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Constraint satisfaction - general
An instance of a constraint satisfaction problem (CSP)
consists of:

» A finite set of variables
» Constraints for these variables

(the kind of constraints and possible values of the
variables being defined by the CSP)

A solution to the CSP is an assignment of values to the
variables such that all constraints are satisfied.

Examples:

» Sudokus
» Equations

We will consider a special kind of CSPs, namely
Homomorphism problems.

Interested in the complexity of solving the problem.
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Relational Structures

Let T be a relational signature, i.e., a set of relation
symbols R;, each associated with a finite arity k;.
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A t-structure T = (D; R}, R}, ...) is a set D together with omomason s
arelation R C D" for each relation symbol R; of arity k;
inT.



Relational Structures satisfaoon wit
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Let T be a relational signature, i.e., a set of relation
symbols R;, each associated with a finite arity k;.

Michael Pinsker

A t-structure T = (D; R}, R}, ...) is a set D together with P
a relation RI' C DX for each relation symbol R; of arity k;

in T.

Examples:

Graphs G = (V; E), Digraphs

Vertex-colored graphs

v

v

v

Graphs with different types of edges
Hypergraphs
Databases

v

v

v

Mathematical structures: (N;#),
(Q;<)§)5£,:), (R;{(X7y) X2+y2§1}),
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Let A and T be structures with the same relational Homomorphism problems
signature .

Definition
A function f: A — T is called homomorphism iff
for each k-ary relation symbol R of T

(ay,...,ax) € R®* — (f(ay),...,f(ax)) € R".
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Let I" be a structure with a finite relational signature .
I" also called the template.
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Definition Homamorghism s
CSP(TI") is the computational problem to decide whether a
given finite t-structure A homomorphically maps to T".

Note: I' need not be finite.



The Constraint Satisfaction Problem .l

homogeneous
templates

Let I" be a structure with a finite relational signature .
I" also called the template.

Michael Pinsker

Definition Homamorghism s
CSP(TI") is the computational problem to decide whether a
given finite t-structure A homomorphically maps to T".

Note: I' need not be finite.

Example: 3-colorability is CSP(K3)
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such that in each clause exactly one variable
is true?
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Positive 1-in-3-3SAT
Input: A set of triples of variables (x, y, z) omomason s

Question: Is there a 0/1-assignment to the variables

such that in each clause exactly one variable
is true?

Is a CSP: template is
({0, 1%{(0,0,1),(0,1,0),(1,0,0)})
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Positive 1-in-3-3SAT
Input: A set of triples of variables (x, y, z) omomason s
Question:

Is there a 0/1-assignment to the variables

such that in each clause exactly one variable
is true?

Is a CSP: template is
({0, 1%{(0,0,1),(0,1,0),(1,0,0)})
Digraph acyclicity
Input: A directed graph (V; E)
Question: Is (V; E) acyclic?
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Positive 1-in-3-3SAT
Input: A set of triples of variables (x, y, z) omomason s
Question:

Is there a 0/1-assignment to the variables

such that in each clause exactly one variable
is true?

Is a CSP: template is
({0, 1%{(0,0,1),(0,1,0),(1,0,0)})
Digraph acyclicity
Input: A directed graph (V; E)
Question: Is (V; E) acyclic?
Is CSP: template is (Q; <)
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Question: Is there a weak linear order on the variables
such that for each triple
eitherx <y <zorz<y<x?

Homomor, phism problems



More Examples of CSPs

Betweenness:
Input: A set of triples of variables (x, y, z)

Question: Is there a weak linear order on the variables
such that for each triple
eitherx <y <zorz<y<x?

Is a CSP: template is
(Q@{x,y,2) [ (x<y<2z)V(z<y<Xx)})
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Input: A set of triples of variables (x, y, z)
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Question: Is there a weak linear order on the variables
such that for each triple
eitherx <y <zorz<y<x?

Homomor, phism problems

Is a CSP: template is
(Q@{xy,2) | (x<y<z)V(z<y<x)}

And/Or-Precedence-Constraints:
Input: A set of triples of variables (x, y, z)

Question: Is there a weak linear order on the variables
such that for each triple x is strictly larger
than the minimum of y and z?



More Examples of CSPs satistacton wih
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Betweenness:
Input: A set of triples of variables (x, y, z)

Michael Pinsker

Question: Is there a weak linear order on the variables
such that for each triple
eitherx <y <zorz<y<x?

Homomor, phism problems

Is a CSP: template is
(Q@{xy,2) | (x<y<z)V(z<y<x)}

And/Or-Precedence-Constraints:
Input: A set of triples of variables (x, y, z)

Question: Is there a weak linear order on the variables
such that for each triple x is strictly larger
than the minimum of y and z?

Is a CSP: template is (Q;{(x,y,2) | (x> y)V (x > 2)})
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Homomorphism problems
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8 7|9

A template for Sudokus:
rS: ({1)2>---,9};R7'D1’-°-)P9) )

where R ={(t,..., %) | {t,..., t}| = 9},
and P, ={i}forall1 <i<9.
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5(3 7
6 195 Michael Pinsker
9|8 6
8 6 3
4 8 3 1
Homomorj phism problems
7 2 6
6 2|8
4|19 5
8 7|9

A template for Sudokus:
rS:({1)2)---)9};’?)P1)---)P9))

where R ={(t,..., o) [ [{ts,..., fo}| =9},

and P, ={i}forall1 <i<9.

» Every Sudoku can be formulated as an instance of
CSP(Ts)

» Not all instances of CSP(T's) correspond to a
Sudoku.
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Homomorphism problems
The logical perspective

Computational complexity

Diophantine:
Input: An equation using =, +, -, 1

Term conditions

The tractability conjecture

Question: Is there a solution to the equation in Z?
Is a CSP: template is T := (Z;1,+, -, =).
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Which problems can be formulated as CSPs?

Let C be a class of t-structures.

Definition
C is closed under disjoint unions iff whenever A, B € C
then AUB € C.
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Which problems can be formulated as CSPs?

Let C be a class of t-structures.

Definition
C is closed under disjoint unions iff whenever A, B € C
then AUB e C.

Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Homomorphism problems
The logical perspective

wwwwwwwwwwwwww




Constraint

Which problems can be formulated as CSPS? = aistacionwin

homogeneous
templates

Michael Pinsker

Let C be a class of t-structures.

Homomorphism problems

Definition .
C is closed under disjoint unions iff whenever A, B € C :

then AU B e C.




Which problems can be formulated as CSPs?

Let C be a class of t-structures.

Definition
C is closed under disjoint unions iff whenever A, B € C
then AU B € C.
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Definition

C is closed under inverse homomorphisms iff B € C and e
A — Bimplies that A € C.



Inverse homomorphisms satistaion wi
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Let C be a class of t-structures. chaol Pk
Definition

C is closed under inverse homomorphisms iff B € C and
A — Bimplies that A € C.

Homomor, phism problems

Example: the set of all triangle-free graphs is closed
under disjoint unions and inverse homomorphisms.
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Definition

C is closed under inverse homomorphisms iff B € C and
A — Bimplies that A € C.

Homomor, phism problems

Example: the set of all triangle-free graphs is closed
under disjoint unions and inverse homomorphisms.

Observation:
CSP(TI') can be viewed as a class of finite
structures: all those structures that
homomorphically map to T
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Definition

C is closed under inverse homomorphisms iff B € C and
A — Bimplies that A € C.

Homomor, phism problems

Example: the set of all triangle-free graphs is closed
under disjoint unions and inverse homomorphisms.

Observation:
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Let C be a class of t-structures.
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Definition
C is closed under inverse homomorphisms iff B € C and
A — Bimplies that A € C.

Homomor, phism problems

Example: the set of all triangle-free graphs is closed
under disjoint unions and inverse homomorphisms.

Observation:

CSP(TI') can be viewed as a class of finite
structures: all those structures that
homomorphically map to T

CSP(T') is closed under disjoint unions.

CSP(T") is closed under inverse
homomorphisms.
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Proof. It remains to show the ‘if’-part of the statement.
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Fundamental Lemma .l

homogeneous
Lemma (Feder '93) e
C =CSP(T") for some relational structure T if and only if

C is closed under disjoint unions and inverse

homomorphisms.

Michael Pinsker

Homomor, phism problems

Proof. It remains to show the ‘if’-part of the statement.
Choose I"as (4 A

-
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Examples of CSPs

Triangle-Freeness:

Input: A graph G
Question: Is G triangle-free?
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Examples of CSPs

Triangle-Freeness:

Input: A graph G
Question: Is G triangle-free?

No-Mono-Tri:
Input: A graph G

Question: Can we partition V(G) = V; & V5 such that
G[V4] and G[V>] are triangle-free?
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Examples of CSPs

Triangle-Freeness:

Input: A graph G
Question: Is G triangle-free?

No-Mono-Tri:
Input: A graph G

Question: Can we partition V(G) = V; & V5 such that
G[V4] and G[V,] are triangle-free?
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Prove that the following two problems can be formulated Michael Pinsker
as CSPs with an infinite template. For each problem, give
two proofs: one using the previous lemma, and one by omomoron s

direct construction of the template.

