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Constraint satisfaction problems (CSPs)
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Constraint satisfaction - general
An instance of a constraint satisfaction problem (CSP)
consists of:

I A finite set of variables
I Constraints for these variables

(the kind of constraints and possible values of the
variables being defined by the CSP)

A solution to the CSP is an assignment of values to the
variables such that all constraints are satisfied.

Examples:

I Sudokus
I Equations

We will consider a special kind of CSPs, namely
Homomorphism problems.

Interested in the complexity of solving the problem.
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Relational Structures
Let τ be a relational signature, i.e., a set of relation
symbols Ri , each associated with a finite arity ki .

A τ-structure Γ = (D;RΓ
1 ,R

Γ
2 , . . . ) is a set D together with

a relation RΓ
i ⊆ Dki for each relation symbol Ri of arity ki

in τ.

Examples:

I Graphs G = (V ;E), Digraphs
I Vertex-colored graphs
I Graphs with different types of edges
I Hypergraphs
I Databases
I Mathematical structures: (N; 6=),

(Q;<,≤, 6=,=), (R; {(x , y) x2 + y2 ≤ 1}), . . .
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Homomorphisms

Let ∆ and Γ be structures with the same relational
signature τ.

Definition
A function f : ∆→ Γ is called homomorphism iff
for each k -ary relation symbol R of τ

(a1, . . . ,ak ) ∈ R∆ → (f (a1), . . . , f (ak )) ∈ RΓ .
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The Constraint Satisfaction Problem

Let Γ be a structure with a finite relational signature τ.
Γ also called the template.

Definition
CSP(Γ) is the computational problem to decide whether a
given finite τ-structure ∆ homomorphically maps to Γ .

Note: Γ need not be finite.

Example: 3-colorability is CSP(K3)

G K3
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Examples of CSPs

Positive 1-in-3-3SAT

Input: A set of triples of variables (x , y , z)

Question: Is there a 0/1-assignment to the variables
such that in each clause exactly one variable
is true?

Is a CSP: template is
({0,1}; {(0,0,1), (0,1,0), (1,0,0)})

Digraph acyclicity
Input: A directed graph (V ;E)

Question: Is (V ;E) acyclic?

Is CSP: template is (Q;<)
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More Examples of CSPs

Betweenness:
Input: A set of triples of variables (x , y , z)

Question: Is there a weak linear order on the variables
such that for each triple
either x < y < z or z < y < x?

Is a CSP: template is
(Q; {(x , y , z) | (x < y < z)∨ (z < y < x)})

And/Or-Precedence-Constraints:
Input: A set of triples of variables (x , y , z)

Question: Is there a weak linear order on the variables
such that for each triple x is strictly larger
than the minimum of y and z?

Is a CSP: template is (Q; {(x , y , z) | (x > y)∨ (x > z)})
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Sudokus

A template for Sudokus:

ΓS = ({1,2, . . . ,9};R,P1, . . . ,P9) ,

where R = {(t1, . . . , t9) | |{t1, . . . , t9}| = 9},
and Pi = {i} for all 1 ≤ i ≤ 9.

I Every Sudoku can be formulated as an instance of
CSP(ΓS)

I Not all instances of CSP(ΓS) correspond to a
Sudoku.
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Diophantine equations

Diophantine:
Input: An equation using =,+, ·,1

Question: Is there a solution to the equation in Z?

Is a CSP: template is Γ := (Z;1,+, ·,=).
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Which problems can be formulated as CSPs?

Let C be a class of τ-structures.

Definition
C is closed under disjoint unions iff whenever A,B ∈ C
then A

.
∪ B ∈ C.
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Which problems can be formulated as CSPs?

Let C be a class of τ-structures.

Definition
C is closed under disjoint unions iff whenever A,B ∈ C
then A

.
∪ B ∈ C.
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Let C be a class of τ-structures.

Definition
C is closed under disjoint unions iff whenever A,B ∈ C
then A

.
∪ B ∈ C.
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Inverse homomorphisms
Let C be a class of τ-structures.

Definition
C is closed under inverse homomorphisms iff B ∈ C and
A → B implies that A ∈ C.

Example: the set of all triangle-free graphs is closed
under disjoint unions and inverse homomorphisms.

Observation:
CSP(Γ) can be viewed as a class of finite
structures: all those structures that
homomorphically map to Γ .

CSP(Γ) is closed under disjoint unions.

CSP(Γ) is closed under inverse
homomorphisms.
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Fundamental Lemma
Lemma (Feder ’93)
C =CSP(Γ) for some relational structure Γ if and only if
C is closed under disjoint unions and inverse
homomorphisms.

Proof. It remains to show the ‘if’-part of the statement.

Choose Γ as
.⋃

A∈C A
Γ

C

A1

A2

A3

...

Ai+1

Ai+2

...

�
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Examples of CSPs

Triangle-Freeness:

Input: A graph G

Question: Is G triangle-free?

No-Mono-Tri:

Input: A graph G

Question: Can we partition V (G) = V1 ] V2 such that
G[V1] and G[V2] are triangle-free?
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Exercises

Prove that the following two problems can be formulated
as CSPs with an infinite template. For each problem, give
two proofs: one using the previous lemma, and one by
direct construction of the template.

Acylic Bipartition:
Input: A digraph G

Question: Can we partition V (G) = V1 ] V2

such that G[V1] and G[V2] are acyclic?

