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Reducts of homogeneous structures

Let I be a countable relational structure in a finite language
which is homogeneous, i.e.,

For all A, B C T finite, for all isomorphisms i: A — B
there exists o € Aut(I') extending /.

I is the Fraissé limit of its age, i.e., its class of finite induced
substructures.

Definition
A reduct of T is a structure with a first-order (f.0.) definition in T.

Problem
Classify the reducts of T'.
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Possible classifications

Consider two reducts A, A’ of ' equivalent iff A is also a reduct of A’
and vice-versa.
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Possible classifications

Consider two reducts A, A’ of ' equivalent iff A is also a reduct of A’
and vice-versa.

We say that A and A’ are first-order interdefinable.

“A is a reduct of A" is a quasiorder on relational structures over the
same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a
complete lattice.

Finer classifications of the reducts of I', e.g. up to
@ Existential interdefinability
@ Existential positive interdefinability
@ Primitive positive interdefinability
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Let G = (V; E) be the random graph, and set for all k > 2

R¥) .= {(xy,...,x) C VK : x; distinct, number of edges odd}.

Theorem (Thomas '91)

Let I be a reduct of G. Then:
@ T is first-order interdefinable with
@ T is first-order interdefinable with

V,E),or

V; R®)), or
V; R®), or
V; R®)), or

© T is first-order interdefinable with
© T s first-order interdefinable with

—_~ ~ —~
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Example: The random graph

Let G = (V; E) be the random graph, and set for all k > 2

R¥) .= {(xy,...,x) C VK : x; distinct, number of edges odd}.

Theorem (Thomas '91)

Let I be a reduct of G. Then:

@ T is first-order interdefinable with (V; E), o

@ T s first-order interdefinable with (V; R(3))

@ T is first-order interdefinable with (V; R®), or
O T is first-order interdefinable with (V; R®)), or
@ T is first-order interdefinable with (V; =).
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The homogeneous K,-free graph has 2 reducts, up to
f.o.-interdefinability.
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Theorem (Thomas ’96)

The homogeneous k-graph has 2 + 1 reducts, up to
f.o.-interdefinability.
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Further examples

Theorem (Thomas ’91)

The homogeneous K,-free graph has 2 reducts, up to
f.o.-interdefinability.

v

Theorem (Thomas ’96)

The homogeneous k-graph has 2 + 1 reducts, up to
f.o.-interdefinability.

Theorem (Cameron ’76)
(Q; <) has 5 reducts, up to f.o.-interdefinability.
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Further examples

Theorem (Thomas ’91)

The homogeneous K,-free graph has 2 reducts, up to
f.o.-interdefinability.

Theorem (Thomas ’96)

The homogeneous k-graph has 2 + 1 reducts, up to
f.o.-interdefinability.

Theorem (Cameron ’76)
(Q; <) has 5 reducts, up to f.o.-interdefinability.

Theorem (Junker, Ziegler '08)
(Q; <,0) has 116 reducts, up to f.o.-interdefinability.
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Thomas’ conjecture

Conjecture (Thomas '91)

Let ' be homogeneous in a finite language.
Then I has finitely many reducts up to f.o.-interdefinability.
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Finer classifications

A formula is existential iff
it is of the form 3xq, ..., x,.40, where v is quantifier-free.

A formula is existential positive iff
it is existential and does not contain negations.

A formula is primitive positive iff
it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. '08)

For the structure I := (X; =), there exist:
@ 1 reduct up to first order / existential interdefinability
@ X reducts up to existential positive interdefinability
@ 2% reducts up to primitive positive interdefinability
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supergroups of Aut(T).
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Groups, Monoids, Clones

@ The mapping A — Aut(A) is a one-to-one correspondence
between the first-order closed reducts of I' and the closed
supergroups of Aut(T).

@ The mapping A — End(A) is a one-to-one correspondence
between the existential positive closed reducts of I' and the closed
supermonoids of Aut(I).

@ The mapping A — Pol(A) is a one-to-one correspondence
between the primitive positive closed reducts of I' and the closed
superclones of Aut(l").

Pol(A) ... Polymorphisms of A, i.e.,
all homomorphisms from finite powers of A to A

Clone. .. set of finitary operations which contains all projections and
which is closed under composition
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The reducts of the random graph, revisited

Let G := (V; E) be the random graph.
Let G be the graph that arises by switching edges and non-edges.
Let — : V — V be an isomorphism between G and G.

For c € V, let G. be the graph that arises by switching all edges and
non-edges from c.

Let swe : V — V be an isomorphism between G and G.

