### Minimal functions on the random graph

Michael Pinsker

joint work with Manuel Bodirsky

ÉLM Université Denis-Diderot Paris 7

Logic Colloquium 2010

### Reducts of homogeneous structures

Let  $\Gamma$  be a countable relational structure in a finite language

For all  $A, B \subseteq \Gamma$  finite, for all isomorphisms  $i : A \rightarrow B$ there exists  $\alpha \in Aut(\Gamma)$  extending *i*.

For all  $A, B \subseteq \Gamma$  finite, for all isomorphisms  $i : A \rightarrow B$ there exists  $\alpha \in Aut(\Gamma)$  extending *i*.

Γ is the Fraïssé limit of its *age*, i.e., its class of finite induced substructures.

For all  $A, B \subseteq \Gamma$  finite, for all isomorphisms  $i : A \rightarrow B$ there exists  $\alpha \in Aut(\Gamma)$  extending *i*.

Γ is the Fraïssé limit of its *age*, i.e., its class of finite induced substructures.

#### Definition

A reduct of  $\Gamma$  is a structure with a first-order (f.o.) definition in  $\Gamma$ .

For all  $A, B \subseteq \Gamma$  finite, for all isomorphisms  $i : A \rightarrow B$ there exists  $\alpha \in Aut(\Gamma)$  extending *i*.

Γ is the Fraïssé limit of its *age*, i.e., its class of finite induced substructures.

#### Definition

A reduct of  $\Gamma$  is a structure with a first-order (f.o.) definition in  $\Gamma$ .

#### Problem

Classify the reducts of  $\Gamma$ .

### Possible classifications

Consider two reducts  $\Delta$ ,  $\Delta'$  of  $\Gamma$  *equivalent* iff  $\Delta$  is also a reduct of  $\Delta'$  and vice-versa.

### Possible classifications

Consider two reducts  $\Delta$ ,  $\Delta'$  of  $\Gamma$  *equivalent* iff  $\Delta$  is also a reduct of  $\Delta'$  and vice-versa.

We say that  $\Delta$  and  $\Delta'$  are *first-order interdefinable*.

We say that  $\Delta$  and  $\Delta'$  are *first-order interdefinable*.

" $\Delta$  is a reduct of  $\Delta$ " is a *quasiorder* on relational structures over the same domain.

We say that  $\Delta$  and  $\Delta'$  are *first-order interdefinable*.

" $\Delta$  is a reduct of  $\Delta$ " is a *quasiorder* on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a *complete lattice*.

We say that  $\Delta$  and  $\Delta'$  are *first-order interdefinable*.

" $\Delta$  is a reduct of  $\Delta$ " is a *quasiorder* on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a *complete lattice*.

Finer classifications of the reducts of  $\Gamma$ , e.g. up to

We say that  $\Delta$  and  $\Delta'$  are *first-order interdefinable*.

" $\Delta$  is a reduct of  $\Delta$ " is a *quasiorder* on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a *complete lattice*.

Finer classifications of the reducts of  $\Gamma$ , e.g. up to

Existential interdefinability

We say that  $\Delta$  and  $\Delta'$  are *first-order interdefinable*.

" $\Delta$  is a reduct of  $\Delta$ " is a *quasiorder* on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a *complete lattice*.

Finer classifications of the reducts of  $\Gamma$ , e.g. up to

- Existential interdefinability
- Existential positive interdefinability

We say that  $\Delta$  and  $\Delta'$  are *first-order interdefinable*.

" $\Delta$  is a reduct of  $\Delta$ " is a *quasiorder* on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a *complete lattice*.

Finer classifications of the reducts of  $\Gamma$ , e.g. up to

- Existential interdefinability
- Existential positive interdefinability
- Primitive positive interdefinability

### Example: The random graph

Let G = (V; E) be the random graph, and set for all  $k \ge 2$ 

 $R^{(k)} := \{ (x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd} \}.$ 

### Example: The random graph

Let G = (V; E) be the random graph, and set for all  $k \ge 2$ 

 $R^{(k)} := \{ (x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd} \}.$ 

#### Theorem (Thomas '91)

 $R^{(k)} := \{ (x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd} \}.$ 

#### Theorem (Thomas '91)

Let  $\Gamma$  be a reduct of G. Then:

**()**  $\Gamma$  is first-order interdefinable with (V; E), or

 $R^{(k)} := \{(x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$ 

#### Theorem (Thomas '91)

- **()**  $\Gamma$  is first-order interdefinable with (V; E), or
- **2**  $\Gamma$  is first-order interdefinable with (*V*;  $R^{(3)}$ ), or