Acylic Bipartition:
Input: A digraph G

Question: Can we partition V(G) = Vi u Vs
such that G[V4] and G[V,] are acyclic?

Cyclic Embedding:
Input: A digraph G
Question: Can we map V(G) to the plane
such that all arcs in E(G) have the origin on
the left side?
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Logical Perspective on CSPs

Let T be a relational signature.
Definition
A primitive positive t-formula is a first-order t-formula of

the form
ElX'],...,Xn.u)‘] /\/\'Ll)m,

where Py, ...,y are atomic formulas, i.e.,
formulas of the form x = y or of the form R(x;,...,x; ) for
Rer.
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Logical Perspective on CSPs

Let T be a relational signature.
Definition
A primitive positive t-formula is a first-order t-formula of

the form
ElX'],...,Xn.l])‘] /\/\'Ll)m,

where Py, ...,y are atomic formulas, i.e.,
formulas of the form x = y or of the form R(x;,...,x; ) for
Rer.

A sentence is a formula without free variables.
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Logical Perspective on CSPs

Let T be a relational signature.

Definition
A primitive positive t-formula is a first-order t-formula of
the form

E|X1,...,Xn.1])1 /\/\ll)m,

where Py, ...,y are atomic formulas, i.e.,
formulas of the form x = y or of the form R(x;,...,x; ) for
Rer.

A sentence is a formula without free variables.

Alternative definition of CSP(I"):
Input: a primitive positive sentence ©
Question: Is @ true in I'?
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The Canonical Query

Let A be a finite T-structure with domain D.

Definition

The canonical query ®(A) of A is the primitive positive
formula with existentially quantified variables D that
contains a conjunct R(ay, ..., a,) iff (ay,...,a,) € R*.
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The Canonical Query

Let A be a finite T-structure with domain D.

Definition

The canonical query ®(A) of A is the primitive positive
formula with existentially quantified variables D that
contains a conjunct R(ay, ..., a,) iff (ay,...,a,) € R*.

Example:

D(A) := 3Ixq, X2, X3. E(x1, X2) N\ E(X2, X3) /\ E(X3, X1)
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Let I" be a t-structure.

Lemma

For any finite t-structure A the following are equivalent.
» There is a homomorphism from A to T.
» O(A)istrueinT.



Homomorphisms vs Logic

Let " be a t-structure.

Lemma
For any finite t-structure A the following are equivalent.
» There is a homomorphism from A to T.

» O(A)istrueinT.

Proof. trivial.
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Canonical Database

Definition

For each primitive positive sentence @ over signature T,
the canonical database A(®) is the t-structure defined on
the variables of @ such that (xy,...,x,) € R? iff
R(xq,...,Xp) is a conjunct in ®@.

Example.
© := 3x1, X2, X3. E(X1, X2) N\ E(X2, X3) \ E(X3, Xq)
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Canonical Database

Definition

For each primitive positive sentence @ over signature T,
the canonical database A(®) is the t-structure defined on
the variables of @ such that (xy,...,x,) € R? iff
R(xq,...,Xp) is a conjunct in ®@.

Example.
© := 3x1, X2, X3. E(X1, X2) N\ E(X2, X3) \ E(X3, Xq)
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Lemma
LetT be a t-structure. For any primitive positive sentence
@ the following are equivalent.

» [ satisfies @.
» There is a homomorphism from A(®) toT.



Logic vs. Homomorphisms

Lemma
LetT be a t-structure. For any primitive positive sentence
@ the following are equivalent.

» [ satisfies @.
» There is a homomorphism from A(®) toT.

Proof. trivial.
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Computational Complexity of CSPs

Basic observations:
» If I"is finite, then CSP(TI") is in NP.
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» If I"is finite, then CSP(TI") is in NP.
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» If I"is finite, then CSP(TI") is in NP.
» CSP(T') might be in P: e.g. CSP(Q;<). oy
» CSP(TI") might be NP-complete: e.g. 1-in-3-3SAT.
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Basic observations:
» If I"is finite, then CSP(TI") is in NP.
» CSP(T') might be in P: e.g. CSP(Q;<). oy
» CSP(TI") might be NP-complete: e.g. 1-in-3-3SAT.
» CSP(TI") might be undecidable:
CSP(Z{(x,y,2) € Z3 | x +y = z},{(x,y,2) €
78 | xxy =z}, {1})
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Computational Complexity of CSPs satifacion wih
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Basic observations:
» If I"is finite, then CSP(TI") is in NP.
» CSP(T') might be in P: e.g. CSP(Q;<). Compustona conplety
» CSP(I') might be NP-complete: e.g. 1-in-3-3SAT.
» CSP(TI") might be undecidable:
CSP(Z;{(x,y,2) € Z% | x + ¥y = z},{(x,¥,2) €
78 | xxy =z}, {1})
is polynomial-time equivalent to the problem of deciding
whether a given polynomial equation has an integer
solution (solving diophantine equations; ‘Hilberts 10th
problem’). This problem was shown to be undecidable by
Matiyasevich in 1970.
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For every L C {a, b}* there is a relational structure I" such ST
that L is polynomial-time equivalent to CSP(T").
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Theorem

For every L C {a, b}* there is a relational structure I" such Gomputatonalcomploxty
that L is polynomial-time equivalent to CSP(T").

Reminder: Turing reduction. Write L4 g‘t’ L, if there is a
deterministic polynomial-time Turing machine that

decides L with an oracle for Lo.

Ly and L, are polynomial-time (Turing) equivalent if
L4 Sf L, and L, S? Ly.
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with signature {N, P4, Py, S, T} as follows.

\ ) ﬁ

S

w=abba

Computational complexity
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Proof idea. Encode words w from {a, b}* by structures W TSRTS———
with signature {N, P4, Py, S, T} as follows.

\ 50

Let X be the set of all T-structures encoding words as
before, but

with an unlabeled element, or S is empty, or T is empty.
Let I' be the disjoint union over all structures in
{WiwelLluAX.

w=abba

Computational complexity
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Proof idea. Encode words w from {a, b}* by structures W TSRTS———
with signature {N, P4, Py, S, T} as follows.

\ 50

Let X be the set of all T-structures encoding words as
before, but

with an unlabeled element, or S is empty, or T is empty.
Let I' be the disjoint union over all structures in
{WiwelLluAX.

w=abba

Computational complexity

Claim: L is polynomial-time Turing equivalent to CSP(T").



First Reduction
Reduction from CSP(T") to L.

Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Homomorphism problems

The logical perspective

Computational complexity

Polymorphisms

Term conditions

The tractability conjecture

ph-SAT

Temp-SAT

Topological dyr




First Reduction
Reduction from CSP(T") to L.
Suppose A instance of CSP(T") (wlog A is connected wrt N)
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First Reduction
Reduction from CSP(T") to L.
Suppose A instance of CSP(T") (wlog A is connected wrt N)

A: Q @S
Pa = Pa $F’a
Y
& e

T
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First Reduction
Reduction from CSP(T") to L.
Suppose A instance of CSP(T") (wlog A is connected wrt N)
S S
A: NQN @

v

LN L

T : i 'I P,

OB OO}
reject if the N-reduct is not homomorphic to a path, if a
vertex from P; is contracted with a vertex from Py, a
vertex in S has predecessor, or vertex in T has
successor.
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First Reduction

Reduction from CSP(T") to L.
Suppose A instance of CSP(T") (wlog A is connected wrt N)
S S
A: NQN @

v

LN L

N N

T : ¢ P,

OB OO}
reject if the N-reduct is not homomorphic to a path, if a
vertex from P; is contracted with a vertex from Py, a
vertex in S has predecessor, or vertex in T has
successor.

accept if in the resulting graph there is a vertex neither in
Pz norin Py, or Sis empty, or T is empty.
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FIrSt RedUCtlon satisfaction with
homogeneous

Reduction from CSP(T") to L. e
Suppose A instance of CSP(T") (wlog A is connected wrt N) Michael Pinsker
S S

A: NQN @

v

Pa @ Py Pa Computational complexity

N N

T : ¢ P,

OB OO}
reject if the N-reduct is not homomorphic to a path, if a
vertex from P; is contracted with a vertex from Py, a
vertex in S has predecessor, or vertex in T has
successor.

accept if in the resulting graph there is a vertex neither in
Pz norin Py, or Sis empty, or T is empty.

otherwise have the word-structure of a word w € {a, b}*,
and accept iff w € L.



Second Reduction

Reduction from L to CSP(T").

Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Homomorphism problems

The logical perspective

Computational complexity

Polymorphisms

Term conditions

The tractability conjecture

ph-SAT

Temp-SAT

Topological dyr




Second Reduction satistaion wi
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One of the main questions in this course:

Which CSPs are tractable (=can be solved efficiently)?

Computational complexity

Often: tractable = ‘can be solved in deterministic
polynomial time’ (P)

Criticism:
» |s worst-case complexity really the right concept
(rather than e.g. ‘average-case complexity’)?