Cyclic Embedding:
Input: A digraph G

Question: Can we map V (G) to the plane
such that all arcs in E(G) have the origin on
the left side?
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Logical Perspective on CSPs

Let τ be a relational signature.

Definition
A primitive positive τ-formula is a first-order τ-formula of
the form

∃x1, . . . , xn.ψ1 ∧ · · ·∧ψm ,

where ψ1, . . . , ψm are atomic formulas, i.e.,
formulas of the form x = y or of the form R(xi1 , . . . , xik ) for
R ∈ τ.
A sentence is a formula without free variables.

Alternative definition of CSP(Γ):
Input: a primitive positive sentence Φ

Question: Is Φ true in Γ?
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The Canonical Query

Let ∆ be a finite τ-structure with domain D.

Definition
The canonical query Φ(∆) of ∆ is the primitive positive
formula with existentially quantified variables D that
contains a conjunct R(a1, . . . ,an) iff (a1, . . . ,an) ∈ R∆.

Example:

x1

x3

x2

Φ(∆) := ∃x1, x2, x3. E(x1, x2)∧ E(x2, x3)∧ E(x3, x1)
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Homomorphisms vs Logic

Let Γ be a τ-structure.

Lemma
For any finite τ-structure ∆ the following are equivalent.
I There is a homomorphism from ∆ to Γ .
I Φ(∆) is true in Γ .

Proof. trivial.
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Canonical Database

Definition
For each primitive positive sentence Φ over signature τ,
the canonical database ∆(Φ) is the τ-structure defined on
the variables of Φ such that (x1, . . . , xn) ∈ R∆ iff
R(x1, . . . , xn) is a conjunct in Φ.

Example.
Φ := ∃x1, x2, x3. E(x1, x2)∧ E(x2, x3)∧ E(x3, x1)

x1

x3

x2
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Logic vs. Homomorphisms

Lemma
Let Γ be a τ-structure. For any primitive positive sentence
Φ the following are equivalent.
I Γ satisfies Φ.
I There is a homomorphism from ∆(Φ) to Γ .

Proof. trivial.
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Computational Complexity of CSPs

Basic observations:
I If Γ is finite, then CSP(Γ) is in NP.
I CSP(Γ) might be in P: e.g. CSP(Q;<).
I CSP(Γ) might be NP-complete: e.g. 1-in-3-3SAT.
I CSP(Γ) might be undecidable:

CSP(Z; {(x , y , z) ∈ Z3 | x + y = z}, {(x , y , z) ∈
Z3 | x ∗ y = z}, {1})

is polynomial-time equivalent to the problem of deciding
whether a given polynomial equation has an integer
solution (solving diophantine equations; ‘Hilberts 10th
problem’). This problem was shown to be undecidable by
Matiyasevich in 1970.
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CSPs of All Complexities

Theorem
For every L ⊆ {a,b}∗ there is a relational structure Γ such
that L is polynomial-time equivalent to CSP(Γ).

Reminder: Turing reduction. Write L1 ≤p
t L2 if there is a

deterministic polynomial-time Turing machine that
decides L1 with an oracle for L2.

L1 and L2 are polynomial-time (Turing) equivalent if
L1 ≤p

t L2 and L2 ≤p
t L1.
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t L2 if there is a

deterministic polynomial-time Turing machine that
decides L1 with an oracle for L2.

L1 and L2 are polynomial-time (Turing) equivalent if
L1 ≤p

t L2 and L2 ≤p
t L1.
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Proof

Proof idea. Encode words w from {a,b}∗ by structures W
with signature {N,Pa,Pb,S,T } as follows.

w=abba

Pa Pb Pb Pa

N N N

T
S

W:

Let X be the set of all τ-structures encoding words as
before, but
with an unlabeled element, or S is empty, or T is empty.
Let Γ be the disjoint union over all structures in
{W | w ∈ L} ∪ X .

Claim: L is polynomial-time Turing equivalent to CSP(Γ).
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First Reduction
Reduction from CSP(Γ) to L.

Suppose A instance of CSP(Γ) (wlog A is connected wrt N)

1

2 3

4 5

N N

N N

{1}

{2,3}

{4,5}

N

N

Pa

Pb
Pb

PaPa

A:

T

T

S S

reject if the N-reduct is not homomorphic to a path, if a
vertex from Pa is contracted with a vertex from Pb, a
vertex in S has predecessor, or vertex in T has
successor.

accept if in the resulting graph there is a vertex neither in
Pa nor in Pb, or S is empty, or T is empty.

otherwise have the word-structure of a word w ∈ {a,b}∗,
and accept iff w ∈ L.



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

First Reduction
Reduction from CSP(Γ) to L.
Suppose A instance of CSP(Γ) (wlog A is connected wrt N)

1

2 3

4 5

N N

N N

{1}

{2,3}

{4,5}

N

N

Pa

Pb
Pb

PaPa

A:

T

T

S S

reject if the N-reduct is not homomorphic to a path, if a
vertex from Pa is contracted with a vertex from Pb, a
vertex in S has predecessor, or vertex in T has
successor.

accept if in the resulting graph there is a vertex neither in
Pa nor in Pb, or S is empty, or T is empty.

otherwise have the word-structure of a word w ∈ {a,b}∗,
and accept iff w ∈ L.