 $R^{(k)} := \{ (x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd} \}.$ 

#### Theorem (Thomas '91)

- $\Gamma$  is first-order interdefinable with (V; E), or
- **2**  $\Gamma$  is first-order interdefinable with (V;  $R^{(3)}$ ), or
- **(3)**  $\Gamma$  is first-order interdefinable with  $(V; \mathbb{R}^{(4)})$ , or

 $R^{(k)} := \{ (x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd} \}.$ 

#### Theorem (Thomas '91)

- $\Gamma$  is first-order interdefinable with (V; E), or
- **2**  $\Gamma$  is first-order interdefinable with (V;  $R^{(3)}$ ), or
- **③**  $\Gamma$  is first-order interdefinable with  $(V; \mathbb{R}^{(4)})$ , or
- $\Gamma$  is first-order interdefinable with  $(V; \mathbb{R}^{(5)})$ , or

 $R^{(k)} := \{ (x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd} \}.$ 

#### Theorem (Thomas '91)

- **()**  $\Gamma$  is first-order interdefinable with (*V*; *E*), or
- **2**  $\Gamma$  is first-order interdefinable with (*V*;  $R^{(3)}$ ), or
- **③**  $\Gamma$  is first-order interdefinable with  $(V; \mathbb{R}^{(4)})$ , or
- $\Gamma$  is first-order interdefinable with  $(V; \mathbb{R}^{(5)})$ , or
- **Ο** Γ is first-order interdefinable with (V; =).

M. Pinsker (Paris 7)

#### Theorem (Thomas '91)

The homogeneous  $K_n$ -free graph has 2 reducts, up to f.o.-interdefinability.

#### Theorem (Thomas '91)

The homogeneous  $K_n$ -free graph has 2 reducts, up to f.o.-interdefinability.

#### Theorem (Thomas '96)

The homogeneous *k*-graph has  $2^k + 1$  reducts, up to f.o.-interdefinability.

#### Theorem (Thomas '91)

The homogeneous  $K_n$ -free graph has 2 reducts, up to f.o.-interdefinability.

#### Theorem (Thomas '96)

The homogeneous *k*-graph has  $2^{k} + 1$  reducts, up to f.o.-interdefinability.

#### Theorem (Cameron '76)

 $(\mathbb{Q}; <)$  has 5 reducts, up to f.o.-interdefinability.

#### Theorem (Thomas '91)

The homogeneous  $K_n$ -free graph has 2 reducts, up to f.o.-interdefinability.

#### Theorem (Thomas '96)

The homogeneous *k*-graph has  $2^{k} + 1$  reducts, up to f.o.-interdefinability.

#### Theorem (Cameron '76)

 $(\mathbb{Q}; <)$  has 5 reducts, up to f.o.-interdefinability.

#### Theorem (Junker, Ziegler '08)

 $(\mathbb{Q};<,0)$  has 116 reducts, up to f.o.-interdefinability.

M. Pinsker (Paris 7)

#### Conjecture (Thomas '91)

Let  $\Gamma$  be homogeneous in a finite language.

Then Γ has finitely many reducts up to f.o.-interdefinability.

# Finer classifications

M. Pinsker (Paris 7)

# **Finer classifications**

A formula is *existential* iff it is of the form  $\exists x_1, \ldots, x_n \cdot \psi$ , where  $\psi$  is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

#### Theorem (Bodirsky, Chen, P. '08)

For the structure  $\Gamma := (X; =)$ , there exist:

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

#### Theorem (Bodirsky, Chen, P. '08)

For the structure  $\Gamma := (X; =)$ , there exist:

1 reduct up to first order / existential interdefinability

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

#### Theorem (Bodirsky, Chen, P. '08)

For the structure  $\Gamma := (X; =)$ , there exist:

- 1 reduct up to first order / existential interdefinability
- $\aleph_0$  reducts up to existential positive interdefinability

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

#### Theorem (Bodirsky, Chen, P. '08)

For the structure  $\Gamma := (X; =)$ , there exist:

- 1 reduct up to first order / existential interdefinability
- $\aleph_0$  reducts up to existential positive interdefinability
- 2<sup>N0</sup> reducts up to primitive positive interdefinability

### Theorem

M. Pinsker (Paris 7)

#### Theorem

 The mapping Δ → Aut(Δ) is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of Aut(Γ).

#### Theorem

- The mapping Δ → Aut(Δ) is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of Aut(Γ).
- The mapping Δ → End(Δ) is a one-to-one correspondence between the existential positive closed reducts of Γ and the closed supermonoids of Aut(Γ).