» Is a O(n'99) algorithm really better than an O(1.01")
algorithm?



Why Polynomial Time?

P is still a well-accepted mathematical model of
tractability:
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Why Polynomial Time? Satistaoion wit

homogeneous
templates

Michael Pinsker

P is still a well-accepted mathematical model of
tractability:

>

If guaranteed bounded running time is essential for
the application, there is no way around worst-case
complexity.

Computational complexity

‘practical’ and ‘theoretical’ complexity often match.

the fastest algorithms for relevant problems in P
usually have a running time in O(n®), but not O(n'?).
P is robust: it is largely independent from the
machine model

‘Classical’ complexity theory is mathematically rich,
deep, and beautiful
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that every problem in NP can be re-
duced in polynomial time to L.
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Computational Complexity

NP: class of computational prob-
lems decidable in non-deterministic
polynomial time.

P: class of computational problems
decidable in polynomial time.

NP-c: class of problems L such
that every problem in NP can be re-
duced in polynomial time to L.

Ladner 1975: Unless P=NP, there
are NP-intermediate problems:
problems in NP that are neither in
P nor NP-c.

NP
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The Quest for Tractable CSPs .l

homogeneous
templates

For which T"is CSP(T") in P? Michael Pinsker

Important open problem:

Conjecture (Feder, Vardi '93)

For finite relational structures I', CSP(T") is either in P or
NP-hard.

» Remarkable: no NP-intermediate finite domain CSP

» As we have seen: false when I might have infinite
domain.

Theorem (Feder, Vardi '93)

For every finite T, there is a directed graph H such that
CSP(T") and CSP(H) are polynomial-time equivalent.
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Fundamental observation.
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Primitive positive (pp) definability

Fix a domain D.
All functions, relations, structures will be on D.

For structures I"and A on D, set ' <pp A iff
every relation of I' has a pp-definition from A.

Fundamental observation.
If ' <pp A, then CSP(I') has a polynomial-time reduction
to CSP(A).

In particular: If ' <pp Aand A <p, T,
then CSP(T") are polynomial-time equivalent.

We therefore identify such structures and call them
pp-interdefinable or pp-equivalent.
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Summary



Polymorphisms

A function f : D" — D preserves a relation R on D iff
forall ry,...,rn € Rwe have f(ry,...,m) € R.

f(ry,...,r) is calculated componentwise.
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Polymorphisms

A function f : D" — D preserves a relation R on D iff
forall ry,...,rn € Rwe have f(ry,...,m) € R.

f(ry,...,r) is calculated componentwise.

A function f: D" — D is a polymorphism of T iff
it preserves all relations of T

Generalization of endomorphism, automorphism.
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Polymorphisms

A function f : D" — D preserves a relation R on D iff
forall ry,...,rn € Rwe have f(ry,...,m) € R.

f(ry,...,r) is calculated componentwise.

A function f: D" — D is a polymorphism of T iff
it preserves all relations of T

Generalization of endomorphism, automorphism.
We write Pol(T") for the set of polymorphisms of T.

“Polymorphism clone of T"”.
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Polymorphisms

A function f : D" — D preserves a relation R on D iff
forall ry,...,rn € Rwe have f(ry,...,m) € R.

f(ry,...,r) is calculated componentwise.

A function f: D" — D is a polymorphism of T iff
it preserves all relations of T

Generalization of endomorphism, automorphism.
We write Pol(T") for the set of polymorphisms of T.
“Polymorphism clone of T"”.

A clone is a set of finitary operations on D which

» contains the projections and
» is closed under composition.
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Summary



Invariant relations

A relation R is invariant under a function f iff
f preserves R.
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Invariant relations

A relation R is invariant under a function f iff
f preserves R.

We write Inv(F) for the set of invariant relations of a set of
functions F.
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Invariant relations

A relation R is invariant under a function f iff
f preserves R.

We write Inv(F) for the set of invariant relations of a set of
functions F.

» More relations in T — less functions in Pol(T).
» More functions in F — less relations in Inv(F).
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Invariant relations

A relation R is invariant under a function f iff
f preserves R.

We write Inv(F) for the set of invariant relations of a set of
functions F.

» More relations in T — less functions in Pol(T).
» More functions in F — less relations in Inv(F).

The operators Pol and Inv define a Galois connection, i.e.,

» Pol and Inv are antitone, and
» PolInv and Inv Pol are closure operators.

Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Polymorphisms



Polymorphisms and pp-definability

Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Homomorphism problems
The logical perspective

Computational complexity

Polymorphisms
Term conditions

The tractability conjecture

Ryll-Nardzewski
generalized

Boolean-SAT
Graph-SAT
Temp-SAT

Reducts

Groups, Monoids, Clones
Canonical functions
Topological dynamics
Minimal clones

Applications



Polymorphisms and pp-definability sha,?é?a“;Efni"&nh
omogeneous
templates

Michael Pinsker

Let (") pp be the expansion of I" by all pp definable
relations.

Ryll-Nardzewski




Polymorphisms and pp-definability

Let (") pp be the expansion of I" by all pp definable
relations.

Theorem
Let I be finite or w-categorical.
Then (') pp = Inv Pol(T").
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Polymorphisms and pp-definability

Let (") pp be the expansion of I" by all pp definable
relations.

Theorem
Let I be finite or w-categorical.
Then (') pp = Inv Pol(T").

Therefore, if ' and A have the same polymorphisms,
then their CSPs are polynomial-time equivalent.
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Polymorphisms and pp-definability

Let (") pp be the expansion of I" by all pp definable
relations.

Theorem
Let I be finite or w-categorical.
Then (') pp = Inv Pol(T").

Therefore, if ' and A have the same polymorphisms,
then their CSPs are polynomial-time equivalent.

Can define complexity of sets of functions F (algebras)
on D to be the compexity of Inv(F).
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Polymorphisms and pp-definability

Let (") pp be the expansion of I" by all pp definable
relations.

Theorem
Let I be finite or w-categorical.
Then (') pp = Inv Pol(T").

Therefore, if ' and A have the same polymorphisms,
then their CSPs are polynomial-time equivalent.

Can define complexity of sets of functions F (algebras)
on D to be the compexity of Inv(F).

Problem of infinite signature.
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The polymorphism strategy

Larger structures — harder CSP
F<pA — CSP(N<f CSP(A)
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Larger structures — harder CSP
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Larger clones — easier CSP
Pol(T) C Pol(A) — CSP(A)<f CSP(T)
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The polymorphism strategy

Larger structures — harder CSP
F<pA — CSP(N<f CSP(A)

Larger clones — easier CSP
Pol(T) C Pol(A) — CSP(A)<f CSP(T)

Strategy:
(i) Prove hardness for certain relations
(if) Prove tractability for certain functions
(iii) Hope that this is exhaustive
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The polymorphism strategy

Larger structures — harder CSP
F<pA — CSP(N<f CSP(A)

Larger clones — easier CSP
Pol(T) C Pol(A) — CSP(A)<f CSP(T)

Strategy:
(i) Prove hardness for certain relations
(if) Prove tractability for certain functions
(iii) Hope that this is exhaustive

Structures which do not pp-define hard relations have
polymorphisms violating them.
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Some polymorphisms implying tractability

Theorem
On a finite domain, the following polymorphisms imply
tractability of the CSP.
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On a finite domain, the following polymorphisms imply
tractability of the CSP.
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Some polymorphisms implying tractability

Theorem
On a finite domain, the following polymorphisms imply
tractability of the CSP.

» V-semilattice

» Majority

» Minority
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Some polymorphisms implying tractability

Theorem
On a finite domain, the following polymorphisms imply
tractability of the CSP.

» V-semilattice

» Majority

» Minority

» Mal'tsev
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Some polymorphisms implying tractability

Theorem

On a finite domain, the following polymorphisms imply
tractability of the CSP.

» V-semilattice

v

v

v

v

Majority
Minority
Mal'tsev
Constant
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Invariant relations and clones

For a set F of functions on D, write (F) for the smallest
clone containing F.

“The clone generated by F”.
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clone containing F.

“The clone generated by F”.

(F) is obtained by building all terms over F.
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Invariant relations and clones

For a set F of functions on D, write (F) for the smallest
clone containing F.

“The clone generated by F”.

(F) is obtained by building all terms over F.

Theorem
For finite D we have (F) = PolInv(F).
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Invariant relations and clones
For a set F of functions on D, write (F) for the smallest
clone containing F.
“The clone generated by F”.

(F) is obtained by building all terms over F.

Theorem
For finite D we have (F) = PolInv(F).

Therefore, if two sets F, G of functions generate the same
clone, then they have the same complexity.
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Invariant relations and clones
For a set F of functions on D, write (F) for the smallest
clone containing F.
“The clone generated by F”.

(F) is obtained by building all terms over F.

Theorem
For finite D we have (F) = PolInv(F).

Therefore, if two sets F, G of functions generate the same
clone, then they have the same complexity.

Sample application: If I has a polymorphism which
generates a tractable polymorphism, then CSP(I") is
tractable.
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What about infinite domains?
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Clones on infinite sets

What about infinite domains?