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

First Reduction
Reduction from CSP(Γ) to L.
Suppose A instance of CSP(Γ) (wlog A is connected wrt N)

1

2 3

4 5

N N

N N

{1}

{2,3}

{4,5}

N

N

Pa

Pb
Pb

PaPa

A:

T

T

S S

reject if the N-reduct is not homomorphic to a path, if a
vertex from Pa is contracted with a vertex from Pb, a
vertex in S has predecessor, or vertex in T has
successor.

accept if in the resulting graph there is a vertex neither in
Pa nor in Pb, or S is empty, or T is empty.

otherwise have the word-structure of a word w ∈ {a,b}∗,
and accept iff w ∈ L.



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

First Reduction
Reduction from CSP(Γ) to L.
Suppose A instance of CSP(Γ) (wlog A is connected wrt N)

1

2 3

4 5

N N

N N

{1}

{2,3}

{4,5}

N

N

Pa

Pb
Pb

PaPa

A:

T

T

S S

reject if the N-reduct is not homomorphic to a path, if a
vertex from Pa is contracted with a vertex from Pb, a
vertex in S has predecessor, or vertex in T has
successor.

accept if in the resulting graph there is a vertex neither in
Pa nor in Pb, or S is empty, or T is empty.

otherwise have the word-structure of a word w ∈ {a,b}∗,
and accept iff w ∈ L.



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

First Reduction
Reduction from CSP(Γ) to L.
Suppose A instance of CSP(Γ) (wlog A is connected wrt N)

1

2 3

4 5

N N

N N

{1}

{2,3}

{4,5}

N

N

Pa

Pb
Pb

PaPa

A:

T

T

S S

reject if the N-reduct is not homomorphic to a path, if a
vertex from Pa is contracted with a vertex from Pb, a
vertex in S has predecessor, or vertex in T has
successor.

accept if in the resulting graph there is a vertex neither in
Pa nor in Pb, or S is empty, or T is empty.

otherwise have the word-structure of a word w ∈ {a,b}∗,
and accept iff w ∈ L.



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

First Reduction
Reduction from CSP(Γ) to L.
Suppose A instance of CSP(Γ) (wlog A is connected wrt N)

1

2 3

4 5

N N

N N

{1}

{2,3}

{4,5}

N

N

Pa

Pb
Pb

PaPa

A:

T

T

S S

reject if the N-reduct is not homomorphic to a path, if a
vertex from Pa is contracted with a vertex from Pb, a
vertex in S has predecessor, or vertex in T has
successor.

accept if in the resulting graph there is a vertex neither in
Pa nor in Pb, or S is empty, or T is empty.

otherwise have the word-structure of a word w ∈ {a,b}∗,
and accept iff w ∈ L.



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

Second Reduction

Reduction from L to CSP(Γ).

Given a word w , accept if and only if
the word-structure for w homomorphically maps to Γ .

Γ

W

...
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Tractability

One of the main questions in this course:

Which CSPs are tractable (=can be solved efficiently)?

Often: tractable = ‘can be solved in deterministic
polynomial time’ (P)

Criticism:
I Is worst-case complexity really the right concept

(rather than e.g. ‘average-case complexity’)?
I Is a O(n100) algorithm really better than an O(1.01n)

algorithm?
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Why Polynomial Time?

P is still a well-accepted mathematical model of
tractability:

I If guaranteed bounded running time is essential for
the application, there is no way around worst-case
complexity.

I ‘practical’ and ‘theoretical’ complexity often match.
I the fastest algorithms for relevant problems in P

usually have a running time in O(n3), but not O(n10).
I P is robust: it is largely independent from the

machine model
I ‘Classical’ complexity theory is mathematically rich,

deep, and beautiful
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Computational Complexity

P

NP-c

NP
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Computational Complexity

NP: class of computational prob-
lems decidable in non-deterministic
polynomial time.

P

NP-c

NP
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Computational Complexity

NP: class of computational prob-
lems decidable in non-deterministic
polynomial time.

P: class of computational problems
decidable in polynomial time.

P

NP-c

NP
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Computational Complexity

NP: class of computational prob-
lems decidable in non-deterministic
polynomial time.

P: class of computational problems
decidable in polynomial time.

NP-c: class of problems L such
that every problem in NP can be re-
duced in polynomial time to L.

P

NP-c

NP
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Computational Complexity
NP: class of computational prob-
lems decidable in non-deterministic
polynomial time.

P: class of computational problems
decidable in polynomial time.

NP-c: class of problems L such
that every problem in NP can be re-
duced in polynomial time to L.

Ladner 1975: Unless P=NP, there
are NP-intermediate problems:
problems in NP that are neither in
P nor NP-c.

P

NP-c

NP
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The Quest for Tractable CSPs

For which Γ is CSP(Γ) in P?

Important open problem:

Conjecture (Feder, Vardi ’93)
For finite relational structures Γ , CSP(Γ) is either in P or
NP-hard.

I Remarkable: no NP-intermediate finite domain CSP
I As we have seen: false when Γ might have infinite

domain.

Theorem (Feder, Vardi ’93)
For every finite Γ , there is a directed graph H such that
CSP(Γ) and CSP(H) are polynomial-time equivalent.
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The algebraic approach
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Primitive positive (pp) definability

Fix a domain D.

All functions, relations, structures will be on D.

For structures Γ and ∆ on D, set Γ ≤pp ∆ iff
every relation of Γ has a pp-definition from ∆.

