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Abstract

For a fixed infinite structure with finite signature Γ,
we study the following computational problem: given
quantifier-free first-order formulas φ0, φ1, . . . , φn that
define relations R0, R1, . . . , Rn over Γ, is the rela-
tion R0 primitive positive definable in the structure
(D; R1, . . . , Rn), i.e., definable by a first-order formula
that uses only relation symbols for R1, . . . , Rn, equal-
ity, conjunctions, and existential quantification (dis-
junction, negation, and universal quantification are for-
bidden).

We show decidability of our problem for a large class
of homogeneous structures Γ. The assumptions on Γ
are that the class C of finite induced substructures of
Γ can be described by a finite set of finite forbidden
substructures and that C is a Ramsey class (examples
for structures with these properties are (Q; <), and or-
dered versions of the random graph, the homogeneous
universal poset, the random tournament, the homo-
geneous universal C-relation, and many more). Our
proof makes use of universal-algebraic concepts, Ram-
sey theory, and a characterization of Ramsey classes in
topological dynamics (KPT05).

1 Introduction and Result

An algorithm for primitive positive definability has the-
oretical and practical consequences in the study of the
computational complexity of CPSs. It is motivated by
the fundamental fact that expansions of structures ∆ by
primitive positive relations do not change the complex-
ity of CSP(∆). On a practical side, it turns out that
hardness of a CSP can usually be shown by present-
ing primitive positive definitions of relations for which
it is known that the CSP is hard. Therefore, a pro-
cedure that decides primitive positive definability of a
given relation might be a useful tool to determine the
computational complexity of CSPs.

The computational problem as described in the ab-
stract above will be denoted by Expr(Γ). For finite
structures Γ the problem Expr(Γ) has recently shown
to be co-NEXPTIME-hard (Wil10). For general struc-
tures Γ, the problem Expr(Γ) is clearly undecidable:
for Γ = (Z; +, ∗), this follows from Matiyasevich’s the-
orem (Mat93).

We present assumptions for Γ that imply that
Expr(Γ) is decidable. Due to lack of space, and since
this is an abstract for a constraint satisfaction work-
shop, we assume familiarity with mathematical logic
(such as provided in (Hod97)), and the universal-
algebraic approach to constraint satisfaction (in par-
ticular, with the concept of a polymorphism). Only
basic knowledge about Ramsey theory and topology is
required.

The age of a relational structure Γ is the class of all
finite substructures with the same signature as Γ that
embed into Γ. We say that a class C of structures (or a
structure with age C) is

• finitely bounded (we use the same terminology as
in (Mac09)) if there exists a finite set of finite struc-
tures F such that A ∈ C iff no structure from F
embeds into A;

• Ramsey if for all k ≥ 1 and for all H,P ∈ C there
exists a G such that G → (H)P

k (for background in
Ramsey theory see (GRS90).

• ordered if the signature contains a binary relation
that denotes a total linear order in every A ∈ C.

Theorem 1. Let Γ be ultrahomogeneous, finitely
bounded, ordered, Ramsey, and with finite signature
(are a structure definable in such a structure). Then
Expr(Γ) is decidable.

Examples of structures that satisfy the assump-
tions of Theorem 1 are (Q;<), the Fraisse limit of
ordered finite graphs (or tournaments (Nes05)), the
Fraisse limit of finite partial orders with a linear ex-
tension (Nes05), the homogeneous universal ‘naturally
ordered’ C-relation (BP08), just to name a few. CSPs
for templates that are definable in such structures are
abundant in particular for qualitative reasoning calculi
in Artificial Intelligence.

We want to point out that that our decidability result
is already non-trivial when Γ is trivial from a model-
theoretic perspective: for the case that Γ is the struc-
ture (N; =), whose age is clearly finitely bounded and
Ramsey, the decidability of Expr(Γ) has been posed as
an open problem in (BCP10).



2 Proof Ideas
Our approach rests on the following characterization of
primitive positive definability.
Theorem 2 (from (BN06)). A relation R is pp defin-
able in a (finite or) ω-categorical structure Γ if and only
if R is preserved by all polymorphisms of Γ.

For finite structures Γ, the proof of Theorem 2
straightforwardly leads to a proof of decidability for
Expr(Γ). For infinite structures Γ we cannot use poly-
morphisms in the same straightforward way to obtain
a decidability result.