For a set F of functions on D, write (F), for the
topological closure of (F) in the natural topology
on the space of all operations on D.

(F)oc is called the local clone generated by F.
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Clones on infinite sets

What about infinite domains?

For a set F of functions on D, write (F), for the
topological closure of (F) in the natural topology
on the space of all operations on D.

(F)oc is called the local clone generated by F.

A function f: D" — Dis in (F) s iff for all finite subsets S
of D" there is a function in (F) which agrees with f on S.

“f can be interpolated by functions from (F) on finite sets.”
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Clones on infinite sets

What about infinite domains?

For a set F of functions on D, write (F), for the
topological closure of (F) in the natural topology
on the space of all operations on D.

(F)oc is called the local clone generated by F.

A function f: D" — Dis in (F) s iff for all finite subsets S
of D" there is a function in (F) which agrees with f on S.

“f can be interpolated by functions from (F) on finite sets.”

Theorem
For any D we have (F),c = PolInv(F).
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Term conditions

Many properties of an algebra (D; F) only depend on the
clone (F) of the algebra.

Classical examples: Subalgebras, congruence relations.
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Term conditions

Many properties of an algebra (D; F) only depend on the
clone (F) of the algebra.

Classical examples: Subalgebras, congruence relations.

New example: Complexity of the CSP of the algebra.
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Term conditions

Sample universal algebra theorem:

The congruences of an algebra permute iff the algebra
has a term t(x, y, z) which satisfies

t(X,X,y) = t(y)X)X) =Y.



Term conditions L

homogeneous
templates

Many properties of an algebra (D; F) only depend on the Michael Pinsker
clone (F) of the algebra.

Classical examples: Subalgebras, congruence relations.

New example: Complexity of the CSP of the algebra.

Term conditions

Sample universal algebra theorem:

The congruences of an algebra permute iff the algebra
has a term t(x, y, z) which satisfies

t(X,X,y) = t(y)X)X) =Y.

Many properties depend only on equations satisfied by
terms in the clone.



Term conditions L
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Many properties of an algebra (D; F) only depend on the Michael Pinsker
clone (F) of the algebra.

Classical examples: Subalgebras, congruence relations.

New example: Complexity of the CSP of the algebra.

Term conditions

Sample universal algebra theorem:

The congruences of an algebra permute iff the algebra
has a term t(x, y, z) which satisfies
t(X,X,y) = t(y)X)X) =Y.

Many properties depend only on equations satisfied by
terms in the clone.

Also holds for the complexity of the CSP.



Some polymorphisms implying tractability

Theorem
On a finite domain, the following polymorphisms imply
tractability of the CSP.
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On a finite domain, the following polymorphisms imply
tractability of the CSP.
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Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Term conditions



Some polymorphisms implying tractability

Theorem
On a finite domain, the following polymorphisms imply
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Theorem
On a finite domain, the following polymorphisms imply
tractability of the CSP.
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» Majority
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Some polymorphisms implying tractability

Theorem
On a finite domain, the following polymorphisms imply
tractability of the CSP.

» V-semilattice

» Majority

» Minority

» Mal'tsev
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Some polymorphisms implying tractability

Theorem

On a finite domain, the following polymorphisms imply
tractability of the CSP.

» V-semilattice

v

v

v

v

Majority
Minority
Mal'tsev
Constant
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The tractability conjecture

Dichotomy conjecture
All finite domain CSPs are either tractable or
NP-complete.
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The tractability conjecture

Dichotomy conjecture
All finite domain CSPs are either tractable or
NP-complete.

Tractability conjecture
For all structures I" on a finite domain which are a core,
» either there is a poymorphism f(x1, X2, X3, X4)
satisfying f(y, y, x, x) = f(x, x,x,y) = f(y, X, ¥, X),
and CSP(I') is tractable,
» or CSP(I') is NP-complete.
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set of first-order formulas satisfied by ain T.
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Theorem (Ryll-Nardzewski)
The following are equivalent for a countable structure T.

» All countable models of the theory of T" are
isomorphic to T.

» T has finitely many types of n-tuples for every n > 1. plates



Ryll-Nardzewski Satistaoion wit
homogeneous
templates

The type of an tuple a of elements of a structure T is the
set of first-order formulas satisfied by ain T.

Michael Pinsker

Theorem (Ryll-Nardzewski)
The following are equivalent for a countable structure T.
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» T has finitely many types of n-tuples for every n > 1.
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Ryll-Nardzewski Satistaoion wit
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templates

The type of an tuple a of elements of a structure T is the
set of first-order formulas satisfied by ain T.

Michael Pinsker

Theorem (Ryll-Nardzewski)
The following are equivalent for a countable structure T.

» All countable models of the theory of T" are
isomorphic to T.

» T has finitely many types of n-tuples for every n > 1.

Ryll-Nardzewski
generalized

The orbit of a tuple ain T is the set {«(a) : « € Aut(T")}.

In w-categorical structures,
orbits = maximal sets of tuples of the same type.



Ryll-Nardzewski Satistaoion wit
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The type of an tuple a of elements of a structure T is the
set of first-order formulas satisfied by ain T.

Michael Pinsker

Theorem (Ryll-Nardzewski)
The following are equivalent for a countable structure T.

» All countable models of the theory of T" are
isomorphic to T.

» T has finitely many types of n-tuples for every n > 1.

Ryll-Nardzewski
generalized

The orbit of a tuple ain T is the set {«(a) : « € Aut(T")}.

In w-categorical structures,
orbits = maximal sets of tuples of the same type.

Thus, a relation R has a fo definition from T iff
it is preserved by all automorphisms of T".
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Theorem (Bodirsky and NeSetfil) '02
Let I' be w-categorical.

A relation R has a primitive positive (pp) definition from I’
iff it is preserved by all polymorphisms of T

In Other wo I’dS, InV POI ( r) == <r>pp- Ryll-Nardzewski
generalized



Ryll-Nardzewski generalized Constraint

satisfaction with
homogeneous
templates

Michael Pinsker

Theorem (Bodirsky and NeSetfil) '02
Let I' be w-categorical.

A relation R has a primitive positive (pp) definition from I’
iff it is preserved by all polymorphisms of T

In Other wo I’dS, InV POI ( r) == <r>pp- Ryll-Nardzewski
generalized

The corresponding first-order statement:
Inv Aut(T') = (Mg
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Let W be a finite set of propositional formulas.
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The Boolean satisfiability problem Satisfacion with
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Let ¥ be a finite set of propositional formulas. Michael Pinsker

Computational problem: Boolean-SAT(Y)
INPUT:
» A set W of propositional variables, and

» statements ¢4,..., b, about the variables in W,
where each ¢; is taken from V.

QUESTION: Is A, ¢; satisfiable?

Boolean-SAT
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Let W be a finite set of propositional formulas. e (A

Computational problem: Boolean-SAT(Y)
INPUT:
» A set W of propositional variables, and

» statements ¢4,..., b, about the variables in W,
where each ¢; is taken from V.

QUESTION: Is A, ¢; satisfiable?

Boolean-SAT

Computational complexity depends on V. Always in NP.



The Boolean satisfiability problem Satisfacion with

homogeneous
templates

Let ¥ be a finite set of propositional formulas. Michael Pinsker

Computational problem: Boolean-SAT(Y)
INPUT:
» A set W of propositional variables, and

» statements ¢4,..., b, about the variables in W,
where each ¢; is taken from V.

QUESTION: Is A, ¢; satisfiable?

Computational complexity depends on V. Always in NP.

Question
For which ¥ is Boolean-SAT(¥) tractable?
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Boolean formulas and Boolean structures

For a Boolean formula (x4, ..., Xn), define a relation

Rll) 1:{(31»--->an) 6{0,1}’711[,)(31,...,3”)}.
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Boolean formulas and Boolean structures

For a Boolean formula (x4, ..., Xn), define a relation

Ry :={(a1,...,an) €{0,1}" 1 ¥(a1,...,an)}

For a set V¥ of Boolean formulas, define a structure

My :== ({0, 1} (Ry : W € ¥)).
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Boolean formulas and Boolean structures

For a Boolean formula (x4, ..., Xn), define a relation

Ry :={(a1,...,an) €{0,1}" 1 ¥(a1,...,an)}

For a set V¥ of Boolean formulas, define a structure
Iy := ({0, 1} (Ry : b € ¥)).

[y is a Boolean structure.
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Boolean-SAT as CSP

An instance
> W={wyq,...,wn}

> CI)1 Yooy d)n
of Boolean-SAT (V) has a positive solution
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Boolean-SAT as CSP

An instance
> W={wyq,...,wn}

> CI)1 Yooy d)n
of Boolean-SAT (V) has a positive solution <

the sentence 3wy, ..., wn. A; d; holds in Ty.
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Boolean-SAT as CSP

An instance
> W={wyq,...,wn}

> d)1 Yooy d)n
of Boolean-SAT (V) has a positive solution <

the sentence 3wy, ..., wn. A; d; holds in Ty.

The decision problem whether or not a given primitive
positive sentence holds in Ty is just CSP(Iy).