Fundamental observation.
If Γ ≤pp ∆, then CSP(Γ ) has a polynomial-time reduction
to CSP(∆).

In particular: If Γ ≤pp ∆ and ∆ ≤pp Γ ,
then CSP(Γ ) are polynomial-time equivalent.

We therefore identify such structures and call them
pp-interdefinable or pp-equivalent.
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Polymorphisms

A function f : Dn → D preserves a relation R on D iff
for all r1, . . . , rn ∈ R we have f (r1, . . . , rn) ∈ R.

f (r1, . . . , rn) is calculated componentwise.

A function f : Dn → D is a polymorphism of Γ iff
it preserves all relations of Γ .

Generalization of endomorphism, automorphism.

We write Pol(Γ) for the set of polymorphisms of Γ .

“Polymorphism clone of Γ ”.

A clone is a set of finitary operations on D which
I contains the projections and
I is closed under composition.
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Invariant relations

A relation R is invariant under a function f iff
f preserves R.

We write Inv(F ) for the set of invariant relations of a set of
functions F .

I More relations in Γ → less functions in Pol(Γ).
I More functions in F → less relations in Inv(F ).

The operators Pol and Inv define a Galois connection, i.e.,

I Pol and Inv are antitone, and
I Pol Inv and Inv Pol are closure operators.
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Polymorphisms and pp-definability

Let 〈Γ〉pp be the expansion of Γ by all pp definable
relations.

Theorem
Let Γ be finite or ω-categorical.
Then 〈Γ〉pp = Inv Pol(Γ).

Therefore, if Γ and ∆ have the same polymorphisms,
then their CSPs are polynomial-time equivalent.

Can define complexity of sets of functions F (algebras)
on D to be the compexity of Inv(F ).

Problem of infinite signature.
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The polymorphism strategy

Larger structures → harder CSP

Γ ≤pp ∆ → CSP(Γ )≤p
t CSP(∆)

Larger clones → easier CSP

Pol(Γ) ⊆ Pol(∆) → CSP(∆)≤p
t CSP(Γ )

Strategy:

(i) Prove hardness for certain relations

(ii) Prove tractability for certain functions

(iii) Hope that this is exhaustive

Structures which do not pp-define hard relations have
polymorphisms violating them.
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Strategy:

(i) Prove hardness for certain relations

(ii) Prove tractability for certain functions

(iii) Hope that this is exhaustive

Structures which do not pp-define hard relations have
polymorphisms violating them.
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Invariant relations and clones

For a set F of functions on D, write 〈F 〉 for the smallest
clone containing F .

“The clone generated by F ”.

〈F 〉 is obtained by building all terms over F .

Theorem
For finite D we have 〈F 〉 = Pol Inv(F ).

Therefore, if two sets F ,G of functions generate the same
clone, then they have the same complexity.

Sample application: If Γ has a polymorphism which
generates a tractable polymorphism, then CSP(Γ ) is
tractable.
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Clones on infinite sets

What about infinite domains?

For a set F of functions on D, write 〈F 〉loc for the
topological closure of 〈F 〉 in the natural topology
on the space of all operations on D.

〈F 〉loc is called the local clone generated by F .

A function f : Dn → D is in 〈F 〉loc iff for all finite subsets S
of Dn there is a function in 〈F 〉 which agrees with f on S.

“f can be interpolated by functions from 〈F 〉 on finite sets.”

Theorem
For any D we have 〈F 〉loc = Pol Inv(F ).
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Term conditions

Many properties of an algebra (D;F ) only depend on the
clone 〈F 〉 of the algebra.

Classical examples: Subalgebras, congruence relations.

New example: Complexity of the CSP of the algebra.

Sample universal algebra theorem:

The congruences of an algebra permute iff the algebra
has a term t(x , y , z) which satisfies
t(x , x , y) = t(y , x , x) = y .

Many properties depend only on equations satisfied by
terms in the clone.

Also holds for the complexity of the CSP.
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Some polymorphisms implying tractability

Theorem
On a finite domain, the following polymorphisms imply
tractability of the CSP.

I ∨-semilattice
I Majority
I Minority
I Mal’tsev
I Constant



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

Some polymorphisms implying tractability

Theorem
On a finite domain, the following polymorphisms imply
tractability of the CSP.

I ∨-semilattice

I Majority
I Minority
I Mal’tsev
I Constant



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

Some polymorphisms implying tractability

Theorem
On a finite domain, the following polymorphisms imply
tractability of the CSP.

I ∨-semilattice
I Majority

I Minority
I Mal’tsev
I Constant



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

Some polymorphisms implying tractability

Theorem
On a finite domain, the following polymorphisms imply
tractability of the CSP.

I ∨-semilattice
I Majority
I Minority

I Mal’tsev
I Constant



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

Some polymorphisms implying tractability

Theorem
On a finite domain, the following polymorphisms imply
tractability of the CSP.

I ∨-semilattice
I Majority
I Minority
I Mal’tsev

I Constant



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

Some polymorphisms implying tractability

Theorem
On a finite domain, the following polymorphisms imply
tractability of the CSP.

I ∨-semilattice
I Majority
I Minority
I Mal’tsev
I Constant



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

The tractability conjecture

Dichotomy conjecture
All finite domain CSPs are either tractable or
NP-complete.

