has a
continuous projective homomorphism (and CSP(Γ) is NP-complete by Proposition 1.1
and the fact that such expansions do not increase the complexity of the CSP);
• for any such expansion Γ′ the clone Pol(Γ′) has no continuous projective homomor-

phism, and CSP(Γ) is in P.

Proving the conjecture involves showing that if there is no continuous projective homomor-
phism of Pol(Γ′), then there is no projective homomorphism at all, and furthermore showing
that in that situation CSP(Γ) is in P. In this paper, we investigate the first, complexity-free,
part. In other words, we investigate the following question:

Question 1.3. Let C be a closed function clone with a projective homomorphism. Does C
also have a continuous projective homomorphism?

It is worth noting that since the topological clone 1 is discrete, a mapping to 1 is continuous
if and only if the preimage of each projection πnk in 1 is a clopen set. Therefore, a continuous
clone homomorphism ξ : C → 1 gives us for every n ≥ 1 a partition of the n-ary functions
of C into n clopen sets such that composition of representatives of those sets behaves like
composition of projections.

We mention a related, and for polymorphism clones of countable ω-categorical structures
equivalent, formulation of these problems. For an algebra A, the variety generated by A is the
class of all algebras that can be obtained from A by taking arbitrary products, subalgebras,
and homomorphic images. The pseudovariety generated by A is defined similarly, with the
only difference being that only finite products are allowed. Given a function clone C , we can
see its functions as the functions of an algebra by giving it a signature in an arbitrary way.
In particular, this way we can make an algebra out of any polymorphism clone. The notions
of a variety and pseudovariety then relate to clone homomorphisms; in particular, we have
the following. An algebra is trivial iff all of its operations are projections.

Theorem 1.4 (Birkhoff [Bir35]; Bodirsky and Pinsker [BP]). Let A be an algebra whose
operations constitute the polymorphism clone C of an ω-categorical structure on a countable
domain. Then:

• The variety generated by A contains a two-element trivial algebra if and only if C has
a projective homomorphism.
• The pseudovariety generated by A contains a two-element trivial algebra if and only

if C has a continuous projective homomorphism.

By investigating Question 1.3, we therefore investigate in this paper when certain algebras
have trivial algebras in the variety or pseudovariety they generate.

2. Results

As a first observation, we note that in order to prove that a homomorphism ξ : C → 1 is
continuous, it suffices to focus on the binary functions in the clone, that is, it suffices to show
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that the preimages of the two binary projections under ξ are open (Section 3). This is false
if we replace 1 by other clones, even function clones on a finite domain. We moreover show
that “partial homomorphisms” from binary fragments of function clones to 1 can always be
extended to the function clone they generate, which is again a special property of 1.

A potential strategy for obtaining positive answers to Question 1.3 is to prove something
stronger than the property asked in Question 1.3. Let C be a closed function clone that has a
homomorphism ξ to 1. Instead of proving that there also exists a continuous homomorphism
from C to 1, we might ask whether ξ itself is necessarily continuous.

Question 2.1. Let C be a function clone. Is every projective homomorphism of C continu-
ous?

In Section 4 we provide two examples of function clones over countable base sets where
Question 2.1 has a negative answer. The two examples can be seen as opposite extreme cases
of function clones: one is oligomorphic, that is, it contains a permutation group which has
for each n ≥ 1 finitely many orbits in its componentwise action on n-tuples. The other one
is the term clone of a locally finite algebra, that is, the finitely generated subalgebras of the
algebra are finite. Note that the clone of a locally finite algebra is never oligomorphic. We
also remark that the closed oligomorphic function clones on a countable domain are precisely
the polymorphism clones of ω-categorical structures on this domain.

However, both examples rely on the existence of non-principal ultrafilters on a countable
set. Hence, we cannot exclude the existence of models of ZF where Question 2.1 has a positive
answer. It should be mentioned in this context that there are models of ZF+DC (axiom of
dependent choice) where every homomorphism between closed subgroups of the full symmetric
group on a countable set is continuous (see the discussion in Section 8 in [BP]). Whether
similar phenomena prevail in the world of clones is not known, and we refer to the discussion
in [BPP13].

