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Part I

Cloning is fun
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The organizers of the workshop

“
Because most participants are [...] you can assume basic
knowledge of algebra and CSP over a finite set, namely

pp-definitions, polymorphisms, the Galois correspondence
the complexity of the CSP depends only on the variety generated
by the polymorphism algebra, wlog idempotent
the dichotomy conjecture

”
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Cloning finite sheep

Let Γ be a finite structure. Let Pol (Γ) be its polymorphism clone.

Γ Pol(Γ)

Let A(Pol(Γ)) be the
abstraction of Pol(Γ).

Equations→ in P
No equations→ NP-complete

A(Pol(Γ))
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Let Γ be an infinite structure. For nice Γ:

Γ Pol(Γ)

Let A(Pol(Γ)) be the
abstraction of Pol(Γ).

Abstractions seem possible.
Reduction to the finite?
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Science fiction

Wanted: Reduction of a certain class of infinite CSPs to finite CSPs.
This involves:

Model theory
(pp-definability, homogeneous templates Γ)
Ramsey theory
(analyzing polymorphisms, make them finite for algorithms)
Topological dynamics
(topological automorphism groups and clones)
Set theory
(automatic continuity: topological clones vs. abstract clones)
Universal algebra
(equations)
Complexity theory
(algorithms)

It might never work out. But imagine it does...
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(We pass on to the next part.)
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Part II

Do infinite sheep exist?
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Infinite sheep in nature

Digraph acyclicity
Input: A finite directed graph (V ; E)

Question: Is (V ; E) acyclic?

Is CSP: template is (Q;<)

Betweenness
Input: A finite set of triples of variables (x , y , z)

Question: Is there a weak linear order on the variables such that
for each triple either x < y < z or z < y < x?

Is a CSP: template is (Q; {(x , y , z) | (x < y < z) ∨ (z < y < x)})
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More infinite sheep in nature

Diophantine
Input: A finite system of equations using =,+, ·,1

Question: Is there a solution in Z?

Is a CSP: template is Γ := (Z; 1,+, ·,=)

Kn-freeness
Input: A finite undirected graph

Question: Is the graph Kn-free?
Is a CSP: template is the homogeneous universal Kn-free graph
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Even more infinite sheep in nature

Klagenfurt sheep
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The Graph Satisfiability Problem

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)
Let Ψ be a finite set of quantifier-free {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a graph?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Graph-SAT(Ψ) tractable?
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Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.
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Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which is

homogeneous, i.e.,
For all finite A,B ⊆ G, for all isomorphisms i : A→ B
there exists α ∈ Aut(G) extending i .

universal, i.e., contains all finite (even countable) graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.
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Graph-SAT as CSP

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

So Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.

Could have used any universal graph.

Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of the random graph.

Making the infinite finite Michael Pinsker (Paris 7)



Graph-SAT as CSP

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

So Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.

Could have used any universal graph.

Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of the random graph.

Making the infinite finite Michael Pinsker (Paris 7)



Graph-SAT as CSP

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

So Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.

Could have used any universal graph.

Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of the random graph.

Making the infinite finite Michael Pinsker (Paris 7)



Graph-SAT as CSP

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

So Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.

Could have used any universal graph.

Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of the random graph.

Making the infinite finite Michael Pinsker (Paris 7)



Graph-SAT as CSP

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

So Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.

Could have used any universal graph.

Classifying the complexity of all Graph-SAT problems is the same as
classifying the complexity of CSPs of all reducts of the random graph.

Making the infinite finite Michael Pinsker (Paris 7)



The Boolean satisfiability problem

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:

A finite set W of propositional variables, and
statements φ1, . . . , φn about the variables in W , where each φi is
taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Boolean-SAT(Ψ) tractable?
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Boolean-SAT as CSP

For a Boolean formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ {0,1}n : ψ(a1, . . . ,an)}.

For a set Ψ of Boolean formulas, define a structure

ΓΨ := ({0,1}; (Rψ : ψ ∈ Ψ)).

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Boolean-SAT(Ψ) has a positive solution↔
the sentence ∃w1, . . . ,wm.

∧
i φi holds in ΓΨ.

So Boolean-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.
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Temporal constraints

Let < be a binary relation symbol.
(Imagine: linear order relation.)
Let Ψ be a finite set of quantifier-free {<}-formulas.

Computational problem: Temp-SAT(Ψ)
INPUT:

A finite set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is
∧

1≤i≤n φi satisfiable in a linear order?

Computational complexity depends on Ψ. Always in NP.

Question
For which Ψ is Temp-SAT(Ψ) tractable?
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Temporal formulas and reducts of (Q;<)

Let (Q;<) denote the order of the rationals.

For a {<}-formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ Qn : ψ(a1, . . . ,an)}.

For a set Ψ of {<}-formulas, define a structure

ΓΨ := (Q; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of (Q;<).

Temp-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.

Could have used any infinite linear order, but (Q;<) is homogeneous.
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Three classification theorems

All problems Boolean-SAT(Ψ), Graph-SAT(Ψ), and Temp-SAT(Ψ) are
either in P or NP-complete.