#### Theorem

- The mapping Δ → Aut(Δ) is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of Aut(Γ).
- The mapping Δ → End(Δ) is a one-to-one correspondence between the existential positive closed reducts of Γ and the closed supermonoids of Aut(Γ).
- The mapping Δ → Pol(Δ) is a one-to-one correspondence between the primitive positive closed reducts of Γ and the closed superclones of Aut(Γ).

#### Theorem

- The mapping Δ → Aut(Δ) is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of Aut(Γ).
- The mapping Δ → End(Δ) is a one-to-one correspondence between the existential positive closed reducts of Γ and the closed supermonoids of Aut(Γ).
- The mapping Δ → Pol(Δ) is a one-to-one correspondence between the primitive positive closed reducts of Γ and the closed superclones of Aut(Γ).

 $Pol(\Delta) \dots Polymorphisms of \Delta$ , i.e., all homomorphisms from finite powers of  $\Delta$  to  $\Delta$ 

#### Theorem

- The mapping Δ → Aut(Δ) is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of Aut(Γ).
- The mapping Δ → End(Δ) is a one-to-one correspondence between the existential positive closed reducts of Γ and the closed supermonoids of Aut(Γ).
- The mapping Δ → Pol(Δ) is a one-to-one correspondence between the primitive positive closed reducts of Γ and the closed superclones of Aut(Γ).

 $Pol(\Delta) \dots Polymorphisms$  of  $\Delta$ , i.e., all homomorphisms from finite powers of  $\Delta$  to  $\Delta$ 

Clone... set of finitary operations which contains all projections and which is closed under composition

M. Pinsker (Paris 7)

Let G := (V; E) be the random graph.

Let G := (V; E) be the random graph.

Let  $\overline{G}$  be the graph that arises by switching edges and non-edges.

- Let G := (V; E) be the random graph.
- Let  $\overline{G}$  be the graph that arises by switching edges and non-edges.
- Let  $-: V \rightarrow V$  be an isomorphism between G and  $\overline{G}$ .

- Let G := (V; E) be the random graph.
- Let  $\overline{G}$  be the graph that arises by switching edges and non-edges.
- Let  $-: V \rightarrow V$  be an isomorphism between G and  $\overline{G}$ .

For  $c \in V$ , let  $G_c$  be the graph that arises by switching all edges and non-edges from c.

Let G := (V; E) be the random graph.

Let  $\overline{G}$  be the graph that arises by switching edges and non-edges.

Let  $-: V \rightarrow V$  be an isomorphism between G and  $\overline{G}$ .

For  $c \in V$ , let  $G_c$  be the graph that arises by switching all edges and non-edges from c.

Let  $sw_c : V \rightarrow V$  be an isomorphism between G and  $G_c$ .

Let G := (V; E) be the random graph.

Let  $\overline{G}$  be the graph that arises by switching edges and non-edges.

Let  $-: V \rightarrow V$  be an isomorphism between G and  $\overline{G}$ .

For  $c \in V$ , let  $G_c$  be the graph that arises by switching all edges and non-edges from c.

Let  $sw_c : V \rightarrow V$  be an isomorphism between G and  $G_c$ .

#### Theorem (Thomas '91)

Let G := (V; E) be the random graph.

Let  $\overline{G}$  be the graph that arises by switching edges and non-edges.

Let  $-: V \rightarrow V$  be an isomorphism between G and  $\overline{G}$ .

For  $c \in V$ , let  $G_c$  be the graph that arises by switching all edges and non-edges from c.

Let  $sw_c : V \rightarrow V$  be an isomorphism between G and  $G_c$ .

### Theorem (Thomas '91)



Let G := (V; E) be the random graph.

Let  $\overline{G}$  be the graph that arises by switching edges and non-edges.

Let  $-: V \rightarrow V$  be an isomorphism between G and  $\overline{G}$ .

For  $c \in V$ , let  $G_c$  be the graph that arises by switching all edges and non-edges from c.

Let  $sw_c : V \rightarrow V$  be an isomorphism between G and  $G_c$ .

### Theorem (Thomas '91)

- Aut(G)
- ② ({−} ∪ Aut(G))

Let G := (V; E) be the random graph.

Let  $\overline{G}$  be the graph that arises by switching edges and non-edges.

Let  $-: V \rightarrow V$  be an isomorphism between G and  $\overline{G}$ .

For  $c \in V$ , let  $G_c$  be the graph that arises by switching all edges and non-edges from c.

Let  $sw_c: V \to V$  be an isomorphism between G and  $G_c$ .

