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Reducts of homogeneous structures

Let ∆ be a countable relational structure
in a finite language which is homogeneous, i.e.,

For all A,B ⊆ ∆ finite, for all isomorphisms i : A→ B
there exists α ∈ Aut(∆) extending i .

Definition
A reduct of ∆ is a structure with a first-order (fo) definition in ∆.

Problem
Classify the reducts of ∆.

We call ∆ the base structure.
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Classifications up to first-order interdefinability

One possibility of classification:

We can consider two reducts Γ, Γ′ of ∆ equivalent iff
Γ has a fo-definition from Γ′ and vice-versa.

We say that Γ and Γ′ are fo-interdefinable.

The relation “Γ is fo-definable in Γ′” is a quasiorder on the reducts.

We factor this quasiorder
by the equivalence relation of fo-interdefinability,
and obtain a complete lattice.
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Finer classifications (syntactic restrictions)

A formula is existential iff
it is of the form ∃x1, . . . , xn.ψ, where ψ is quantifier-free.

A formula is existential positive iff
it is existential and does not contain negations.

A formula is primitive positive iff
it is existential positive and does not contain disjunctions.

Can consider reducts Γ, Γ′ equivalent iff
Γ has a . . .-definition from Γ′ and vice-versa.

The relation “Γ is . . .-definable in Γ′” is a quasiorder on the reducts.

We factor this quasiorder by the equivalence relation of
. . .-interdefinability and obtain a complete lattice.
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Comparing the classifications

Observe:

Primitive positive (pp) interdefinability is finer than
existential positive (ep) interdefinability is finer than
existential (ex) interdefinability is finer than
first order (fo) interdefinability.

In fact:

The lattice corresponding to fo-definability is a factor of
the lattice corresponding to ex-definability is a factor of
the lattice corresponding to ep-definability is a factor of
the lattice corresponding to pp-definability.
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What is interesting?

Which of the 4 lattices are interesting?

Model theorists: First order!

Complexity theorists: Primitive positive!

Explanation:
Every reduct defines a computational problem
(Constraint Satisfaction Problem).
Reducts which are pp-interdefinable have
polynomial time-equivalent computational complexity.

This talk: Method for pp (and ep - submethod).

STOP!
In practice helps also for fo.
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Why is ∆ homogeneous in a finite language?

Question makes sense for arbitrary base structure ∆.

ω-categoricity implies the following:

fo-closed reducts correspond to closed groups;

ep-closed reducts correspond to closed transformation monoids;

pp-closed reducts correspond to closed clones.

Seems that homogeneity in finite language implies few fo-closed
reducts.

For our method, we will need even “more” than homogeneity in a finite
language:

The Ramsey property
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Example: The dense linear order

Denote by (Q;<) be the order of the rationals, and set

betw(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < y < x}
cycl(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < x < y

or y < z < x}
sep(x , y , z,w) :={(x , y , z,w) ∈ Q4 : . . .}

Theorem (Cameron ’76)
Let Γ be a reduct of ∆ := (Q;<). Then:

1 Γ is first-order interdefinable with (Q;<), or
2 Γ is first-order interdefinable with (Q; betw), or
3 Γ is first-order interdefinable with (Q; cycl), or
4 Γ is first-order interdefinable with (Q; sep), or
5 Γ is first-order interdefinable with (Q; =).
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Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)
Let Γ be a reduct of ∆ := G = (V ; E). Then:

1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).
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Further examples

Theorem (Thomas ’91)
The homogeneous Kn-free graph has 2 reducts up to
fo-interdefinability.

Theorem (Thomas ’96)

The homogeneous k -graph has 2k + 1 reducts up to fo-interdefinability.

Theorem (Junker, Ziegler ’08)
(Q;<,0) has 116 reducts up to fo-interdefinability.
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Very recent examples

Theorem (Several people ’11)
The homogeneous partial order has 5 reducts up to fo-interdefinability.

Theorem (Pongrácz ’11)
The homogeneous Kn-free graph plus constant has 13 reducts if
n = 3, and 16 reducts if n ≥ 4 up to fo-interdefinability.

Depressing fact (Horváth, Pongrácz, P. ’11)
The random graph with a constant has too many reducts up to
fo-interdefinability.
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Thomas’ conjecture

Conjecture (Thomas ’91)

Let ∆ be homogeneous in a finite language.

Then ∆ has finitely many reducts up to fo-interdefinability.
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Back to finer classifications

Theorem (Bodirsky, Chen, P. ’08)

For the structure ∆ := (X ; =), there exist:

1 reduct up to first order / existential interdefinability
ℵ0 reducts up to existential positive interdefinability
2ℵ0 reducts up to primitive positive interdefinability
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Functions on homogeneous structures
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Permutation groups

Theorem (Ryll-Nardzewski)
Let ∆ be ω-categorical.