Given Ψ, we can decide in which class the problem falls.

Boolean-SAT: Schaefer (1978)

Temp-SAT: Bodirsky and Kára (2007)

Graph-SAT: Bodirsky and MP (2010)
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Homogeneous structures

Graph-SAT(Ψ): Is there a finite graph such that... (constraints)

Temp-SAT(Ψ): Is there a linear order such that...

The classes of finite graphs and linear orders are
amalgamation classes.

A

D

CB
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Fraïssé’s theorem

Theorem (Fraïssé)
If C is a countable class of structures closed under substructures
which has amalgamation, then there exists a unique
homogeneous structure with age C.
The age of a homogeneous structure is an amalgamation class.

Further amalgamation classes.

Partial orders
Lattices (Jónsson)
Distributive lattices (Pierce)
Trivial lattices (Day, Ježek)
Metric spaces with rational distances
Tournaments
Henson digraphs (forbidden tournaments)

Homogeneous digraphs classified by Cherlin.
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Part III

Making the infinite finite
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Reducts of homogeneous structures

Let ∆ be a countable homogeneous relational structure
in a finite language. We call ∆ the base structure.

Definition
A reduct of ∆ is a structure with a first-order definition in ∆.

For us it makes sense to consider two reducts Γ, Γ′ of ∆ equivalent iff
Γ has a pp-definition from Γ′ and vice-versa.

We say that Γ and Γ′ are pp-interdefinable.

The relation “Γ is pp-definable in Γ′” is a quasiorder on the reducts.

We factor this quasiorder
by the equivalence relation of pp-interdefinability,
and obtain a complete lattice.
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Reducts and closed clones

Problem
Classify the reducts of ∆ up to pp-interdefinability.

Definition
A clone C on D is closed iff for each n ≥ 1, the set of its n-ary functions
C ∩ DDn

it is a closed subset of the Baire space DDn
.

Theorem (Bodirsky, Nešetřil ’03)
Let ∆ be ω-categorical (e.g., homogeneous in a finite language). Then

Γ 7→ Pol(Γ)

is a one-to-one correspondence between
the primitive positive closed reducts of ∆ and
the closed clones containing Aut(∆).
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Richard’s friends

We thus have to understand the closed clones ⊇ Aut(∆).

Theorem (Bodirsky, Chen, MP ’08)

The structure ∆ := (D; =) has 2ℵ0 reducts up to primitive positive
interdefinability.

Where is the border between NP-completeness and tractability?

Are we in NP at all?
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Finite boundedness

There exist 2ℵ0 non-isomorphic homogeneous digraphs.

Easy to see that they have distinct CSPs.
Thus there exist homogeneous digraphs with undecidable CSP.

Definition
A class C of τ -structures is finitely bounded iff
there exists a finite set F of τ -structures such that
for all τ -structures A (A ∈ C iff no F ∈ F embeds into C).
F... set of “forbidden substructures”

Examples
Partial orders
Lattices
Graphs
Kn-free graphs

Making the infinite finite Michael Pinsker (Paris 7)



Finite boundedness

There exist 2ℵ0 non-isomorphic homogeneous digraphs.
Easy to see that they have distinct CSPs.

Thus there exist homogeneous digraphs with undecidable CSP.

Definition
A class C of τ -structures is finitely bounded iff
there exists a finite set F of τ -structures such that
for all τ -structures A (A ∈ C iff no F ∈ F embeds into C).
F... set of “forbidden substructures”

Examples
Partial orders
Lattices
Graphs
Kn-free graphs

Making the infinite finite Michael Pinsker (Paris 7)



Finite boundedness

There exist 2ℵ0 non-isomorphic homogeneous digraphs.
Easy to see that they have distinct CSPs.
Thus there exist homogeneous digraphs with undecidable CSP.

Definition
A class C of τ -structures is finitely bounded iff
there exists a finite set F of τ -structures such that
for all τ -structures A (A ∈ C iff no F ∈ F embeds into C).
F... set of “forbidden substructures”

Examples
Partial orders
Lattices
Graphs
Kn-free graphs

Making the infinite finite Michael Pinsker (Paris 7)



Finite boundedness

There exist 2ℵ0 non-isomorphic homogeneous digraphs.
Easy to see that they have distinct CSPs.
Thus there exist homogeneous digraphs with undecidable CSP.

Definition
A class C of τ -structures is finitely bounded iff
there exists a finite set F of τ -structures such that
for all τ -structures A (A ∈ C iff no F ∈ F embeds into C).
F... set of “forbidden substructures”

Examples
Partial orders
Lattices
Graphs
Kn-free graphs

Making the infinite finite Michael Pinsker (Paris 7)



Finite boundedness

There exist 2ℵ0 non-isomorphic homogeneous digraphs.
Easy to see that they have distinct CSPs.
Thus there exist homogeneous digraphs with undecidable CSP.