### Theorem (Thomas '91)

- Aut(G)
- 2 ({−} ∪ Aut(G))
- $(\{\mathsf{sw}_c\} \cup \mathsf{Aut}(G))$

Let G := (V; E) be the random graph.

Let  $\overline{G}$  be the graph that arises by switching edges and non-edges.

Let  $-: V \rightarrow V$  be an isomorphism between G and  $\overline{G}$ .

For  $c \in V$ , let  $G_c$  be the graph that arises by switching all edges and non-edges from c.

Let  $sw_c: V \rightarrow V$  be an isomorphism between G and  $G_c$ .

### Theorem (Thomas '91)

- Aut(G)
- ② ({−} ∪ Aut(G))
- $(\{\mathsf{sw}_c\} \cup \mathsf{Aut}(G))$
- $( \{-, \mathsf{sw}_c\} \cup \mathsf{Aut}(G) )$

Let G := (V; E) be the random graph.

Let  $\overline{G}$  be the graph that arises by switching edges and non-edges.

Let  $-: V \rightarrow V$  be an isomorphism between G and  $\overline{G}$ .

For  $c \in V$ , let  $G_c$  be the graph that arises by switching all edges and non-edges from c.

Let  $sw_c: V \rightarrow V$  be an isomorphism between G and  $G_c$ .

### Theorem (Thomas '91)

- Aut(G)
- ② ({−} ∪ Aut(G))
- $(\{sw_c\} \cup Aut(G))$
- $( \{ -, \mathsf{sw}_c \} \cup \mathsf{Aut}(G) )$
- The full symmetric group  $S_V$ .

## How to find all reducts up to ...-interdefinability?

# Climb up the lattice!

## **Canonical functions**

 $f : \Gamma \to \Gamma$  is *canonical* iff for all tuples  $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$  of the same type in  $\Gamma$  $(f(x_1), \ldots, f(x_n))$  and  $(f(y_1), \ldots, f(y_n))$  have the same type in  $\Gamma$ .

 $f : \Gamma \to \Gamma$  is *canonical* iff for all tuples  $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$  of the same type in  $\Gamma$  $(f(x_1), \ldots, f(x_n))$  and  $(f(y_1), \ldots, f(y_n))$  have the same type in  $\Gamma$ .

Examples on the random graph.

 $f : \Gamma \to \Gamma$  is *canonical* iff for all tuples  $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$  of the same type in  $\Gamma$  $(f(x_1), \ldots, f(x_n))$  and  $(f(y_1), \ldots, f(y_n))$  have the same type in  $\Gamma$ .

#### Examples on the random graph.

The identity is canonical.

 $f : \Gamma \to \Gamma$  is *canonical* iff for all tuples  $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$  of the same type in  $\Gamma$  $(f(x_1), \ldots, f(x_n))$  and  $(f(y_1), \ldots, f(y_n))$  have the same type in  $\Gamma$ .

#### Examples on the random graph.

The identity is canonical.

- is canonical on V.

 $f : \Gamma \to \Gamma$  is *canonical* iff for all tuples  $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$  of the same type in  $\Gamma$  $(f(x_1), \ldots, f(x_n))$  and  $(f(y_1), \ldots, f(y_n))$  have the same type in  $\Gamma$ .

#### Examples on the random graph.

The identity is canonical.

- is canonical on V.

 $sw_c$  is canonical for (V; E, c).

M. Pinsker (Paris 7)

Let N, H, P be structures in the same language.

 $N 
ightarrow (H)^P$ 

means:

Let N, H, P be structures in the same language.

 $N \to (H)^P$ 

means:

For all colorings of the copies of P in N with 2 colors there exists a copy of H in Nsuch that all the copies of P in H have the same color. Let N, H, P be structures in the same language.

 $N \to (H)^P$ 

means:

For all colorings of the copies of P in N with 2 colors there exists a copy of H in Nsuch that all the copies of P in H have the same color.

#### Definition

A class  $\mathcal{C}$  of structures of the same signature is called a *Ramsey class* iff for all  $H, P \in \mathcal{C}$  there is N in  $\mathcal{C}$  such that  $N \to (H)^P$ .

### Patterns in functions on Ramsey structures

Let  $\Gamma$  be ordered Ramsey (i.e., its age is an ordered Ramsey class).

Let  $\Gamma$  be ordered Ramsey (i.e., its age is an ordered Ramsey class). Let *H* be a finite structure in the age of  $\Gamma$ .

Let  $\Gamma$  be ordered Ramsey (i.e., its age is an ordered Ramsey class).

Let *H* be a finite structure in the age of  $\Gamma$ .

Then there is a copy of H in  $\Gamma$  on which f is canonical.