Constraint
satisfaction with
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Boolean-SAT as CSP

An instance
> W={wyq,...,wn}
> d)1>-'-vd)n

of Boolean-SAT (V) has a positive solution <

the sentence 3wy, ..., wn. A; d; holds in Ty.

The decision problem whether or not a given primitive
positive sentence holds in Ty is just CSP(Iy).

So Boolean-SAT(Y¥) and CSP(Iy) are one and the same
problem.

Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Boolean-SAT
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Let E be a binary relation symbol. Vichae! Pinsker

(Imagine: edge relation of an undirected graph.)
Let ¥ be a finite set of quantifier-free { E}-formulas.
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The Graph Satisfiability Problem satistaion wi

homogeneous
templates

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)

Michael Pinsker

Let ¥ be a finite set of quantifier-free { E}-formulas.

Computational problem: Graph-SAT (V)
INPUT:
» A set W of variables (vertices), and
» statements ¢4,..., d, about the elements of W,
where each ¢; is taken from V.

QUESTION: Is A, ¢; satisfiable in a graph?

Graph-SAT
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Let E be a binary relation symbol. Vichao! Pnker

(Imagine: edge relation of an undirected graph.)
Let ¥ be a finite set of quantifier-free { E}-formulas.

Computational problem: Graph-SAT (V)

INPUT:
» A set W of variables (vertices), and
» statements ¢4,..., d, about the elements of W,

where each ¢, is taken from V.
QUESTION: Is A, ¢; satisfiable in a graph?

Graph-SAT

Computational complexity depends on V. Always in NP.



The Graph Satisfiability Problem

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)
Let ¥ be a finite set of quantifier-free { E}-formulas.

Computational problem: Graph-SAT (V)
INPUT:
» A set W of variables (vertices), and

» statements ¢4,..., d, about the elements of W,
where each ¢, is taken from V.

QUESTION: Is A, ¢; satisfiable in a graph?

Computational complexity depends on V. Always in NP.

Question
For which ¥ is Graph-SAT(V¥) tractable?
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Graph-SAT: Examples

Example 1 Let W, only contain

1P1(X»Y> )::

(E(X)y)/\_‘E(ya zZ) N—E(x
X,y )/\E(ya )/\_'E(X
—E(y,z) NE(x

V (—E
V (—E

(
(

X, )\
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Graph-SAT: Examples

Example 1 Let W, only contain

1P1(X»Y>Z) ::(E(X)y)/\_‘E(yaZ)/\_'E(X)
X,y)/\E(y,Z)/\_‘E(X,
X, YY) N—E(y,z) \ E(x,

V (—E
V (—E

—_—

Graph-SAT(¥4) is NP-complete.
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Graph-SAT: Examples
homogeneous
Example 1 Let ¥y only contain gl

V1(x,y,2z) =(E(x,y) N—E(y,z) N—E(x, 2))
V (—E(x,y) NE(y,z) A—E(x,2))
V (—E(X,y) A\—E(y,z2) NE(x,2)) .

Graph-SAT(¥1) is NP-complete.
Example 2 Let ¥, only contain

1|)2(X>}’» ) E(ny) ﬁE(}’» )/\_'E(X>Z)) b e
E(x,y) NE(y,z) N—E(x,z))
E(x,y) N—E(y,z) N E(x,2))

=(
(=
(=
(E(x,y) NEly,z) NE(x,2)) .

V
vV
V



Graph-SAT: Examples

Example 1 Let W, only contain

Vi(x,y,2) :=(E(x,y) N—E(y,z) N—E(X, 2))
V (—E(x,y) NE(y,2) N—E(X,2))

V (ZE(X,y)A—E(y,2) NE(X,2)) .

Graph-SAT(¥1) is NP-complete.
Example 2 Let ¥, only contain

Va(x,y,2) :=(E(x,y) AN—E(y,z) N—E(x, 2))
V (RE(x,y) NE(y,2z) N—E(x, 2))
V (—E(x,y) A—E(y,2) NE(X,2))
V(E(x,y) NE(y,2) NE(x,2)).

Graph-SAT(¥,) is in P.
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Michael Pinsker
Let G = (V; E) denote the random graph, i.e.,
the unique countably infinite graph which
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Let G = (V; E) denote the random graph, i.e.,
the unique countably infinite graph which

» is (ultra-)homogeneous
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random graph templates

Michael Pinsker
Let G = (V; E) denote the random graph, i.e.,
the unique countably infinite graph which

» is (ultra-)homogeneous
» contains all finite (even countable) graphs.

Graph-SAT



Graph formulas and reducts of the satistaion wi

homogeneous
random graph templates

Michael Pinsker
Let G = (V; E) denote the random graph, i.e.,
the unique countably infinite graph which

» is (ultra-)homogeneous
» contains all finite (even countable) graphs.

For a graph formula {(xy, ..., X,), define a relation

Ry ={(a1,...,an) € V":¥(ay,...,an)}

Graph-SAT



Graph formulas and reducts of the satistaion wi

homogeneous
random graph templates

Michael Pinsker
Let G = (V; E) denote the random graph, i.e.,
the unique countably infinite graph which

» is (ultra-)homogeneous
» contains all finite (even countable) graphs.

For a graph formula {(xy, ..., X,), define a relation

Ry ={(a1,...,an) € V":¥(ay,...,an)}

Graph-SAT

For a set ¥ of graph formulas, define a structure

Iy = (V;(Ry: P e V¥)).



Graph formulas and reducts of the satistaion wi

homogeneous
random graph templates

Michael Pinsker
Let G = (V; E) denote the random graph, i.e.,
the unique countably infinite graph which

» is (ultra-)homogeneous
» contains all finite (even countable) graphs.

For a graph formula {(xy, ..., X,), define a relation

Ry ={(a1,...,an) € V":¥(ay,...,an)}

Graph-SAT

For a set ¥ of graph formulas, define a structure
Iy = (V;(Ry: P e V¥)).

Iy is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.
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Graph-SAT as CSP satistaion wi
homogeneous
templates

An instance Michael Pinsker
> W:{W1,...,Wm}

> $1yenybn
of Graph-SAT(¥) has a positive solution «

Graph-SAT



Graph-SAT as CSP Satisfacion with
homogeneous
templates

An instance Michael Pinsker
> W:{W1,...,Wm}

> $1yenybn
of Graph-SAT(¥) has a positive solution «

the sentence 3wy, ..., wn. A; ; holds in Ty.

Graph-SAT



Graph-SAT as CSP Satisfacion with
homogeneous
templates

An instance Michael Pinsker
» W={wq,...,wWn}
> G1y...,dn

of Graph-SAT(¥) has a positive solution «

the sentence 3wy, ..., wn. A; ; holds in Ty.

So Graph-SAT(Y) and CSP(Iy) are one and the same
problem.

Graph-SAT



Graph-SAT as CSP Satistaoion wit
homogeneous
templates

An instance Michael Pinsker
» W={wq,...,wWn}
> $1y...ybn

of Graph-SAT(¥) has a positive solution «

the sentence 3wy, ..., wn. A; ; holds in Ty.

So Graph-SAT(Y) and CSP(Iy) are one and the same
problem.

Graph-SAT

Could have used any graph that contains all finite graphs.



Graph-SAT as CSP Satistaoion wit

homogeneous
templates

An instance Michael Pinsker
> W:{W1,...,Wm}
> O1y..ybp

of Graph-SAT(¥) has a positive solution «

the sentence 3wy, ..., wn. A; ; holds in Ty.

So Graph-SAT(Y) and CSP(Iy) are one and the same
problem.

Graph-SAT

Could have used any graph that contains all finite graphs.

Classifying the complexity of all Graph-SAT problems is
the same as classifying the complexity of CSPs of all
reducts of the random graph.
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homogeneous
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Let < be a binary relation symbol. o
Michael Pinsker

(Imagine: linear order relation.)
Let ¥ be a finite set of quantifier-free {<}-formulas.
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Temporal constraints

Let < be a binary relation symbol.
(Imagine: linear order relation.)
Let ¥ be a finite set of quantifier-free {<}-formulas.

Computational problem: Temp-SAT(Y)
INPUT:
» A set W of variables (vertices), and
» statements ¢4,..., d, about the elements of W,
where each ¢, is taken from V.

QUESTION: Is A\, ¢; satisfiable in a linear order?
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Temporal constraints

Let < be a binary relation symbol.
(Imagine: linear order relation.)
Let ¥ be a finite set of quantifier-free {<}-formulas.

Computational problem: Temp-SAT(Y)
INPUT:
» A set W of variables (vertices), and

» statements ¢4,..., d, about the elements of W,
where each ¢, is taken from V.

QUESTION: Is A\, ¢; satisfiable in a linear order?

Computational complexity depends on V. Always in NP.
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Temporal constraints

Let < be a binary relation symbol.
(Imagine: linear order relation.)
Let ¥ be a finite set of quantifier-free {<}-formulas.

Computational problem: Temp-SAT(Y)
INPUT:
» A set W of variables (vertices), and

» statements ¢4,..., d, about the elements of W,
where each ¢, is taken from V.