Tractability conjecture
For all structures Γ on a finite domain which are a core,
I either there is a poymorphism f (x1, x2, x3, x4)

satisfying f (y , y , x , x) = f (x , x , x , y) = f (y , x , y , x),
and CSP(Γ ) is tractable,

I or CSP(Γ ) is NP-complete.
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Ryll-Nardzewski

The type of an tuple a of elements of a structure Γ is the
set of first-order formulas satisfied by a in Γ .

Theorem (Ryll-Nardzewski)
The following are equivalent for a countable structure Γ .
I All countable models of the theory of Γ are

isomorphic to Γ .
I Γ has finitely many types of n-tuples for every n ≥ 1.

The orbit of a tuple a in Γ is the set {α(a) : α ∈ Aut(Γ)}.

In ω-categorical structures,
orbits = maximal sets of tuples of the same type.

Thus, a relation R has a fo definition from Γ iff
it is preserved by all automorphisms of Γ .
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Ryll-Nardzewski generalized

Theorem (Bodirsky and Nešetřil) ’02
Let Γ be ω-categorical.

A relation R has a primitive positive (pp) definition from Γ

iff it is preserved by all polymorphisms of Γ .

In other words, Inv Pol(Γ) = 〈Γ〉pp.

The corresponding first-order statement:

Inv Aut(Γ) = 〈Γ〉fo
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The Boolean satisfiability problem

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:
I A set W of propositional variables, and
I statements φ1, . . . , φn about the variables in W ,

where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Boolean-SAT(Ψ) tractable?
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Boolean formulas and Boolean structures

For a Boolean formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ {0,1}n : ψ(a1, . . . ,an)}.

For a set Ψ of Boolean formulas, define a structure

ΓΨ := ({0,1}; (Rψ : ψ ∈ Ψ)).

ΓΨ is a Boolean structure.
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Boolean-SAT as CSP

An instance
I W = {w1, . . . ,wm}

I φ1, . . . , φn

of Boolean-SAT(Ψ) has a positive solution ↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

The decision problem whether or not a given primitive
positive sentence holds in ΓΨ is just CSP(ΓΨ).

So Boolean-SAT(Ψ) and CSP(ΓΨ) are one and the same
problem.
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The Graph Satisfiability Problem

Let E be a binary relation symbol.

(Imagine: edge relation of an undirected graph.)

Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:
I A set W of variables (vertices), and
I statements φ1, . . . , φn about the elements of W ,

where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Graph-SAT(Ψ) tractable?
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Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y)∧ ¬E(y , z)∧ ¬E(x , z))

∨ (¬E(x , y)∧ E(y , z)∧ ¬E(x , z))

∨ (¬E(x , y)∧ ¬E(y , z)∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain
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Graph formulas and reducts of the
random graph

Let G = (V ;E) denote the random graph, i.e.,
the unique countably infinite graph which

I is (ultra-)homogeneous
I contains all finite (even countable) graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.
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Graph-SAT as CSP

An instance
I W = {w1, . . . ,wm}

I φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution ↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

So Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same
problem.

Could have used any graph that contains all finite graphs.

Classifying the complexity of all Graph-SAT problems is
the same as classifying the complexity of CSPs of all
reducts of the random graph.
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Temporal constraints

Let < be a binary relation symbol.

(Imagine: linear order relation.)

Let Ψ be a finite set of quantifier-free {<}-formulas.

Computational problem: Temp-SAT(Ψ)
INPUT:
I A set W of variables (vertices), and
I statements φ1, . . . , φn about the elements of W ,

where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a linear order?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Temp-SAT(Ψ) tractable?
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Temporal formulas and reducts of (Q;<)

Let (Q;<) denote the order of the rationals.

For a {<}-formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of {<}-formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct the dense linear order.

Temp-SAT(Ψ) and CSP(ΓΨ) are one and the same
problem.

Could have used any linear order that contains all finite
linear orders.
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Three classification theorems

All problems Boolean-SAT(Ψ), Graph-SAT(Ψ), and
Temp-SAT(Ψ) are either in P or NP-complete.

Given Ψ, we can decide in which class the problem falls.

Boolean-SAT(Ψ): Schaefer (1978).

Temp-SAT(Ψ): Bodirsky and Kara (2007).

Graph-SAT(Ψ): Bodirsky and Pinsker (2010).

Remark: Complexity of CSPs for 3-element domains
classified by Bulatov in ’03.
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Ramsey structures
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Reducts of homogeneous structures

Let Γ be a countable relational structure in a finite
language

which is homogeneous, i.e.,

For all A,B ⊆ Γ finite, for all isomorphisms i : A → B
there exists α ∈ Aut(Γ) extending i .

Γ is the Fraïssé limit of its age, i.e., its class of finite
induced substructures.

Definition
A reduct of Γ is a structure with a first-order (f.o.)
definition in Γ .

Problem
Classify the reducts of Γ .
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Possible classifications

Consider two reducts ∆,∆ ′ of Γ equivalent iff ∆ has a fo
definition from ∆ ′ and vice-versa.

We say that ∆ and ∆ ′ are first-order interdefinable.

“∆ has a fo definition from ∆ ′” is a quasiorder on
relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability,
becomes a complete lattice.