Question 1.3, on the other hand, could hold for all closed function clones. We give a
positive answer to Question 1.3 for all closed clones of idempotent locally finite algebras (Sec-
tion 5). Here we use recent results about finite idempotent algebras [Sig10] via a compactness
argument.

Again using results from finite idempotent algebras, but this time in a less obvious way, we
also give (in Section 6) a positive answer to Question 1.3 for an important class of oligomorphic
function clones which we describe next. Let ∆ be a structure with a finite relational signature
and domain D which is homogeneous, i.e., any isomorphism between finite substructures of
∆ extends to an automorphism of ∆. We say that a function f : Dn → D is canonical with
respect to ∆ if for all k ≥ 1, all k-tuples t1, . . . , tn ∈ Dk, and for all α1, . . . , αn ∈ Aut(∆)
there exists a β ∈ Aut(∆) such that f(α(t1), . . . , α(tn)) = β(f(t1, . . . , tn)) (where we apply
functions to tuples componentwise). We prove that Question 1.3 has a positive answer for
every closed polymorphism clone containing Aut(∆), and all of whose operations are canonical
with respect to ∆. Clones of canonical functions arise naturally when the finite substructures
of a homogeneous structure ∆ have the Ramsey property (for details, see [BP11a]), and are
in this case of crucial importance in the study of CSPs of structures which are definable in
∆ [BP11a, BP11b]. In fact, it can be shown in this situation that every closed function clone

that contains Aut(∆) can be written as
⋃∞

i=1 Ci where each Ci is a function clone consisting of
operations that are canonical with respect to an expansion of ∆ with finitely many constants.
This fact, and canonical operations in general, are the state-of-the-art tool for approaching
Conjecture 1.2.
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The condition that C is closed cannot be omitted from Question 1.3. We present a non-
closed, oligomorphic counterexample in Section 6.

We close with a list of open problems that are related to our two research questions (Sec-
tion 7).

3. The Binary Fragment

Definition 3.1. Let F be a set of finitary functions on some set. The function clone generated
by F , denoted by 〈F 〉, is the smallest function clone containing F . It consists of all term
functions over F , i.e., functions that are obtained by composing functions from F and
projections. The closed function clone generated by F , denoted by 〈F 〉, is the smallest
closed function clone containing F . It is the closure of 〈F 〉 in the space of finitary functions
on the domain, and consists of those functions which agree with some function in 〈F 〉 on
every finite set.

Definition 3.2. Let F be a set of finitary functions on some set (not necessarily a function
clone). A projective partial homomorphism of F is a mapping from F to 1 which preserves
arities of functions, which sends every projection in F to the same projection in 1, and which
preserves composition whenever it is defined in F .

Lemma 3.3. Let F be the binary fragment of a function clone, and let ξ be a projective
partial homomorphism of F . Then ξ extends uniquely to a projective homomorphism of the
function clone 〈F 〉 generated by F .

Proof. Let C be the function clone generated by F . It is clear that any extension of ξ to a pro-
jective homomorphism of C is unique. To see that such an extension exists, define for any n ≥
1, any n-ary f ∈ C , and any 1 ≤ i ≤ n a binary function fi(x, y) := f(x, . . . , x, y, x, . . . , x),
where the variable y is inserted at the i-th coordinate. Clearly, fi ∈ F . By a straightforward
induction on terms over F , one can show that there exists precisely one 1 ≤ i ≤ n for which
ξ(fi) equals π2

2. We set ξ′(f) := πni for that particular i. It is easy to verify that defined this
way, ξ′ is a homomorphism from C to 1. Clearly, ξ′ extends ξ. �

Lemma 3.4. Let C be a function clone, and let ξ : C → 1 be a homomorphism. Then ξ is
continuous if and only if its restriction to the binary fragment of C is.