QUESTION: Is A\, ¢; satisfiable in a linear order?

Computational complexity depends on V. Always in NP.

Question
For which ¥ is Temp-SAT(¥) tractable?
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Temporal formulas and reducts of (Q; <)

Let (Q; <) denote the order of the rationals.
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Let (Q; <) denote the order of the rationals.
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Temporal formulas and reducts of (Q; <)

Let (Q; <) denote the order of the rationals.
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Temporal formulas and reducts of (Q; <) satismcion with

homogeneous
templates

Let (Q; <) denote the order of the rationals. Michael Pinsker

For a {<}-formula V(xy,..., Xn), define a relation

Ry ={(ay,...,an) € V":YP(ay,...,an)k
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Temporal formulas and reducts of (Q; <) 551?;?:;%;?"13%
omogeneous
templates

Let (Q; <) denote the order of the rationals. Michael Pinsker

For a {<}-formula V(xy,..., Xn), define a relation
Ry ={(ay,...,an) € V":YP(ay,...,an)k
For a set ¥ of {<}-formulas, define a structure

Ny :=(V;(Ry:p € V).
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Temporal formulas and reducts of (Q; <) sstfé?a?;%;an‘t‘mh
omogeneous
templates

Let (Q; <) denote the order of the rationals. Michael Pinsker
For a {<}-formula V(xy,..., Xn), define a relation
Ry ={(ay,...,an) € V":YP(ay,...,an)k
For a set ¥ of {<}-formulas, define a structure
Ny :=(V;(Ry:p € V).

Iy is a reduct the dense linear order.
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Temporal formulas and reducts of (Q; <)
Let (Q; <) denote the order of the rationals.
For a {<}-formula V(xy,..., Xn), define a relation
Ry ={(ay,...,an) € V":YP(ay,...,an)k
For a set ¥ of {<}-formulas, define a structure
Ry = (Vi (Ry s b € W),
Iy is a reduct the dense linear order.

Temp-SAT(¥) and CSP(I'y) are one and the same
problem.
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Temporal formulas and reducts of (Q; <)

Let (Q; <) denote the order of the rationals.

For a {<}-formula V(xy,..., Xn), define a relation
Ry ={(ay,...,an) € V":YP(ay,...,an)k
For a set ¥ of {<}-formulas, define a structure
Ry = (Vi (Ry s b € W),
Iy is a reduct the dense linear order.

Temp-SAT(¥) and CSP(I'y) are one and the same
problem.

Could have used any linear order that contains all finite
linear orders.
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Three classification theorems satisfaoon wit
homogeneous
templates

Michael Pinsker

All problems Boolean-SAT(¥), Graph-SAT(¥), and
Temp-SAT(Y) are either in P or NP-complete.

Given ¥, we can decide in which class the problem falls.
Boolean-SAT(¥): Schaefer (1978).
Temp-SAT(¥): Bodirsky and Kara (2007).

Graph-SAT(¥): Bodirsky and Pinsker (2010). Tomp-54T

Remark: Complexity of CSPs for 3-element domains
classified by Bulatov in '03.
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Reducts of homogeneous structures

Let " be a countable relational structure in a finite

language
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Reducts of homogeneous structures

Let I be a countable relational structure in a finite
language

which is homogeneous, i.e.,

For all A, B C T finite, for all isomorphisms i: A — B
there exists o € Aut(T") extending i.
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Reducts of homogeneous structures

Let I be a countable relational structure in a finite
language

which is homogeneous, i.e.,

For all A, B C T finite, for all isomorphisms i: A — B
there exists o € Aut(T") extending i.

I"is the Fraissé limit of its age, i.e., its class of finite
induced substructures.
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Reducts of homogeneous structures

Let I be a countable relational structure in a finite
language

which is homogeneous, i.e.,

For all A, B C T finite, for all isomorphisms i: A — B
there exists o € Aut(T") extending i.

I"is the Fraissé limit of its age, i.e., its class of finite
induced substructures.

Definition
A reduct of T is a structure with a first-order (f.0.)
definition in T.
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Reducts of homogeneous structures

Let I be a countable relational structure in a finite
language

which is homogeneous, i.e.,

For all A, B C T finite, for all isomorphisms i: A — B
there exists o € Aut(T") extending i.

I"is the Fraissé limit of its age, i.e., its class of finite
induced substructures.

Definition
A reduct of T is a structure with a first-order (f.0.)
definition in T.

Problem
Classify the reducts of T.
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Possible classifications

Consider two reducts A, A’ of T' equivalent iff A has a fo
definition from A’ and vice-versa.
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Possible classifications

Consider two reducts A, A’ of T' equivalent iff A has a fo
definition from A’ and vice-versa.

We say that A and A’ are first-order interdefinable.
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Possible classifications

Consider two reducts A, A’ of T' equivalent iff A has a fo
definition from A’ and vice-versa.

We say that A and A’ are first-order interdefinable.

“A has a fo definition from A’ is a quasiorder on
relational structures over the same domain.
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Possible classifications

Consider two reducts A, A’ of I" equivalent iff A has a fo
definition from A’ and vice-versa.

We say that A and A’ are first-order interdefinable.

“A has a fo definition from A’ is a quasiorder on
relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability,
becomes a complete lattice.

Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Reducts



Possible classifications

Consider two reducts A, A’ of I" equivalent iff A has a fo
definition from A’ and vice-versa.

We say that A and A’ are first-order interdefinable.

“A has a fo definition from A’ is a quasiorder on
relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability,
becomes a complete lattice.

Finer classifications of the reducts of T', e.g. up to
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Possible classifications

Consider two reducts A, A’ of I" equivalent iff A has a fo
definition from A’ and vice-versa.

We say that A and A’ are first-order interdefinable.

“A has a fo definition from A’ is a quasiorder on
relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability,
becomes a complete lattice.

Finer classifications of the reducts of T', e.g. up to
» Existential interdefinability
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Possible classifications

Consider two reducts A, A’ of I" equivalent iff A has a fo
definition from A’ and vice-versa.

We say that A and A’ are first-order interdefinable.

“A has a fo definition from A’ is a quasiorder on
relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability,
becomes a complete lattice.

Finer classifications of the reducts of T', e.g. up to
» Existential interdefinability
» Existential positive interdefinability
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Possible classifications

Consider two reducts A, A’ of I" equivalent iff A has a fo
definition from A’ and vice-versa.

We say that A and A’ are first-order interdefinable.

“A has a fo definition from A’ is a quasiorder on
relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability,
becomes a complete lattice.

Finer classifications of the reducts of T', e.g. up to
» Existential interdefinability
» Existential positive interdefinability
» Primitive positive interdefinability
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Example: The dense linear order
Denote by (Q; <) be the dense linear order, and set
betw(x, y,z) :={(x,y,z) e Q®:x <y <zorz<y< x}
cycl(x,y,z) ={(x,y,2) e Q®: x<y<zorz<x<y
ory <z< x}

sep(x,y,z,w) :=={(x,y,z,w) € Q*: ..}
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betw(x, y,z) :={(x,y,z) e Q®:x <y <zorz<y< x}
cycl(x,y,z) ={(x,y,2) e Q®: x<y<zorz<x<y
ory<z<xj

sep(x,y,z,w) :=={(x,y,z,w) € Q*: ..}

Theorem (Cameron ’76)
Let I be a reduct of (Q;<). Then:
1. T is first-order interdefinable with (Q; <), o
2. T is first-order interdefinable with (Q betw) Recucts
3. T is first-order interdefinable with (Q;cycl), o
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4. T is first-order interdefinable with (Q; sep), o
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Denote by (Q; <) be the dense linear order, and set templates
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betw(xy z2)={(x,y,2) eQ¥:x<y<zorz<y<x}
cycl(x,y,z) ={(x,y,2) e Q®: x<y<zorz<x<y
ory <z< x}
sep(x, y,z,w) :=((x,y,z,w) € Q*: ..}

Theorem (Cameron ’76)
Let I be a reduct of (Q;<). Then:
1. T is first-order interdefinable with (Q; <), o
I" is first-order interdefinable with (Q betw) Reducts
I is first-order interdefinable with (Q;cycl), o
I' is first-order interdefinable with (Q;sep), o
(

I" is first-order interdefinable with (Q;=).
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Example: The random graph

Let G = (V; E) be the random graph, and set for all k > 2

R .= {(xy,...,x¢) C V¥ x; distinct, number of edges odd}.
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Let G = (V; E) be the random graph, and set for all k > 2

R .= {(xy,...,x¢) C V¥ x; distinct, number of edges odd}.
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Let I" be a reduct of G. Then:
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Let G = (V; E) be the random graph, and set for all k > 2

R .= {(xy,...,x¢) C V¥ x; distinct, number of edges odd}.