Finer classifications of the reducts of Γ , e.g. up to

I Existential interdefinability
I Existential positive interdefinability
I Primitive positive interdefinability
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Example: The dense linear order

Denote by (Q;<) be the dense linear order, and set

betw(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < y < x}

cycl(x , y , z) :={(x , y , z) ∈ Q3 : x < y < z or z < x < y

or y < z < x}

sep(x , y , z,w) :={(x , y , z,w) ∈ Q4 : . . .}

Theorem (Cameron ’76)
Let Γ be a reduct of (Q;<). Then:

1. Γ is first-order interdefinable with (Q;<), or

2. Γ is first-order interdefinable with (Q;betw), or

3. Γ is first-order interdefinable with (Q; cycl), or

4. Γ is first-order interdefinable with (Q; sep), or

5. Γ is first-order interdefinable with (Q; =).
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Example: The random graph

Let G = (V ;E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)
Let Γ be a reduct of G. Then:

1. Γ is first-order interdefinable with (V ;E), or

2. Γ is first-order interdefinable with (V ;R(3)), or

3. Γ is first-order interdefinable with (V ;R(4)), or

4. Γ is first-order interdefinable with (V ;R(5)), or

5. Γ is first-order interdefinable with (V ; =).
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Further examples

Theorem (Thomas ’91)
The homogeneous Kn-free graph has 2 reducts, up to
f.o.-interdefinability.

Theorem (Thomas ’96)
The homogeneous k -graph has 2k + 1 reducts, up to
f.o.-interdefinability.

Theorem (Junker, Ziegler ’08)
(Q;<,0) has 116 reducts, up to f.o.-interdefinability.
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Thomas’ conjecture

Conjecture (Thomas ’91)

Let Γ be homogeneous in a finite language.

Then Γ has finitely many reducts up to f.o.-interdefinability.
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Finer classifications

A formula is existential iff
it is of the form ∃x1, . . . , xn.ψ, where ψ is quantifier-free.

A formula is existential positive iff
it is existential and does not contain negations.

A formula is primitive positive iff
it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. ’08)
For the structure Γ := (X ; =), there exist:

I 1 reduct up to first order / existential interdefinability
I ℵ0 reducts up to existential positive interdefinability
I 2ℵ0 reducts up to primitive positive interdefinability
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A formula is existential iff
it is of the form ∃x1, . . . , xn.ψ, where ψ is quantifier-free.

A formula is existential positive iff
it is existential and does not contain negations.

A formula is primitive positive iff
it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. ’08)
For the structure Γ := (X ; =), there exist:
I 1 reduct up to first order / existential interdefinability
I ℵ0 reducts up to existential positive interdefinability
I 2ℵ0 reducts up to primitive positive interdefinability
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Groups, Monoids, Clones

Theorem
Let Γ be ω-categorical.

I The mapping ∆ 7→ Aut(∆) is a one-to-one
correspondence between the first-order closed
reducts of Γ and the closed supergroups of Aut(Γ).

I The mapping ∆ 7→ End(∆) is a one-to-one
correspondence between the existential positive
closed reducts of Γ and the closed supermonoids of
Aut(Γ).

I The mapping ∆ 7→ Pol(∆) is a one-to-one
correspondence between the primitive positive
closed reducts of Γ and the closed superclones of
Aut(Γ).
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The reducts of the random graph, revisited
Let G := (V ;E) be the random graph.

Let Ḡ be the graph that arises by switching edges and
non-edges.

Let − : V → V be an isomorphism between G and Ḡ.

For c ∈ V , let Gc be the graph that arises by switching all
edges and non-edges from c.

Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)
The closed groups containing Aut(G) are the following:

1. Aut(G)

2. 〈{−} ∪ Aut(G)〉
3. 〈{swc} ∪ Aut(G)〉
4. 〈{−, swc} ∪ Aut(G)〉
5. The full symmetric group SV .
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How to find all reducts up to
. . .-interdefinability?

Climb up the lattice!
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Canonical functions on the Random graph

Definition. f : V → V is canonical iff

for all x , y ,u, v ∈ V ,

if (x , y) and (u, v) have the same type,

then so do (f (x), f (y)) and (f (u), f (v)).

Examples.

The identity is canonical.

− is canonical on V .

swc is canonical on any F ⊆ V \ {c}.

f : V → V is canonical on F ⊆ V iff its restriction to F is
canonical.
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Finding canonical behaviour

The class of finite graphs has the following Ramsey
property:

For all graphs H
there exists a graph S such that
if the edges of S are colored with 2 colors,
then there is a copy of H in S
on which the coloring is constant.

Given f : V → V , color an edge according to the type of
its image (3 possibilities).
Same for non-edges.

Conclusion: Every finite graph has a copy in G on which
f is canonical.
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For all graphs H
there exists a graph S such that

if the edges of S are colored with 2 colors,
then there is a copy of H in S
on which the coloring is constant.

Given f : V → V , color an edge according to the type of
its image (3 possibilities).
Same for non-edges.

Conclusion: Every finite graph has a copy in G on which
f is canonical.
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Patterns in functions on the random graph

Being canonical means:

Turning everything into edges (eE ), or
turning everything into non-edges (eN), or
behaving like −, or
being constant, or
behaving like the identity.

Let f : V → V .
If f /∈ Aut(G), then there are c,d ∈ V witnessing this.

The structure (V ;E , c,d) has similar Ramsey properties
as (V ;E).