Theorem (Thomas '91)
The closed groups containing Aut(G) are the following:
Q Aut(G)
QO ({-}uAu(G)
Q ({sw.}UAU(G))
O ({—,swc} UAul(G))
@ The full symmetric group Sy .

v
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How to find all reducts up to .. .-interdefinability ?

Climb up the lattice!
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Canonical functions

Definition

f:T — T is canonical iff
for all tuples (x4, ..., Xn),(V1,...,yn) of the same type in
(f(x1),...,f(xn)) and (f(y1), ..., f(¥n)) have the same type in I.
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Canonical functions

Definition

f:T — T is canonical iff
for all tuples (x4, ..., Xn),(V1,...,yn) of the same type in
(f(x1),...,f(xn)) and (f(y1), ..., f(¥n)) have the same type in I.

Examples on the random graph.
The identity is canonical.

— is canonical on V.

swc is canonical for (V; E, c).
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Ramsey classes

Let N, H, P be structures in the same language.
N — (H)P

means:
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Let N, H, P be structures in the same language.
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means:

For all colorings of the copies of P in N with 2 colors
there exists a copy of Hin N
such that all the copies of P in H have the same color.
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Ramsey classes

Let N, H, P be structures in the same language.
N — (H)P

means:

For all colorings of the copies of P in N with 2 colors
there exists a copy of Hin N
such that all the copies of P in H have the same color.

Definition

A class C of structures of the same signature is called a Ramsey class
iff
for all H, P € € there is N in € such that N — (H)".
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Patterns in functions on Ramsey structures
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Let I' be ordered Ramsey (i.e., its age is an ordered Ramsey class).
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Let I' be ordered Ramsey (i.e., its age is an ordered Ramsey class).
Let H be a finite structure in the age of I'.

M. Pinsker (Paris 7) Minimal functions LC2010 13/18



Patterns in functions on Ramsey structures

Observation.

Let I' be ordered Ramsey (i.e., its age is an ordered Ramsey class).
Let H be a finite structure in the age of I'.

Then there is a copy of H in I on which f is canonical.
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Patterns in functions on Ramsey structures

Observation.

Let I' be ordered Ramsey (i.e., its age is an ordered Ramsey class).
Let H be a finite structure in the age of I'.

Then there is a copy of H in I on which f is canonical.

Refining this idea, one can show:

If I is a reduct of an ordered Ramsey structure,

then every non-trivial function generates

a non-trivial function which is canonical

with respect to (I, ¢y, . .., cp) for constants ¢y, ..., Cn.
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The minimal monoids on the random graph

Theorem (Thomas ’96)
Letf: V — V, f¢ Aut(G).

Then f generates one of the following:

@ A constant operation

@ An injection that deletes all edges

@ An injection that deletes all non-edges

@ Sw¢
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The minimal monoids on the random graph

Theorem (Thomas ’96)

Letf: V=V, f ¢ Aut(G).

Then f generates one of the following:
@ A constant operation
@ An injection that deletes all edges

@ An injection that deletes all non-edges
° —

@ Sw¢

We thus know the minimal closed monoids containing Aut(G).

Corollary. All reducts of the random graph are model-complete.
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The minimal clones on the random graph

Theorem (Bodirsky, P. '09)

Letf: V" — V, f ¢ Aut(G).

Then f generates one of the following:
@ One of the five minimal unary functions of Thomas’ theorem;
@ One of 9 canonical binary injections.
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The minimal clones on the random graph

Theorem (Bodirsky, P. '09)

Letf: V" — V, f ¢ Aut(G).

Then f generates one of the following:
@ One of the five minimal unary functions of Thomas’ theorem;
@ One of 9 canonical binary injections.

We thus know the minimal closed clones containing Aut(G).

Application. Constraint Satisfaction in theoretical computer science.
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Let I' be a finite language reduct of an ordered Ramsey structure.
Then:

@ There are finitely many minimal closed supermonoids of Aut(I").

@ Every closed supermonoid of Aut(I") contains a minimal closed
supermonoid of Aut(I").

@ There are finitely many minimal closed clones containing Aut(I").

(Arity bound: |Sx(I)].)
@ Every closed clone above Aut(I') contains a minimal one.
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Theorem (Bodirsky, P., Tsankov ’10)

Let I be a finite language reduct of an ordered Ramsey structure
which is finitely bounded.

Then the following problem is decidable:

Input: First-order formulas ¢ and ¢, ..., ¢, over .
Question: Does v have a primitive positive definition from ¢4, ..., ¢p?

Same for existential positive / existential.
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Most important problem

Does Thomas’ conjecture hold for Ramsey structures?
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