To state how we use Ramsey theory in our proof, we
need the following concepts. Let D be the domain of Γ.
The type tp(t) of a tuple t ∈ Dk is the set of first-order
formulas with free variables x1, . . . , xk that hold on t
in Γ. The type of a sequence of tuples t1, . . . , tl ∈ Dk,
denoted by tp(t1, . . . , tl), is the cartesian product of the
types of (a1

i , . . . , a
n
i ) in Γ.

Definition 3. Let Fi ⊆ D, for 1 ≤ i ≤ m. Set
F := F1 × · · · × Fm. An operation g : Dm → D is
n-canonical on F iff for all a1, . . . , an, b1, . . . , bn in F
with tp(a1, . . . , an) = tp(b1, . . . , bn) we have

tp(f(a1), . . . , f(an)) = tp(f(b1), . . . , f(bn)) .

It is canonical on F iff it is n-canonical on F for all n ≥
1. It is called canonical (n-canonical) if it is canonical
(n-canonical) on Dm.

We make use of the following recent landmark result.
Theorem 4 (from (KPT05)). An ordered structure is
Ramsey if and only if its automorphism group is ex-
tremely amenable, i.e., if any continuous action of the
group on a compact Hausdorff space has a fixed point.

The following is crucial for our approach. Despite the
significance and elegance of the statement even within
pure mathematics, it has not yet been published. Its
proof is due to the third author; apparently, it uses
only techniques that are standard in the theory of group
actions (but not standard in computer science).
Proposition 5. Let G be an extremely amenable group,
and let H be an open subgroup of G. Then H is ex-
tremely amenable.

Using Theorem 4, this has the following consequence.
Lemma 6. Let f : D → D, and let c1, . . . , cn ∈ D.
Then f together with Aut(Γ) generates an operation
which behaves like f on {c1, . . . , cn} and which is a
canonical operation for (Γ; c1, . . . , cn).

To apply this technique to polymorphisms, and not
just to unary operations, we need the following well-
known fact.
Lemma 7 (Product Ramsey Theorem). When Γ is
Ramsey, then Γm is also Ramsey.

Proof Sketch for Theorem 1. Let ∆ be a relational
structure that is first-order definable in Γ, and let R0 be
a k-ary relation that is first-order definable in Γ. Since

∆ is ω-categorical, Theorem 2 asserts that it suffices to
decide whether there exists a polymorphism of ∆ that
violates R0. It has been observed in (BK09) that such
a polymorphism exists if and only if there exists an m-
ary polymorphism of ∆ that violates R0, where m is
the number of orbits of R0 (by ω-categoricity of ∆, m
is finite).

The outer loop in our algorithm enumerates all pos-
sible sequences O0, O1, . . . , Om of orbits of k-tuples in
Γ such that O1, . . . , Om are contained in R0 and O0

is not. By combination of Lemma 6 and 7 there ex-
ists a polymorphism of ∆ that violates R0 if and only
if for some choice of orbits O0, O1, . . . , Om, and some
choice of tuples c̄0, c̄1, . . . , c̄m of tuples from those or-
bits, there exists a polymorphism of ∆ that is canoni-
cal for (Γm, c̄1 × · · · × c̄m), and that maps (ci

1, . . . , c
i
m)

to ci
0 for all i. Note that expansions of ultrahomoge-

neous structures by finitely many constants are ultra-
homogeneous, and therefore the well-known correspon-
dence between orbits of n-tuples, n-types, and induced
n-element substructures extends to expansions of ultra-
homogeneous structures by constants. In particular, if
n is the maximal arity of the relations in Γ, then being
n-canonical is the same as being canonical.

We decide the existence of such a canonical polymor-
phism of ∆ for a specific choice of orbits O0, O1, . . . , Om

by reduction to the following finite-domain constraint
satisfaction problem. The domain of the CSP is the set
of all orbits of n-types in (Γ; c̄0). The variables of the
CSP consist of all n-types of (Γm; c̄1 × · · · × c̄m). The
constraints are as follows.

• (Compatibility.) There are binary constraints that
exclude that two variables S1 and S2 that coin-
cide on the subtype induced by some index set I ⊂
{1, . . . , n}, are mapped to two n-types that do not
conincide on the subtypes induced by I.