Proof. For 1 ≤ i ≤ n, and an n-ary f ∈ C , we define fi as in the proof of Lemma 3.3.
Then ξ−1({πni }) consists of those n-ary functions f for which fi ∈ ξ−1({π2

2}), a clopen set
since ξ−1({π2

2}) is clopen and since the mapping which sends every n-ary f ∈ C to fi is
continuous. �

Lemma 3.5. Let F be the binary fragment of a closed function clone, and let ξ be a con-
tinuous partial projective homomorphism of F . Then ξ extends uniquely to a continuous
projective homomorphism of the closed function clone 〈F 〉 generated by F .

Proof. Let C ′ be the function clone generated by F . By Lemma 3.3, ξ extends uniquely to a
projective homomorphism ξ′ of C ′, and this extension is continuous by Lemma 3.4. Since the
closed function clone C generated by F is just the completion of the topological clone C ′,
we have to show that ξ is Cauchy continuous in order to prove that ξ′ extends continuously
to C . Let (f j)j∈ω be a Cauchy sequence of n-ary functions in C ′, where n ≥ 1. Then for

all 1 ≤ i ≤ n, the sequences (f ji )j∈ω are Cauchy as well, and hence they converge. By the
continuity of ξ, their value under ξ is constant for all j ≥ k, for some k ∈ ω. Hence, there
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exists 1 ≤ i ≤ n such that ξ′(f j) = πni for all j ≥ k, showing Cauchy continuity. It is
straightforward to check that the continuous extension to C is a homomorphism. �

4. Automatic Continuity to 1

Recall that an n-ary operation f on a set D is called conservative iff f(x1, . . . , xn) ∈
{x1, . . . , xn} for all x1, . . . , xn ∈ D. Note that any conservative function f on D is idempotent,
i.e., f(x, . . . , x) = x for all x ∈ D.

Proposition 4.1. There exists a function clone of conservative functions on a countable set
with a discontinuous projective homomorphism.

Proof. Let F be the set of all binary functions f on ω such that {f(a, b), f(b, a)} = {a, b} for
all a, b ∈ ω. Then all functions in F are conservative, and for all a, b ∈ ω the restriction of
f to {a, b} equals the restriction of a binary projection to this set. Let C := 〈F 〉. Then the
binary functions of C are precisely the functions in F .

Denote by [ω]2 the set of two-element subsets of ω, and let U be an ultrafilter on [ω]2.
Define ξ : F → 1 by sending f ∈ F to π2

1 if and only if the set of all S ∈ [ω]2 on which f
behaves like the projection to the first coordinate is an element of U , and to π2

2 otherwise.
We claim that ξ is a partial clone homomorphism with domain F . To see this, let f, g, h ∈ F
be given. Let i, j, k ∈ {1, 2} be so that ξ(f) = π2

i , ξ(g) = π2
j , and ξ(h) = π2

k. Because U is an

ultrafilter, and by the definition of ξ, the set Q of all S ∈ [ω]2 such that f behaves like the i-th
binary projection, g behaves like the j-th binary projection, and h behaves like the k-th binary
projection on S is an element of U . Then f(g(x, y), h(x, y)) behaves like the composition of
those projections on all S ∈ Q, and hence ξ(f(g(x, y), h(x, y))) = π2

i (π2
j (x, y), π2

k(x, y)) =

ξ(f)(ξ(g)(x, y), ξ(h)(x, y)). Therefore, ξ is indeed a partial clone homomorphism, and thus it
extends to C by Lemma 3.3.