Theorem (Thomas '91)
Let " be a reduct of G. Then:

1. T is first-order interdefinable with (V; E), or

2. T is first-order interdefinable with (V; R)), or

3. Tis first-order interdefinable with (V; R“%), or

4. T is first-order interdefinable with (V; R1)), or o



Example: The random graph

Let G = (V; E) be the random graph, and set for all k > 2

R =

Theorem (Thomas '91)
Let " be a reduct of G. Then:

1.

o M 0D

I" is first-order interdefinable with (V; E), or

I" is first-order interdefinable with (V; R®)), or
I" is first-order interdefinable with (V; R4)), or
I' is first-order interdefinable with (V; R®)), or
I" is first-order interdefinable with (V;=).

{(x4,...,x¢) C V¥ x distinct, number of edges odd}.
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Theorem (Thomas '91)

The homogeneous K,-free graph has 2 reducts, up to
f.o.-interdefinability.
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Theorem (Thomas '91)

The homogeneous K,-free graph has 2 reducts, up to
f.o.-interdefinability.

Theorem (Thomas '96)

The homogeneous k-graph has 2% + 1 reducts, up to
f.o.-interdefinability.
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Further examples

Theorem (Thomas '91)

The homogeneous K,-free graph has 2 reducts, up to
f.o.-interdefinability.

Theorem (Thomas '96)

The homogeneous k-graph has 2% + 1 reducts, up to
f.o.-interdefinability.

Theorem (Junker, Ziegler '08)
(Q;<,0) has 116 reducts, up to f.o.-interdefinability.
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Thomas’ conjecture

Conjecture (Thomas '91)
Let ' be homogeneous in a finite language.

Then T has finitely many reducts up to f.o.-interdefinability.
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Finer classifications
A formula is existential iff
it is of the form 3x4,..., x,. b, where 1) is quantifier-free.

A formula is existential positive iff
it is existential and does not contain negations.

A formula is primitive positive iff

it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. '08)
For the structure T := (X; =), there exist:
» 1 reduct up to first order / existential interdefinability
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A formula is existential iff
it is of the form 3x4,..., x,. b, where 1) is quantifier-free.

A formula is existential positive iff
it is existential and does not contain negations.

A formula is primitive positive iff

it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. ’08)

For the structure T := (X; =), there exist:
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Finer classifications

A formula is existential iff
it is of the form 3x4,..., x,. b, where 1) is quantifier-free.

A formula is existential positive iff
it is existential and does not contain negations.

A formula is primitive positive iff
it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. ’08)

For the structure T := (X; =), there exist:
» 1 reduct up to first order / existential interdefinability
» Ny reducts up to existential positive interdefinability
» 2%0 reducts up to primitive positive interdefinability
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Theorem
Let I' be w-categorical.
» The mapping A — Aut(A) is a one-to-one
correspondence between the first-order closed
reducts of I and the closed supergroups of Aut(T").
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Theorem
Let I' be w-categorical.

» The mapping A — Aut(A) is a one-to-one
correspondence between the first-order closed
reducts of I and the closed supergroups of Aut(T").

» The mapping A — End(A) is a one-to-one
correspondence between the existential positive

closed reducts of I and the closed supermonoids of
Aut(T).
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Theorem
Let I' be w-categorical.

» The mapping A — Aut(A) is a one-to-one
correspondence between the first-order closed
reducts of I and the closed supergroups of Aut(T").

» The mapping A — End(A) is a one-to-one
correspondence between the existential positive
closed reducts of I and the closed supermonoids of
Aut(T).

» The mapping A — Pol(A) is a one-to-one
correspondence between the primitive positive
closed reducts of I and the closed superclones of
Aut(T).
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The reducts of the random graph, revisited
Let G := (V; E) be the random graph.
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non-edges.
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Let G be the graph that arises by switching edges and
non-edges.

Let —: V — V be an isomorphism between G and G.

For c € V, let G; be the graph that arises by switching all
edges and non-edges from c.

Let sw¢: V — V be an isomorphism between G and Gc.

Theorem (Thomas ’91)
The closed groups containing Aut(G) are the following:
1. Aut(G)
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The reducts of the random graph, revisited Satisfacion with
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Let G := (V; E) be the random graph. templates

Michael Pinsker

Let G be the graph that arises by switching edges and
non-edges.

Let —: V — V be an isomorphism between G and G.

For c € V, let G; be the graph that arises by switching all
edges and non-edges from c.

Let sw¢: V — V be an isomorphism between G and Gc.

Theorem (Thomas ’91)

The closed groups containing Aut(G) are the following:
. Aut(G)

2. {—}UAuUt(G))

3. {swc}UAuUt(G))

4. ({—,swctUAut(G))

5. The full symmetric group Sy.

—
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Climb up the lattice!
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Examples.
The identity is canonical.
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Definition. f: V — V is canonical iff
forall x,y,u,v eV,

if (x,y) and (u, v) have the same type,
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Examples.

The identity is canonical.

— is canonical on V.

SW¢ is canonical on any F C V \ {c}.
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Definition. f: V — V is canonical iff
forall x,y,u,v eV,

if (x,y) and (u, v) have the same type,
then so do (f(x), f(y)) and (f(u), f(v)).

Examples.

The identity is canonical.

— is canonical on V.

SW¢ is canonical on any F C V \ {c}.

f: V — Vs canonical on F C V iff its restriction to F is EE e
canonical.
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property:

For all graphs H

there exists a graph S such that

if the edges of S are colored with 2 colors,

then thereisa copy of Hin S

on which the coloring is constant.
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property:

For all graphs H

there exists a graph S such that

if the edges of S are colored with 2 colors,

then thereisa copy of Hin S

on which the coloring is constant.

Given f: V — V, color an edge according to the type of
its image (3 possibilities).
Same for non-edges.
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Finding canonical behaviour

The class of finite graphs has the following Ramsey
property:

For all graphs H

there exists a graph S such that

if the edges of S are colored with 2 colors,

then thereisa copy of Hin S

on which the coloring is constant.

Given f: V — V, color an edge according to the type of
its image (3 possibilities).
Same for non-edges.

Conclusion: Every finite graph has a copy in G on which
f is canonical.
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Turning everything into edges (eg), or
turning everything into non-edges (ey), or
behaving like —, or

being constant, or
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Being canonical means:

Turning everything into edges (eg), or
turning everything into non-edges (ey), or
behaving like —, or

being constant, or

behaving like the identity.

Letf: V — V.
If f ¢ Aut(G), then there are ¢, d € V witnessing this.
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Patterns in functions on the random graph

Being canonical means:

Turning everything into edges (eg), or
turning everything into non-edges (ey), or
behaving like —, or

being constant, or

behaving like the identity.

Letf: V — V.
If f ¢ Aut(G), then there are ¢, d € V witnessing this.

The structure (V; E, ¢, d) has similar Ramsey properties
as (V;E).
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The minimal monoids on the random graph

Theorem (Thomas '96)

Letf: V — V, f & Aut(
Then f generates one of the following:
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A constant operation
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The minimal monoids on the random graph

Theorem (Thomas '96)
Letf: V=V, f ¢ Aut(G).
Then f generates one of the following:

v

A constant operation
> e
> en
>

> SW,

We thus know the minimal closed monoids containing
Aut(G).
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Theorem (Bodirsky, P. '09)
Letf: V"=V, f ¢ Aut(G).
Then f generates one of the following:

» One of the five minimal unary functions of Thomas’
theorem;

» One of 9 canonical binary injections.
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Theorem (Bodirsky, P. '09)
Letf: V"=V, f ¢ Aut(G).
Then f generates one of the following:

» One of the five minimal unary functions of Thomas’
theorem;

» One of 9 canonical binary injections.

We thus know the minimal closed clones containing
Aut(G).

Canonical functions
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Ramsey classes

Let S, H, P be structures in the same signature .

means:

S— (H)”
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Ramsey classes

Let S, H, P be structures in the same signature .
S— (H)F

means:

For any coloring of the copies of P in S with 2 colors
there exists a copy of Hin S
such that the copies of P in H all have the same color.
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Ramsey classes

Let S, H, P be structures in the same signature .
S— (H)F

means:

For any coloring of the copies of P in S with 2 colors
there exists a copy of Hin S
such that the copies of P in H all have the same color.

Definition

A class C of structures of the same signature T is called a
Ramsey class iff

for all H, P € € there is Sin € such that S — (H)F.
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Canonical functions on Ramsey structures
Let I' now be an arbitrary structure.
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Definition
f:T — T'is canonical iff
for all tuples (x1,...,Xn), (¥1,...,¥n) Of the same type
(f(x1)y...,f(xn)) and (f(y1),...,f(¥n)) have the same
type too.
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Observation. Let I' be Ramsey, ordered, and
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Canonical functions on Ramsey structures
Let I' now be an arbitrary structure.

Definition

f:T — T'is canonical iff

for all tuples (x1,...,Xn), (¥1,...,¥n) Of the same type
(f(x1)y...,f(xn)) and (f(y1),...,f(¥n)) have the same
type too.

Observation. Let I' be Ramsey, ordered, and
w-categorical.

Let H be a finite structure in the age of T'.

Then there is a copy of H in " on which f is canonical.

