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Reducts of homogeneous structures

Let Γ be a countable relational structure in a finite language

which is homogeneous, i.e.,
For all A,B ⊆ Γ finite, for all isomorphisms i : A→ B
there exists α ∈ Aut(Γ) extending i .

Γ is the Fraïssé limit of its age, i.e., its class of finite induced
substructures.

Definition
A reduct of Γ is a structure with a first-order (f.o.) definition in Γ.

Problem
Classify the reducts of Γ.
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Possible classifications

Consider two reducts ∆,∆′ of Γ equivalent iff ∆ is also a reduct of ∆′

and vice-versa.

We say that ∆ and ∆′ are first-order interdefinable.

“∆ is a reduct of ∆′” is a quasiorder on relational structures over the
same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a
complete lattice.

Finer classifications of the reducts of Γ, e.g. up to

Existential interdefinability
Existential positive interdefinability
Primitive positive interdefinability
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Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)
Let Γ be a reduct of G. Then:

1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

M. Pinsker (Paris 7) Minimal functions LC2010 4 / 18



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)
Let Γ be a reduct of G. Then:

1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

M. Pinsker (Paris 7) Minimal functions LC2010 4 / 18



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)
Let Γ be a reduct of G. Then:

1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

M. Pinsker (Paris 7) Minimal functions LC2010 4 / 18



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)
Let Γ be a reduct of G. Then:

1 Γ is first-order interdefinable with (V ; E), or

2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

M. Pinsker (Paris 7) Minimal functions LC2010 4 / 18



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)
Let Γ be a reduct of G. Then:

1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or

3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

M. Pinsker (Paris 7) Minimal functions LC2010 4 / 18



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)
Let Γ be a reduct of G. Then:

1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or

4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

M. Pinsker (Paris 7) Minimal functions LC2010 4 / 18



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)
Let Γ be a reduct of G. Then:

1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or

5 Γ is first-order interdefinable with (V ; =).

M. Pinsker (Paris 7) Minimal functions LC2010 4 / 18



Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)
Let Γ be a reduct of G. Then:

1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).

M. Pinsker (Paris 7) Minimal functions LC2010 4 / 18



Further examples

Theorem (Thomas ’91)
The homogeneous Kn-free graph has 2 reducts, up to
f.o.-interdefinability.

Theorem (Thomas ’96)

The homogeneous k -graph has 2k + 1 reducts, up to
f.o.-interdefinability.

Theorem (Cameron ’76)
(Q;<) has 5 reducts, up to f.o.-interdefinability.

Theorem (Junker, Ziegler ’08)
(Q;<,0) has 116 reducts, up to f.o.-interdefinability.
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Thomas’ conjecture

Conjecture (Thomas ’91)

Let Γ be homogeneous in a finite language.

Then Γ has finitely many reducts up to f.o.-interdefinability.
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Finer classifications

A formula is existential iff
it is of the form ∃x1, . . . , xn.ψ, where ψ is quantifier-free.

A formula is existential positive iff
it is existential and does not contain negations.

A formula is primitive positive iff
it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. ’08)
For the structure Γ := (X ; =), there exist:

1 reduct up to first order / existential interdefinability
ℵ0 reducts up to existential positive interdefinability
2ℵ0 reducts up to primitive positive interdefinability
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Groups, Monoids, Clones

Theorem

The mapping ∆ 7→ Aut(∆) is a one-to-one correspondence
between the first-order closed reducts of Γ and the closed
supergroups of Aut(Γ).
The mapping ∆ 7→ End(∆) is a one-to-one correspondence
between the existential positive closed reducts of Γ and the closed
supermonoids of Aut(Γ).
The mapping ∆ 7→ Pol(∆) is a one-to-one correspondence
between the primitive positive closed reducts of Γ and the closed
superclones of Aut(Γ).

Pol(∆) . . . Polymorphisms of ∆, i.e.,
all homomorphisms from finite powers of ∆ to ∆

Clone. . . set of finitary operations which contains all projections and
which is closed under composition
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The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.

Let Ḡ be the graph that arises by switching edges and non-edges.
Let − : V → V be an isomorphism between G and Ḡ.
For c ∈ V , let Gc be the graph that arises by switching all edges and
non-edges from c.
Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)
The closed groups containing Aut(G) are the following:

1 Aut(G)

2 〈{−} ∪ Aut(G)〉
3 〈{swc} ∪ Aut(G)〉
4 〈{−, swc} ∪ Aut(G)〉
5 The full symmetric group SV .
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How to find all reducts up to . . .-interdefinability?

Climb up the lattice!
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Canonical functions

Definition
f : Γ→ Γ is canonical iff
for all tuples (x1, . . . , xn), (y1, . . . , yn) of the same type in Γ
(f (x1), . . . , f (xn)) and (f (y1), . . . , f (yn)) have the same type in Γ.

Examples on the random graph.
The identity is canonical.
− is canonical on V .
swc is canonical for (V ; E , c).
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Ramsey classes

Let N,H,P be structures in the same language.

N → (H)P

means:

For all colorings of the copies of P in N with 2 colors
there exists a copy of H in N
such that all the copies of P in H have the same color.

Definition
A class C of structures of the same signature is called a Ramsey class
iff
for all H,P ∈ C there is N in C such that N → (H)P .
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Patterns in functions on Ramsey structures

Observation.

Let Γ be ordered Ramsey (i.e., its age is an ordered Ramsey class).

Let H be a finite structure in the age of Γ.

Then there is a copy of H in Γ on which f is canonical.

Refining this idea, one can show:

If Γ is a reduct of an ordered Ramsey structure,
then every non-trivial function generates
a non-trivial function which is canonical
with respect to (Γ, c1, . . . , cn) for constants c1, . . . , cn.
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The minimal monoids on the random graph

Theorem (Thomas ’96)
Let f : V → V , f /∈ Aut(G).
Then f generates one of the following:

A constant operation
An injection that deletes all edges
An injection that deletes all non-edges
−
swc

We thus know the minimal closed monoids containing Aut(G).

Corollary. All reducts of the random graph are model-complete.
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The minimal clones on the random graph

Theorem (Bodirsky, P. ’09)
Let f : V n → V , f /∈ Aut(G).
Then f generates one of the following:

One of the five minimal unary functions of Thomas’ theorem;
One of 9 canonical binary injections.

We thus know the minimal closed clones containing Aut(G).

Application. Constraint Satisfaction in theoretical computer science.
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Minimal monoids above Ramsey structures

Theorem (Bodirsky, P., Tsankov ’10)
Let Γ be a finite language reduct of an ordered Ramsey structure.
Then:

There are finitely many minimal closed supermonoids of Aut(Γ).
Every closed supermonoid of Aut(Γ) contains a minimal closed
supermonoid of Aut(Γ).
There are finitely many minimal closed clones containing Aut(Γ).
(Arity bound: |S2(Γ)|.)
Every closed clone above Aut(Γ) contains a minimal one.
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Decidability of definability

Theorem (Bodirsky, P., Tsankov ’10)

Let Γ be a finite language reduct of an ordered Ramsey structure
which is finitely bounded.

Then the following problem is decidable:

Input: First-order formulas ψ and φ1, . . . , φn over Γ.
Question: Does ψ have a primitive positive definition from φ1, . . . , φn?

Same for existential positive / existential.
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Most important problem

Does Thomas’ conjecture hold for Ramsey structures?
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