We claim that ξ is continuous if and only if U is principal. If U is principal, then there
exists S ∈ [ω]2 such that for all f ∈ F we have that ξ(f) = π2

1 if and only if f behaves like the
projection to the first coordinate on S; this is a clopen subset of F , and so ξ is continuous.
Moreover, we then have that its extension to C is continuous by Lemma 3.4. Now suppose
that U is non-principal. Then for any f ∈ F and any finite set A ⊆ ω2, the restriction of f
to A can be extended to both a function f ′ ∈ F such that ξ(f ′) = π2

1 and a function f ′′ ∈ F
such that ξ(f ′′) = π2

2. Hence, ξ is not continuous. �

We remark that in the preceding proposition, the projective homomorphisms of C are
precisely those induced by ultrafilters. We can slightly modify this example in order to
obtain a closed function clone with a discontinuous projective homomorphism, as follows.

Proposition 4.2. There exists a closed function clone of conservative functions on a count-
able set with a discontinuous projective homomorphism.

Proof. Let C be the set of all finitary conservative functions on ω which agree with a projection
on every two-element subset of ω. Clearly C is a closed function clone. As in the proof of
Proposition 4.1, any ultrafilter U on [ω]2 defines a projective homomorphism ξ: for an n-ary
function f ∈ C , we set ξ(f) := πni iff the set of all elements of [ω]2 on which f behaves like
the projection to the i-th coordinate is in U . As before, ξ is continuous if and only if U is
principal. �

We now present an example of a oligomorphic function clone with a discontinuous projective
homomorphism.
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Proposition 4.3. There exists a closed oligomorphic function clone on a countable set with
a discontinuous projective homomorphism.

Proof. We construct the desired clone as the polymorphism clone of a relational structure
with a first-order definition in a well-known structure ∆, due to Cherlin and Hrushovski,
without the small index property (also see [Las91]). The signature τ of ∆ contains a relation
symbol Rn of arity 2n for each n ≥ 1. The class of all finite τ -structures where each Rn is
interpreted as an equivalence relation on n-tuples with two equivalence classes is a Fräıssé
class. Let ∆ be its Fräıssé limit, with domain D; it is ω-categorical since it is homogeneous
and has for all n ≥ 1 only finitely many inequivalent atomic formulas with n variables.

Let Γ be the structure with domain D that has for all n ≥ 1 the relation Rn, as well as the
3n-ary relation

Sn :=
{

(x, y, z) ∈ D3n
∣∣ ¬(Rn(x, y) ∧Rn(y, z) ∧Rn(z, x)

)}
.

Then Γ is first-order definable over ∆ and therefore also ω-categorical. Since the elements
of Pol(Γ) preserve Rn for each n ≥ 1, the function clone Pol(Γ), viewed as a topological
clone, acts naturally on the equivalence classes of Rn. Write ξn for the mapping which sends
every f ∈ Pol(Γ) to its corresponding function on the equivalence classes of Rn. Then ξn is
a continuous clone homomorphism, and its image is a function clone on a domain with two
elements, which we will denote by 0 and 1 in the following (independently of n, since the
name of the elements of the base set is irrelevant).

We claim that for every f ∈ Pol(Γ), the operation ξn(f) depends on one of its arguments
only. To see this, observe that ξn(f) preserves the Boolean relation {0, 1}3\{(0, 0, 0), (1, 1, 1)}
because f preserves Sn. It is well-known that Boolean functions that preserve this Boolean
relation depend on one argument only [Pos41].

Let U be a non-principal ultrafilter on ω. Let ξ : Pol(Γ)→ 1 be the mapping which sends
every k-ary f ∈ Pol(Γ) to the projection πki ∈ 1 if and only if the set

{n ≥ 1 | ξn(f) depends on the i-th argument}

is an element of U . Similarly as in the proof of Proposition 4.1, one can check that ξ is a
clone homomorphism, and that ξ is not continuous. �

Let us note that the function clone constructed in the preceding proposition also has
continuous projective homomorphisms: for example, each single ξn is continuous, and the
image of Pol(Γ) under ξn has a projective homomorphism which is necessarily continuous
since the topology on the image is discrete.