The mapping

Γ 7→ Aut(Γ)

is a one-to-one correspondence between
the first-order closed reducts of ∆ and
the closed permutation groups containing Aut(∆).

first order closed = contains all fo-definable relations
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Monoids

Theorem (follows from the Homomorphism preservation thm)
Let ∆ be ω-categorical.

The mapping

Γ 7→ End(Γ)

is a one-to-one correspondence between
the existential positive closed reducts of ∆ and
the closed transformation monoids containing Aut(∆).

A monoid of functions from ∆ to ∆ is closed iff
it is closed in the Baire space ∆∆.

Michael Pinsker (Paris) Reducts of homogeneous structures I 20 / 42



Monoids

Theorem (follows from the Homomorphism preservation thm)
Let ∆ be ω-categorical.

The mapping

Γ 7→ End(Γ)

is a one-to-one correspondence between
the existential positive closed reducts of ∆ and
the closed transformation monoids containing Aut(∆).

A monoid of functions from ∆ to ∆ is closed iff
it is closed in the Baire space ∆∆.

Michael Pinsker (Paris) Reducts of homogeneous structures I 20 / 42



Clones

Theorem (Bodirsky, Nešetřil ’03)
Let ∆ be ω-categorical. Then

Γ 7→ Pol(Γ)

is a one-to-one correspondence between
the primitive positive closed reducts of ∆ and
the closed clones containing Aut(∆).

A clone is a set of finitary operations on ∆ which
contains all projections πn

i (x1, . . . , xn) = xi , and
is closed under composition.

Pol(Γ) is the clone of all homomorphisms from finite powers of Γ to Γ.

A clone C is closed if for each n ≥ 1, the set of n-ary operations in C is
a closed subset of the Baire space ∆∆n

.
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Groups, Monoids, Clones

For ω-categorical ∆:

Reducts up to fo-interdefinability↔

closed permutation groups ⊇ Aut(∆);

Reducts up to ep-interdefinability↔

closed monoids ⊇ Aut(∆)

Reducts up to pp-interdefinability↔

closed clones ⊇ Aut(∆).
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The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.

Let Ḡ be the graph that arises by switching edges and non-edges.
Let − : V → V be an isomorphism between G and Ḡ.
For c ∈ V , let Gc be the graph that arises by switching
all edges and non-edges containing c.
Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)
The closed groups containing Aut(G) are the following:

1 Aut(G)

2 〈{−} ∪ Aut(G)〉
3 〈{swc} ∪ Aut(G)〉
4 〈{−, swc} ∪ Aut(G)〉
5 The full symmetric group SV .
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Let Ḡ be the graph that arises by switching edges and non-edges.
Let − : V → V be an isomorphism between G and Ḡ.
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How to classify all reducts up to . . .-interdefinability?

Climb up the lattice!
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Canonical functions on the Random graph

Let G = (V ; E) be the random graph.

Definition. f : G→ G is canonical iff

for all x , y ,u, v ∈ V ,
if (x , y) and (u, v) have the same type in G,
then (f (x), f (y)) and (f (u), f (v)) have the same type in G.

Examples.

Automorphisms are canonical.

Embeddings are canonical.

− is canonical.

swc is canonical except around c.
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Finding canonical behaviour

The class of finite graphs has the following Ramsey property:

For all graphs H
there exists a graph S such that
if the edges of S are colored with 3 colors,
then there is a copy of H in S
on which the coloring is constant.

Given f : G→ G, color the edges of G
according to the type of their image: 3 possibilities.

Same for non-edges.

Conclusion: Every finite graph has a copy in G on which f is
canonical.
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canonical.
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Patterns in functions on the random graph

A canonical function on G induces a function
from the 2-types in G to the 2-types in G.

Converse does not hold.

The following are all possibilities of canonical functions:

Turning everything into edges (eE )
turning everything into non-edges (eN)

behaving like −
being constant
behaving like the identity.

Given any f : G→ G, we know that one of these behaviors
appears for arbitrary finite subgraphs of G.

Problem: Identity.
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Adding constants

Let f : G→ G.
If f /∈ Aut(G), then there are c,d ∈ V witnessing this.

Fact.
The structure (V ; E , c,d) has similar Ramsey properties as (V ; E).

Consider f as a function from (V ; E , c,d) to (V ; E).
Again, f is canonical on arbitrarily large finite substructures of
(V ; E , c,d).
We can assume that it shows the same behavior on all these
substructures.