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

Patterns in functions on the random graph

Being canonical means:

Turning everything into edges (eE ), or

turning everything into non-edges (eN), or
behaving like −, or
being constant, or
behaving like the identity.

Let f : V → V .
If f /∈ Aut(G), then there are c,d ∈ V witnessing this.

The structure (V ;E , c,d) has similar Ramsey properties
as (V ;E).



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

Patterns in functions on the random graph

Being canonical means:

Turning everything into edges (eE ), or
turning everything into non-edges (eN), or

behaving like −, or
being constant, or
behaving like the identity.

Let f : V → V .
If f /∈ Aut(G), then there are c,d ∈ V witnessing this.

The structure (V ;E , c,d) has similar Ramsey properties
as (V ;E).



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

Patterns in functions on the random graph

Being canonical means:

Turning everything into edges (eE ), or
turning everything into non-edges (eN), or
behaving like −, or

being constant, or
behaving like the identity.

Let f : V → V .
If f /∈ Aut(G), then there are c,d ∈ V witnessing this.

The structure (V ;E , c,d) has similar Ramsey properties
as (V ;E).



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

Patterns in functions on the random graph

Being canonical means:

Turning everything into edges (eE ), or
turning everything into non-edges (eN), or
behaving like −, or
being constant, or

behaving like the identity.

Let f : V → V .
If f /∈ Aut(G), then there are c,d ∈ V witnessing this.

The structure (V ;E , c,d) has similar Ramsey properties
as (V ;E).



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

Patterns in functions on the random graph

Being canonical means:

Turning everything into edges (eE ), or
turning everything into non-edges (eN), or
behaving like −, or
being constant, or
behaving like the identity.

Let f : V → V .
If f /∈ Aut(G), then there are c,d ∈ V witnessing this.

The structure (V ;E , c,d) has similar Ramsey properties
as (V ;E).



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

Patterns in functions on the random graph

Being canonical means:

Turning everything into edges (eE ), or
turning everything into non-edges (eN), or
behaving like −, or
being constant, or
behaving like the identity.

Let f : V → V .
If f /∈ Aut(G), then there are c,d ∈ V witnessing this.

The structure (V ;E , c,d) has similar Ramsey properties
as (V ;E).



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

Patterns in functions on the random graph

Being canonical means:

Turning everything into edges (eE ), or
turning everything into non-edges (eN), or
behaving like −, or
being constant, or
behaving like the identity.

Let f : V → V .
If f /∈ Aut(G), then there are c,d ∈ V witnessing this.

The structure (V ;E , c,d) has similar Ramsey properties
as (V ;E).



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

The minimal monoids on the random graph

Theorem (Thomas ’96)
Let f : V → V , f /∈ Aut(G).
Then f generates one of the following:
I A constant operation
I eE

I eN

I −

I swc

We thus know the minimal closed monoids containing
Aut(G).
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The minimal clones on the random graph

Theorem (Bodirsky, P. ’09)
Let f : V n → V , f /∈ Aut(G).
Then f generates one of the following:
I One of the five minimal unary functions of Thomas’

theorem;
I One of 9 canonical binary injections.

We thus know the minimal closed clones containing
Aut(G).
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The minimal clones on the random graph

Theorem (Bodirsky, P. ’09)
Let f : V n → V , f /∈ Aut(G).
Then f generates one of the following:
I One of the five minimal unary functions of Thomas’

theorem;
I One of 9 canonical binary injections.

We thus know the minimal closed clones containing
Aut(G).
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Ramsey classes

Let S,H,P be structures in the same signature τ.

S → (H)P

means:

For any coloring of the copies of P in S with 2 colors

there exists a copy of H in S

such that the copies of P in H all have the same color.

Definition
A class C of structures of the same signature τ is called a
Ramsey class iff
for all H,P ∈ C there is S in C such that S → (H)P .
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Canonical functions on Ramsey structures
Let Γ now be an arbitrary structure.

Definition
f : Γ → Γ is canonical iff
for all tuples (x1, . . . , xn), (y1, . . . , yn) of the same type
(f (x1), . . . , f (xn)) and (f (y1), . . . , f (yn)) have the same
type too.

Observation. Let Γ be Ramsey, ordered, and
ω-categorical.
Let H be a finite structure in the age of Γ .
Then there is a copy of H in Γ on which f is canonical.

Thus: If Γ is in addition homogeneous in a finite
language, then any f : V → V generates a canonical
function, but it could be the identity.

We would like to fix c1, . . . , cn witnessing f /∈ Aut(Γ),
and have canonical behavior on (Γ, c1, . . . , cn).
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Adding constants to Ramsey classes

Problem
If Γ is Ramsey, is (Γ, c1, . . . , cn) still Ramsey?

Theorem (Kechris, Pestov, Todorcevic ’05)
An ordered homogeneous structure ∆ is Ramsey iff
its automorphism group is extremely amenable, i.e.,
it has a fixed point whenever it acts on a compact
topological space.

Easy observation (Tsankov ’10)
Every open subgroup of an extremely amenable group is
extremely amenable.

Corollary
If Γ is ordered, homogeneous, and Ramsey, then so is
(Γ, c1, . . . , cn).
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Minimal monoids above Ramsey structures

Thus:

If Γ is ordered Ramsey, f : Γ → Γ , and c1, . . . , cn ∈ Γ ,

then f generates a function canonical for (Γ, c1, . . . , cn)

which behaves like f on {c1, . . . , cn}.