• (Violation.) In any solution of the CSP, the value of
the type of c̄1× · · ·× c̄m in (Γ; c̄1× · · ·× c̄m) must be
equal to the n-type of c̄0 in (Γ; c̄0).

• (Preservation.) For every p-ary relation R from ∆,
and every list S1, . . . , Sm of p-types in (Γ; c̄0) that
are from R, we add constraints as follows. Let q be(

p
n

)
. For all j ≤ m, the p-type Sj is uniquely given

by its sub-n-types in (Γ; c̄0), listed by S1
j , . . . , Sq

j . For
all i ≤ q, let Si be Si

1 × · · · × Si
m. Then we add the

at most q-ary constraint that forces that the p-type
described uniquely by the values of S1, . . . , Sq in the
CSP (which are n-types in (Γ; c̄0)) is in R.

• (Realizability.) For each substructure N ∈ N , we
have the following constraints. Assume without loss
of generality that the size of N equals s. Let r be(

s
n

)
. Let S1, . . . , Sm be s-types of (Γ; c̄0). Again, for

all j ≤ m the p-type Sj is uniquely given by its sub-
n-types in (Γ; c̄0), listed by S1

j , . . . , Sr
j . For all i ≤ r,

let Si be Si
1 × · · · × Si

m. Then we add the at most
r-ary constraint that forces that at least one of the
values of S1, . . . , Sr in the CSP (which are n-types



in (Γ; c̄0)) does not correspond to the substructure of
N induced by the respective n-subset of vertices.

We now prove that there is a canonical m-ary polymor-
phism f that violates R0 by mapping (ci

1, . . . , c
i
m) to ci

0
for all i if and only if the described CSP instance has a
satisfying assignment, which will conclude the proof.

First, suppose that there exists such a polymorphism
f . For each variable in the CSP, which is an n-type
S = S1 × Sm in (Γm; c̄1 × · · · × c̄m), pick witnesses
t1, . . . , tm from S1, . . . , Sm, respectively. Then S will
be mapped to the type of f(t1, . . . , tm) in (Γ; c̄0), which
clearly satisfies compatibility, violation, preservation,
and realizability constraints.

For the opposite direction, suppose that α is a so-
lution to the CSP, i.e., a mapping from the n-types of
(Γm; c̄1 × · · · × c̄m) to the n-types in (Γ; c̄0). We show
that there is a canonical m-ary polymorphism f that
violates R0 by mapping (ci

1, . . . , c
i
m) to ci

0 for all i, in
three steps.

We first construct an infinite structure Π with do-
main Dm and the same signature as Γ as follows. When
the n-tuples t1, . . . , tm ∈ Dn have the types S1, . . . , Sm

in (Γ; c̄0), then the substructure of Π induced by the
n-tuple t1×· · ·× tm equals the induced substructure of
Γ that corresponds to the n-type of α(S1×· · ·×Sm) in
(Γ; c̄0). This is well-defined by the compatibility con-
straints.

Next, we show that there exists a homomorphism
from Π to Γ. By ω-categoricity of Γ and a standard
compactness argument, it suffices to verify that Π does
not contain any induced substructure from N . But this
is implied by the realizability constraints of the CSP.

Finally, observe that any homomorphism from Π to Γ
must map the k-tuple c̄1×· · ·× c̄m to a k-tuple that lies
in the same orbit as ci

0 in Γ, by the violation constraints
in the CSP and the construction of Π. Moreover, any
homomorphism from Π to Γ must preserve all relations
in ∆, which follows from the preservation constraints
of the CSP and the construction of Π. By composition
with an automorphism, we then obtain a polymorphism
of ∆ that maps (ci

1, . . . , c
i
m) to ci

0.

Note that our method is non-constructive: the al-
gorithm does not produce a primitive positive defini-
tion in case that there is one. It is an interesting open
problem to come up with bounds on the number of
existential variables that suffice to pp-define R0 over
(D;R1, . . . , Rn). For many structures Γ of practical in-
terest, such as (Q;<) or the Random graph, our algo-
rithm can certainly be tuned so that Expr(Γ) becomes
feasible for reasonable input size; in particular, the gi-
gantic Ramsey constants involved in the proofs of our
results do not affect the running time of our procedure.

Finally, let us remark that the same ideas also give
an algorithm that decides existential, or existential pos-
itive definability in structures that satisfy our assump-
tions.
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