5. Locally Finite Idempotent Algebras

Definition 5.1. We call a function clone C locally finite iff any algebra which has the func-
tions of C as its fundamental operations is locally finite; that is, for all finite subsets A of the
domain of C , the set {f(a) | a is a tuple of elements in A and f ∈ C } is finite.

Proposition 5.2. Let C be a locally finite idempotent closed function clone with a projective
homomorphism. Then C has a continuous projective homomorphism.

Proof. Let D be the domain of C . Let A1 ⊆ A2 ⊆ · · · be a sequence of finite subsets of D
such that

⋃∞
n=1An = D and such that An is closed under the operations in C for all n ≥ 1.

For each n ≥ 1, the restriction of the functions in C to An induces a clone Cn on An.
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Any projective homomorphism of any Cn is clearly continuous, since Cn is discrete. More-
over, the map from C to Cn which sends every function in C to its restriction to An is also
continuous and a homomorphism. Therefore, if some Cn has a projective homomorphism,
then C has a continuous projective homomorphism and we are done.

So assume henceforth that no Cn has a projective homomorphism. Then, by finite universal
algebra, each Cn contains a function fn of arity four satisfying the so-called Siggers identi-
ties [Sig10]. We claim that C also has a function which satisfies the Siggers identities. To see
this, note that for each n ≥ 1, there is a finite number of possible functions of arity four on
An. Let T be the tree whose vertices on level n ≥ 1 are precisely the functions of arity four
in Cn which satisfy the Siggers identities; adjacency between functions of consecutive levels
is defined by restriction. Then this tree is finitely branching and has vertices on all levels, so
by Kőnig’s lemma it has an infinite branch. The union over the functions of this branch is a
function f defined on all of D. Clearly, f satisfies the Siggers identities, and f ∈ C since C
is closed. Since projections do not satisfy the Siggers identities, C does not have a projective
homomorphism, a contradiction. �

6. Oligomorphic Clones

6.1. Canonical function clones.

Definition 6.1. Let ∆ be a structure with domain D, and let f be an n-ary operation on
D, where n ≥ 1. Then f is called canonical with respect to ∆ iff for all k ≥ 1, all tuples
a1, . . . , an ∈ Dk, and all α1, . . . , αn ∈ Aut(∆) there exists β ∈ Aut(∆) such that

f(α1(a1), . . . , αn(an)) = β(f(a1, . . . , an)) ,

where f and αi are applied componentwise. For ω-categorical ∆, this property has been
stated in the language of model theory as ‘tuples of tuples of the same type are sent to tuples
of the same type under f ’ [BP14, BP11a, BPT13].

Definition 6.2. Let ∆ be a structure with domain D and let k ≥ 1. Denote the set of orbits
of the action of Aut(∆) on k-tuples by Tk. Every n-ary canonical operation f with respect to

∆ defines an n-ary operation ξtyp
k (f) on Tk: when O1, . . . , On ∈ Tk, then ξtyp

k (f)(O1, . . . , On)
is the orbit of f(o1, . . . , on) where oi ∈ Oi can be chosen arbitrarily for 1 ≤ i ≤ n.

Consequently, when C is a function clone on D consisting of canonical functions with
respect to ∆, then C defines a set of functions on Tk, which is easily seen to be a function
clone. In fact, the mapping ξtyp

k which sends every f ∈ C to ξtyp
k (f) is a continuous clone

homomorphism.

Definition 6.3. Let ∆ be a structure with domain D and let k ≥ 1. For a function clone C
of canonical functions with respect to ∆, we write C typ

k for the function clone which is the

continuous homomorphic image of C under ξtyp
k .

In theory, the clones C typ
k carry more and more information about C the larger k gets.

However, when ∆ is a homogeneous structure in a finite relational language, then C typ
k and

C typ
m are isomorphic for all k ≥ m, where m is the maximal arity of the relations of ∆.