Let  $\Gamma$  be ordered Ramsey (i.e., its age is an ordered Ramsey class).

Let *H* be a finite structure in the age of  $\Gamma$ .

Then there is a copy of H in  $\Gamma$  on which f is canonical.

#### Refining this idea, one can show:

If  $\Gamma$  is a reduct of an ordered Ramsey structure, then every non-trivial function *generates* a non-trivial function which is canonical with respect to  $(\Gamma, c_1, \dots, c_n)$  for constants  $c_1, \dots, c_n$ .

### Theorem (Thomas '96)

Let  $f: V \to V$ ,  $f \notin Aut(G)$ .

Then *f* generates one of the following:

- A constant operation
- An injection that deletes all edges
- An injection that deletes all non-edges
- –
- SW<sub>C</sub>

### Theorem (Thomas '96)

Let  $f: V \to V$ ,  $f \notin Aut(G)$ .

Then *f* generates one of the following:

- A constant operation
- An injection that deletes all edges
- An injection that deletes all non-edges
- -

SW<sub>C</sub>

We thus know the *minimal closed monoids* containing Aut(G).

### Theorem (Thomas '96)

Let  $f: V \to V$ ,  $f \notin Aut(G)$ .

Then *f* generates one of the following:

- A constant operation
- An injection that deletes all edges
- An injection that deletes all non-edges
- –
- SW<sub>C</sub>

We thus know the *minimal closed monoids* containing Aut(G).

Corollary. All reducts of the random graph are model-complete.

#### Theorem (Bodirsky, P. '09)

Let  $f: V^n \to V$ ,  $f \notin Aut(G)$ .

Then *f* generates one of the following:

One of the five minimal unary functions of Thomas' theorem;

• One of 9 canonical binary injections.

#### Theorem (Bodirsky, P. '09)

Let  $f: V^n \to V$ ,  $f \notin Aut(G)$ .

Then *f* generates one of the following:

- One of the five minimal unary functions of Thomas' theorem;
- One of 9 canonical binary injections.

We thus know the *minimal closed clones* containing Aut(G).

#### Theorem (Bodirsky, P. '09)

Let  $f: V^n \to V$ ,  $f \notin Aut(G)$ .

Then *f* generates one of the following:

- One of the five minimal unary functions of Thomas' theorem;
- One of 9 canonical binary injections.

We thus know the *minimal closed clones* containing Aut(G).

Application. Constraint Satisfaction in theoretical computer science.

# Minimal monoids above Ramsey structures

Let  $\Gamma$  be a finite language reduct of an ordered Ramsey structure. Then:

• There are finitely many minimal closed supermonoids of Aut(Γ).

- There are finitely many minimal closed supermonoids of Aut(Γ).
- Every closed supermonoid of Aut(Γ) contains a minimal closed supermonoid of Aut(Γ).

- There are finitely many minimal closed supermonoids of Aut(Γ).
- Every closed supermonoid of Aut(Γ) contains a minimal closed supermonoid of Aut(Γ).
- There are finitely many minimal closed clones containing Aut(Γ).
   (Arity bound: |S<sub>2</sub>(Γ)|.)

- There are finitely many minimal closed supermonoids of Aut(Γ).
- Every closed supermonoid of Aut(Γ) contains a minimal closed supermonoid of Aut(Γ).
- There are finitely many minimal closed clones containing Aut(Γ).
   (Arity bound: |S<sub>2</sub>(Γ)|.)
- Every closed clone above Aut(Γ) contains a minimal one.

M. Pinsker (Paris 7)

Let  $\Gamma$  be a finite language reduct of an ordered Ramsey structure which is finitely bounded.

Let  $\Gamma$  be a finite language reduct of an ordered Ramsey structure which is finitely bounded.

Then the following problem is decidable:

Let  $\Gamma$  be a finite language reduct of an ordered Ramsey structure which is finitely bounded.

Then the following problem is decidable:

**Input:** First-order formulas  $\psi$  and  $\phi_1, \ldots, \phi_n$  over  $\Gamma$ .

**Question:** Does  $\psi$  have a primitive positive definition from  $\phi_1, \ldots, \phi_n$ ?

Let  $\Gamma$  be a finite language reduct of an ordered Ramsey structure which is finitely bounded.

Then the following problem is decidable:

**Input:** First-order formulas  $\psi$  and  $\phi_1, \ldots, \phi_n$  over  $\Gamma$ . **Question:** Does  $\psi$  have a primitive positive definition from  $\phi_1, \ldots, \phi_n$ ?

Same for existential positive / existential.

Does Thomas' conjecture hold for Ramsey structures?