By topological closure, f generates a function which:

behaves like f on {c,d}, and
is canonical as a function from (V ; E , c,d) to (V ; E).
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The minimal monoids on the random graph

Theorem (Thomas ’96)

Let f : G→ G a function
which does not locally look like an automorphism.

(that is, it violates at least one edge or a non-edge.)

Then f generates one of the following:

A constant operation
eE

eN

−
swc

We thus know the minimal closed monoids containing Aut(G).
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The minimal clones on the random graph

Theorem (Bodirsky, P. ’10)

Let f be a finitary operation on G
which does not locally look like an automorphism.

(that is, either f depends on at least two variables,
or f violates an edge or a non-edge.)

Then f generates one of the following:

One of the five minimal unary functions of the previous theorem;
One of 9 canonical binary injections.

We thus know the minimal closed clones containing Aut(G).

More involved argument: Extend G by a random dense linear order.
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Ramsey classes

Let S,H,P be structures in the same signature τ .

S → (H)P

means:

For any coloring of the copies of P in S with 2 colors
there exists a copy of H in S
such that the copies of P in H all have the same color.

Definition
A class C of τ -structures is called a Ramsey class iff
for all H,P ∈ C there exists S in C such that S → (H)P .
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Canonical functions on Ramsey structures

Let ∆ now be an arbitrary structure.

Definition
f : ∆→ ∆ is canonical iff
for all tuples (x1, . . . , xn), (y1, . . . , yn) of the same type
(f (x1), . . . , f (xn)) and (f (y1), . . . , f (yn)) have the same type too.

Observation. If ∆ is
Ramsey
ordered
ω-categorical,

then all finite substructures of ∆ have a copy in ∆
on which f is canonical.

Thus: If ∆ is in addition homogeneous in a finite language, then any
f : ∆→ ∆ generates a canonical function, but it could be the identity.
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What we would like to do...

We would like to fix c1, . . . , cn witnessing f /∈ Aut(Γ),
and have canonical behavior of f as a function

from (Γ, c1, . . . , cn) to Γ.

Why don’t you just do it?
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Adding constants to Ramsey classes

Problem
If Γ is Ramsey, is (Γ, c1, . . . , cn) still Ramsey?

Theorem (Kechris, Pestov, Todorcevic ’05)
An ordered homogeneous structure ∆ is Ramsey iff
its automorphism group is extremely amenable, i.e.,
it has a fixed point whenever it acts on a compact Hausdorff space.

Observation
Every open subgroup of an extremely amenable group
is extremely amenable.

Corollary
If Γ is ordered, homogeneous, and Ramsey, then so is (Γ, c1, . . . , cn).
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Minimal monoids above Ramsey structures

Thus: If Γ is ordered Ramsey, f : Γ→ Γ, and c1, . . . , cn ∈ Γ,
then f generates a function which

is canonical as a function from (Γ, c1, . . . , cn) to Γ

behaves like f on {c1, . . . , cn}.

Theorem (Bodirsky, P., Tsankov ’10)
Let Γ be a reduct of a finite language homogeneous ordered Ramsey
structure ∆. Then:

Every minimal closed supermonoid of End(Γ) is generated by
such a canonical function.
If Γ has a finite language, then there are finitely many minimal
closed supermonoids of End(Γ).
Every closed supermonoid of End(Γ) contains a minimal closed
supermonoid of End(Γ).
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Minimal clones above Ramsey structures

Going to products of Γ, we get:

Theorem (Bodirsky, P., Tsankov ’10)
Let Γ be a reduct of a finite language homogeneous ordered Ramsey
structure ∆. Then:

Every minimal closed superclone of Pol(Γ) is generated by such a
canonical function.
If Γ has a finite language, then there are finitely many minimal
closed superclones of Pol(Γ).
(Arity bound!)
Every closed superclone of Pol(Γ) contains a minimal closed
superclone of Pol(Γ).
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What we can do

and
what we cannot do
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What we can do

Climb up the monoid and clone lattices
Decide pp and ep interdefinability:

Theorem (Bodirsky, P., Tsankov ’10)
Let ∆ be

ordered
homogeneous
Ramsey
with finite language
finitely bounded.

Then the following problem is decidable:

INPUT: Two finite language reducts Γ, Γ′ of ∆.
QUESTION: Are Γ, Γ′ pp (ep-) interdefinable?
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What we cannot do

We do not know how to:

Climb up the permutation group lattice
Decide fo-interdefinability

Open problems:

Does Thomas’ conjecture hold in the ordered Ramsey context?
Is the ordered Ramsey context really a proper special case of the
homogeneous in a finite language context?
Is fo-interdefinability decidable?
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