Definition 6.4. In this situation, we write C typ
∞ for C typ

m , and ξtyp
∞ for ξtyp

m .
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Definition 6.5. Let τ be a functional signature, and let C be a functions clone. A set
Σ of equations over τ is satisfiable in C iff there exists a clone homomorphism ξ from the
term clone of the completely free τ -algebra into C such that ξ(s) = ξ(t) for every equation
(s, t) ∈ Σ.

For a set F of unary functions of C , we say that Σ is satisfiable modulo F from the outside
iff there exists a clone homomorphism ξ from the term clone of the completely free τ -algebra
into C and for every (s, t) ∈ Σ elements βs,ts , βs,tt ∈ F such that βs,ts ◦ ξ(s) = βs,tt ◦ ξ(t).

In both situations, we call ξ a satisfying clone homomorphism.

Proposition 6.6. Let ∆ be a homogeneous structure in a finite relational language, and let
C be a closed function clone of canonical functions with respect to ∆ such that C ⊇ Aut(∆).

Suppose that a finite set of equations Σ is satisfiable in C typ
∞ . Then Σ is satisfiable in C

modulo Aut(∆) from the outside. Moreover, if ξ is a satisfying clone homomorphism for

C typ
∞ , then the satisfying clone homomorphism for C can be be chosen to be any ξ′ such that

ξtyp
∞ ◦ ξ′ = ξ.

Proof. Fix a satisfying clone homomorphism ξ for C typ
∞ , and let ξ′ be so that ξtyp

∞ ◦ ξ′ = ξ.
Since C typ

∞ is a factor of C , such a mapping ξ′ exists. Since Σ is finite, by adding dummy
variables to the terms appearing in Σ we may assume that those terms all have the same arity
n ≥ 1.

We first claim that for all finite subsets A of the domain of ∆ there exist αs,t
s , α

s,t
t ∈

Aut(∆) such that αs,t
s (ξ′(s)) and αs,t

s (ξ′(t)) agree on A for all (s, t) ∈ Σ. To see this,

let u1, . . . , un ∈ S|S|
n

be so that for every tuple v ∈ Sn there exists 1 ≤ i ≤ |S|n with
(u1

i , . . . , u
n
i ) = v. Let U i be the orbit of ui with respect to the componentwise action of

Aut(∆). Then ξ(s)(U1, . . . , Un) = ξ(t)(U1, . . . , Un) for all (s, t) ∈ Σ. Hence, ξ′(s)(u1, . . . , un)

and ξ′(t)(u1, . . . , un) belong to the same orbit, and hence there exist αs,t
s , α

s,t
t ∈ Aut(∆) such

that αs,t
s (ξ′(s)(u1, . . . , un)) = αs,t

s (ξ′(t)(u1, . . . , un)), for all (s, t) ∈ Σ. This proves our claim.
Let (Aj)j∈ω be an increasing sequence of finite subsets of the domain of ∆ whose union is

the entire domain. For every j ∈ ω, let

rj := ((αs,t,j
s , αs,t,j

t ) | (s, t) ∈ Σ)

be a tuple of length 2·|Σ| which enumerates the automorphisms whose existence is guaranteed
by the above claim for the finite set Aj . Now consider the set

{γ ◦ rj | j ∈ ω and γ ∈ Aut(∆)} ,

where γ is applied to the functions in the tuple rj componentwise. This set is a subset

of Aut(∆)2·|Σ|. It has been shown in [BP] that for all k ≥ 1, the space Aut(∆)
k

factored
by the equivalence relation where (δ1, . . . , δk) and (δ′1, . . . , δ

′
k) are identified iff there exists

γ ∈ Aut(∆) such that (δ1, . . . , δk) = (γ ◦ δ′1, . . . , γ ◦ δ′k) is compact. Hence, the above set has

an accumulation point in Aut(∆)
2·|Σ|

, which we denote by ((βs,ts , βs,tt ) | (s, t) ∈ Σ). Clearly,

all components of this tuple are elements of Aut(∆), and βs,ts (ξ′(s)) = βs,tt (ξ′(t)) for all
(s, t) ∈ Σ. �

In the following proposition, we establish a positive answer to Question 1.3 for a certain
class of function clones which is of great importance in applications – cf. the discussion and
references in Section 2.
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Theorem 6.7. Let ∆ be a homogeneous structure in a finite relational language. Let C be
a closed function clone of canonical functions with respect to ∆ such that C ⊇ Aut(∆). If C
has a projective homomorphism, then so does C typ

∞ . In particular, C then has a continuous
projective homomorphism.