Thus: If T is in addition homogeneous in a finite
language, then any f: V — V generates a canonical
function,
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Definition
f:T — T'is canonical iff
for all tuples (x1,...,Xn), (¥1,...,¥n) Of the same type
(f(x1)y...,f(xn)) and (f(y1),...,f(¥n)) have the same
type too.

Observation. Let I' be Ramsey, ordered, and
w-categorical.

Let H be a finite structure in the age of T'.

Then there is a copy of H in " on which f is canonical.

Thus: If T is in addition homogeneous in a finite
language, then any f: V — V generates a canonical Canonical frctons
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Canonical functions on Ramsey structures
Let I' now be an arbitrary structure.

Definition

f:T — T'is canonical iff

for all tuples (x1,...,Xn), (¥1,...,¥n) Of the same type
(f(x1)y...,f(xn)) and (f(y1),...,f(¥n)) have the same
type too.

Observation. Let I' be Ramsey, ordered, and
w-categorical.

Let H be a finite structure in the age of T'.

Then there is a copy of H in " on which f is canonical.

Thus: If T is in addition homogeneous in a finite
language, then any f: V — V generates a canonical
function, but it could be the identity.

We would like to fix ¢, ..., c, witnessing f ¢ Aut(T),
and have canonical behavior on (T, ¢y, ..., Cpn).
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Adding constants to Ramsey classes

Problem
If I"is Ramsey, is (I} ¢y, ..., cn) still Ramsey?
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Adding constants to Ramsey classes

Problem
If I'is Ramsey, is (T} ¢y, ..., Ccp) still Ramsey?

Theorem (Kechris, Pestov, Todorcevic '05)

An ordered homogeneous structure A is Ramsey iff
its automorphism group is extremely amenable, i.e.,
it has a fixed point whenever it acts on a compact
topological space.
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Adding constants to Ramsey classes

Problem
If I'is Ramsey, is (T} ¢y, ..., Ccp) still Ramsey?

Theorem (Kechris, Pestov, Todorcevic '05)

An ordered homogeneous structure A is Ramsey iff
its automorphism group is extremely amenable, i.e.,
it has a fixed point whenever it acts on a compact
topological space.

Easy observation (Tsankov ’10)

Every open subgroup of an extremely amenable group is
extremely amenable.
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Adding constants to Ramsey classes

Problem
If I'is Ramsey, is (T} ¢y, ..., Ccp) still Ramsey?

Theorem (Kechris, Pestov, Todorcevic '05)

An ordered homogeneous structure A is Ramsey iff
its automorphism group is extremely amenable, i.e.,
it has a fixed point whenever it acts on a compact
topological space.

Easy observation (Tsankov ’10)

Every open subgroup of an extremely amenable group is
extremely amenable.

Corollary
If T is ordered, homogeneous, and Ramsey, then so is
(T, ¢1y...,Cn).
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If T"is ordered Ramsey, f: T — T, and ¢q,...,ch €T,
then f generates a function canonical for (T, ¢y, ..., cn)
which behaves like f on {cy,..., cn}.
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If T"is ordered Ramsey, f: T — T, and ¢q,...,ch €T,

then f generates a function canonical for (T, ¢y, ..., cn)

which behaves like f on {cy,..., cn}.

Theorem (Bodirsky, P., Tsankov ’10)

Let " be a finite language reduct of a finite language
homogeneous ordered Ramsey structure. Then:
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If T"is ordered Ramsey, f: T — T, and ¢q,...,ch €T,

then f generates a function canonical for (T, ¢y, ..., cn)

which behaves like f on {cy,..., cn}.

Theorem (Bodirsky, P., Tsankov ’10)

Let " be a finite language reduct of a finite language
homogeneous ordered Ramsey structure. Then:

» There are finitely many minimal closed
supermonoids of End(T).
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Thus_ Michael Pinsker
If T"is ordered Ramsey, f: T — T, and ¢q,...,ch €T,

then f generates a function canonical for (T, ¢y, ..., cn)

which behaves like f on {cy,..., cn}.

Theorem (Bodirsky, P., Tsankov '10)
Let " be a finite language reduct of a finite language
homogeneous ordered Ramsey structure. Then:
» There are finitely many minimal closed
supermonoids of End(T).

» Every closed supermonoid of End(T") contains a
minimal closed supermonoid of End(T"). Minal dones



Minimal clones above Ramsey structures

Going to products of ', we get:
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Going to products of ', we get:

Theorem (Bodirsky, P., Tsankov '10)

Let ' be a finite language reduct of a finite language
homogeneous ordered Ramsey structure. Then:
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Going to products of ', we get:

Theorem (Bodirsky, P., Tsankov '10)

Let ' be a finite language reduct of a finite language
homogeneous ordered Ramsey structure. Then:

» There are finitely many minimal closed clones
containing Pol(T"). (Arity bound: |S(T")].)

Minimal clones
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Going to products of ', we get:

Theorem (Bodirsky, P., Tsankov '10)

Let ' be a finite language reduct of a finite language
homogeneous ordered Ramsey structure. Then:

» There are finitely many minimal closed clones
containing Pol(T"). (Arity bound: |S(T")].)

» Every closed clone above Pol(TI") contains a minimal
one.

Minimal clones



Schaefer’s theorem for graphs

Theorem (Bodirsky, P. '10)

Let I" be a reduct of the random graph. Then CSP(T) is
either in P or NP-complete.

Method: Prove hardness for certain relations, and
tractability for certain polymorphisms.

If a reduct of G does not pp define any of the hard
relations, then it has polymorphisms violating them.

These polymorphisms can be assumed to be canonical.

Thus they can easily be handled, and one can show that
they produce one of the tractable polymorphisms.
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The theorem in more detail

Theorem
Let T be a reduct of the random graph. Then:

» Either I" has one out of 17 canonical polymorphisms,
and CSP(T) is tractable,

» or CSP(I') is NP-complete.
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The theorem in more detail

Theorem
Let T be a reduct of the random graph. Then:

» Either I" has one out of 17 canonical polymorphisms,
and CSP(T) is tractable,

» or CSP(I') is NP-complete.

Theorem
Let I" be a reduct of the random graph. Then:

» Either I" pp-defines one out of 4 hard relations,
and CSP(I") is NP-complete,

» or CSP(I') is tractable.
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Examples of tractable polymorphisms

Theorem
The following 17 distinct clones are precisely the minimal tractable
local clones containing Aut(G):

1.

The clone generated by a constant operation.

. The clone generated by a balanced binary injection of type max.

2
3.
4

The clone generated by a balanced binary injection of type min.

. The clone generated by an E-dominated binary injection of type

max.

The clone generated by an N-dominated binary injection of type
min.

The clone generated by a function of type majority which is
hyperplanely balanced and of type projection.

. The clone generated by a function of type majority which is

hyperplanely E-constant.

The clone generated by a function of type majority which is
hyperplanely N-constant.

 The clone aenerated bv a function of tvpe maioritv which is
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Classification

inP

i i 6:
minority minority
N hp balanced p.

9,10:
majority
hp E-dominated
max

1:
majority
hp balanced p.

16,17:

5:
-dominated
max
[

4,

Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Homomorphism problems

Polymorphisms

tions

Term c

lity conjecture

Graph-SAT
Temp-SAT

Topological

Minimal ¢

Applications



The Meta Problem

Applications

Summary



The Meta Problem

Meta-Problem of Graph-SAT(Y)
INPUT: A finite set ¥ of graph formulas.

QUESTION: Is Graph-SAT(Y) in P?
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The Meta Problem

Meta-Problem of Graph-SAT(Y)
INPUT: A finite set ¥ of graph formulas.

QUESTION: Is Graph-SAT(Y) in P?

Theorem
The Meta-Problem of Graph-SAT (V) is decidable.
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Temp-SAT

Theorem (Bodirsky and Kara '08)

Let " be a reduct of the order of the rationals. Then T’
either has one out of 9 binary canonical polymorphisms,
and CSP(IN) is in P, or CSP(T) is NP-complete.

Method: Prove hardness for certain relations, and
tractability for certain polymorphisms.

If a reduct of the order does not pp define any of the hard
relations, then it has polymorphisms violating them.

These polymorphisms can be assumed to be canonical.

Thus they can easily be handled, and one can show that
they produce one of the tractable polymorphisms.
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Boolean-SAT

Theorem (Schaefer ’78)

Let I' be a structure on a Boolean domain. Then I" either
has one of the polymorphisms listed below, and CSP(T) is
in P, or CSP(I") is NP-complete.

v

Constant
» Max

» Min
Majority

v

v

Minority

Proof: Any operation which depends on at least two
variables generates Max, Min, Majority, or Minority. If all
polymorphisms of I" depend on at most one variable, and
no polymorphism is constant, then the polymorphisms
preserve
11.0.0).(0.1.0).(0.O.1)Y.(1.1.0).(1.0.1).(O.1. 1)V
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Summary

» CSPs model many real computational problems from
theoretical computer science.

» Universal algebra useful in classifications since
Pol(T") captures complexity.

» Many real computational problems are infinite
domain CSPs.

» On infinite domains, add model theory + Ramsey
theory to study polymorphisms. They then become
functions on types, hence finite.
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