Theorem (Bodirsky, P., Tsankov ’10)
Let Γ be a finite language reduct of a finite language
homogeneous ordered Ramsey structure. Then:

I There are finitely many minimal closed
supermonoids of End(Γ).

I Every closed supermonoid of End(Γ) contains a
minimal closed supermonoid of End(Γ).
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Minimal clones above Ramsey structures

Going to products of Γ , we get:

Theorem (Bodirsky, P., Tsankov ’10)
Let Γ be a finite language reduct of a finite language
homogeneous ordered Ramsey structure. Then:

I There are finitely many minimal closed clones
containing Pol(Γ). (Arity bound: |S2(Γ)|.)

I Every closed clone above Pol(Γ) contains a minimal
one.
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Going to products of Γ , we get:

Theorem (Bodirsky, P., Tsankov ’10)
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Schaefer’s theorem for graphs

Theorem (Bodirsky, P. ’10)
Let Γ be a reduct of the random graph. Then CSP(Γ ) is
either in P or NP-complete.

Method: Prove hardness for certain relations, and
tractability for certain polymorphisms.

If a reduct of G does not pp define any of the hard
relations, then it has polymorphisms violating them.

These polymorphisms can be assumed to be canonical.

Thus they can easily be handled, and one can show that
they produce one of the tractable polymorphisms.



Constraint
satisfaction with
homogeneous

templates

Michael Pinsker

Constraint
satisfaction
Homomorphism problems

The logical perspective

Computational complexity

The algebraic
approach
Polymorphisms

Term conditions

The tractability conjecture

ω-categorical
templates
Ryll-Nardzewski
generalized

Boolean-SAT

Graph-SAT

Temp-SAT

Ramsey structures
Reducts

Groups, Monoids, Clones

Canonical functions

Topological dynamics

Minimal clones

Applications

Summary

The theorem in more detail

Theorem
Let Γ be a reduct of the random graph. Then:

I Either Γ has one out of 17 canonical polymorphisms,
and CSP(Γ ) is tractable,

I or CSP(Γ ) is NP-complete.

Theorem
Let Γ be a reduct of the random graph. Then:

I Either Γ pp-defines one out of 4 hard relations,
and CSP(Γ ) is NP-complete,

I or CSP(Γ ) is tractable.
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Examples of tractable polymorphisms
Theorem
The following 17 distinct clones are precisely the minimal tractable
local clones containing Aut(G):

1. The clone generated by a constant operation.

2. The clone generated by a balanced binary injection of type max.

3. The clone generated by a balanced binary injection of type min.

4. The clone generated by an E-dominated binary injection of type
max.

5. The clone generated by an N-dominated binary injection of type
min.

6. The clone generated by a function of type majority which is
hyperplanely balanced and of type projection.

7. The clone generated by a function of type majority which is
hyperplanely E-constant.

8. The clone generated by a function of type majority which is
hyperplanely N-constant.

9. The clone generated by a function of type majority which is
hyperplanely of type max and E-dominated.

10. The clone generated by a function of type majority which is
hyperplanely of type min and N-dominated.

11. The clone generated by a function of type minority which is
hyperplanely balanced and of type projection.

12. The clone generated by a function of type minority which is
hyperplanely of type projection and E-dominated.

13. The clone generated by a function of type minority which is
hyperplanely of type projection and N-dominated.

14. The clone generated by a function of type minority which is
hyperplanely of type xnor and E-dominated.

15. The clone generated by a function of type minority which is
hyperplanely of type xor and N-dominated.

16. The clone generated by a binary injection which is E-constant.

17. The clone generated by a binary injection which is N-constant.
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Classification
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The Meta Problem

Meta-Problem of Graph-SAT(Ψ)
INPUT: A finite set Ψ of graph formulas.

QUESTION: Is Graph-SAT(Ψ) in P?

Theorem
The Meta-Problem of Graph-SAT(Ψ) is decidable.
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Temp-SAT

Theorem (Bodirsky and Kara ’08)
Let Γ be a reduct of the order of the rationals. Then Γ
either has one out of 9 binary canonical polymorphisms,
and CSP(Γ ) is in P, or CSP(Γ ) is NP-complete.

Method: Prove hardness for certain relations, and
tractability for certain polymorphisms.

If a reduct of the order does not pp define any of the hard
relations, then it has polymorphisms violating them.

These polymorphisms can be assumed to be canonical.

Thus they can easily be handled, and one can show that
they produce one of the tractable polymorphisms.
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Classification
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Boolean-SAT
Theorem (Schaefer ’78)
Let Γ be a structure on a Boolean domain. Then Γ either
has one of the polymorphisms listed below, and CSP(Γ ) is
in P, or CSP(Γ ) is NP-complete.

I Constant
I Max
I Min
I Majority
I Minority

Proof: Any operation which depends on at least two
variables generates Max, Min, Majority, or Minority. If all
polymorphisms of Γ depend on at most one variable, and
no polymorphism is constant, then the polymorphisms
preserve
{(1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1)},
which is hard.
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Summary

I CSPs model many real computational problems from
theoretical computer science.

I Universal algebra useful in classifications since
Pol(Γ) captures complexity.

I Many real computational problems are infinite
domain CSPs.

I On infinite domains, add model theory + Ramsey
theory to study polymorphisms. They then become
functions on types, hence finite.
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