Proof. If C typ
∞ has no projective homomorphism, then there is a finite set Σ of equations (in an

arbitrary signature for the functions in C typ
∞ ) which is not satisfiable in 1. By the preceding

proposition, C then satisfies Σ modulo outside elementary embeddings. Hence, it cannot
have a projective homomorphism, which proves the contraposition of the first statement of
the proposition. For the final statement, recall that C has a continuous homomorphism onto
C typ
∞ by our discussion above, and hence composing homomorphisms we get hat if C typ

∞ has
a projective homomorphism, then C has a continuous projective homomorphism. �

6.2. Non-closed function clones. We now give a negative answer to Question 1.3 if we
drop the assumption that the function clone be closed.

Proposition 6.8. There exists an oligomorphic function clone on a countable domain which
has a projective homomorphism, but no continuous one.

Proof. Let (Q;<) be the rational numbers with the usual order, and let C consist of all
finitary functions f on Q with the following properties:

• f ∈ Pol(Q;<);
• if f is n-ary, then there exists an i ∈ {1, . . . , n}, a ∈ Q, and α ∈ Aut(Q, <) such that
f(u) = α(ui) for all u ∈ Qn with a < uj for all 1 ≤ j ≤ n.

It is easy to see that C is a function clone. Since C contains Aut(Q;<), it is oligomorphic.
We can define a homomorphism ξ : C → 1 by sending every f to πni ∈ 1, where i is as

above. This homomorphism ξ is not continuous: for every restriction of an n-ary function
f to a finite set, there exist extensions of this restriction to functions in ξ−1({πni }), for all
1 ≤ i ≤ n.

However, ξ is the unique homomorphism from C to 1, since whenever f , i, and α are as
above there exist unary functions g1, . . . , gn ∈ C such that f(g1(x1), . . . , gn(xn)) = α(xi) for
all x1, . . . , xn ∈ Q, and so f has to be sent to πni under any homomorphism. �

We remark that the closure of C equals Pol(Q;<), and does not possess any projective
homomorphism.

7. Open Problems

The following questions remain open.

Question 7.1. Find a closed function clone where Question 1.3 has a negative answer, that
is, find a closed function clone which has a homomorphism to 1, but no continuous homo-
morphism to 1.

We have mentioned in the introduction that for oligomorphic function clones Question 1.3
can be reformulated as a question about the difference between varieties and pseudo-varieties.
If the function clone is not oligomorphic, it is not clear whether the reformulation is still
equivalent to Question 1.3. But the reformulation is of independent interest, in particular in
universal algebra, so we explicitly state it here.
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Question 7.2. Let A be an algebra with a countable base set. Is it true that whenever the
variety generated by A contains a two-element trivial algebra, then so does the pseudovariety
generated by A?

A positive answer to this question would imply a positive answer to Question 1.3 (cf.
Proposition 5 in [BP]), while the converse it not clear.

We have seen examples of discontinuous homomorphisms from closed function clones to 1,
but these examples relied on the existence of non-principal ultrafilters.

Question 7.3. Is there a model of ZF where every homomorphism from a closed function
clone to 1 is continuous?

Our example of an oligomorphic closed function clone with a discontinuous homomorphism
to 1 makes essential use of an infinite relational signature. However, in the context of the con-
straint satisfaction problem we are particularly interested in finite signatures. This motivates
the following question.

Question 7.4. Let Γ be a homogeneous structure with finite relational signature. Is every
homomorphism from Pol(Γ) to 1 continuous?
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