Definition
A class C of τ -structures is finitely bounded iff
there exists a finite set F of τ -structures such that
for all τ -structures A (A ∈ C iff no F ∈ F embeds into C).
F... set of “forbidden substructures”

Examples

Partial orders
Lattices
Graphs
Kn-free graphs

Making the infinite finite Michael Pinsker (Paris 7)



Finite boundedness

There exist 2ℵ0 non-isomorphic homogeneous digraphs.
Easy to see that they have distinct CSPs.
Thus there exist homogeneous digraphs with undecidable CSP.

Definition
A class C of τ -structures is finitely bounded iff
there exists a finite set F of τ -structures such that
for all τ -structures A (A ∈ C iff no F ∈ F embeds into C).
F... set of “forbidden substructures”

Examples
Partial orders

Lattices
Graphs
Kn-free graphs

Making the infinite finite Michael Pinsker (Paris 7)



Finite boundedness

There exist 2ℵ0 non-isomorphic homogeneous digraphs.
Easy to see that they have distinct CSPs.
Thus there exist homogeneous digraphs with undecidable CSP.

Definition
A class C of τ -structures is finitely bounded iff
there exists a finite set F of τ -structures such that
for all τ -structures A (A ∈ C iff no F ∈ F embeds into C).
F... set of “forbidden substructures”

Examples
Partial orders
Lattices

Graphs
Kn-free graphs

Making the infinite finite Michael Pinsker (Paris 7)



Finite boundedness

There exist 2ℵ0 non-isomorphic homogeneous digraphs.
Easy to see that they have distinct CSPs.
Thus there exist homogeneous digraphs with undecidable CSP.

Definition
A class C of τ -structures is finitely bounded iff
there exists a finite set F of τ -structures such that
for all τ -structures A (A ∈ C iff no F ∈ F embeds into C).
F... set of “forbidden substructures”

Examples
Partial orders
Lattices
Graphs

Kn-free graphs

Making the infinite finite Michael Pinsker (Paris 7)



Finite boundedness

There exist 2ℵ0 non-isomorphic homogeneous digraphs.
Easy to see that they have distinct CSPs.
Thus there exist homogeneous digraphs with undecidable CSP.

Definition
A class C of τ -structures is finitely bounded iff
there exists a finite set F of τ -structures such that
for all τ -structures A (A ∈ C iff no F ∈ F embeds into C).
F... set of “forbidden substructures”

Examples
Partial orders
Lattices
Graphs
Kn-free graphs

Making the infinite finite Michael Pinsker (Paris 7)



NP

Observation
If a homogeneous structure in a finite language is finitely bounded,
then the CSP of its reducts is in NP.

Still, how to cope with infinite polymorphisms?

Use Ramsey theory to make them finite.
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Canonical functions on the Random graph

Let G = (V ; E) be the random graph.

Definition. f : G→ G is canonical iff

for all x , y ,u, v ∈ V ,
if (x , y) and (u, v) have the same type in G,
then (f (x), f (y)) and (f (u), f (v)) have the same type in G.

Examples.

Automorphisms / Embeddings are canonical.

Constant functions are canonical.

Homomorphisms are not necessarily canonical.

− is canonical.

eE and eN are canonical.
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Finding canonical behaviour

The class of finite graphs has the following Ramsey property:

For all graphs H
there exists a graph S such that
if the edges of S are colored with 3 colors,
then there is a copy of H in S
on which the coloring is constant.

Given f : G→ G, color the edges of G
according to the type of their image: 3 possibilities.

Same for non-edges.

Conclusion: Every finite graph has a copy in G on which f is
canonical.
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Patterns in functions on the random graph

A canonical function f : G→ G induces a function
f ′ : {E ,N,=} → {E ,N,=} (i.e., a function on the 2-types of G).

Converse does not hold.

The following are all possibilities of canonical functions:

Turning everything into edges (eE )
turning everything into non-edges (eN)

behaving like −
being constant
behaving like an automorphism.

Given any f : G→ G, we know that one of these behaviors
appears for arbitrary finite subgraphs of G.

Problem: Keeping some information on f when canonizing.
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Adding constants

Let f : G→ G.
If f violates a relation R, then there are c1, . . . , cn ∈ V witnessing this.

Fact.
The structure (V ; E , c1, . . . , cn) has that Ramsey property, too.

Consider f as a function from (V ; E , c1, . . . , cn) to (V ; E).
Again, f is canonical on arbitrarily large finite substructures of
(V ; E , c1, . . . , cn).
We can assume that it shows the same behavior on all these
substructures.

By topological closure, f generates a function which:

behaves like f on {c1, . . . , cn}, and
is canonical as a function from (V ; E , c1, . . . , cn) to (V ; E).
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The minimal clones on the random graph

Theorem (Bodirsky, MP ’10)

Let f be a finitary operation on G which “is” not an automorphism.
Then f generates one of the following:

A constant operation
eE

eN

−
swc

One of 9 canonical binary injections.

We thus know the minimal closed clones containing Aut(G).

More involved argument: Extend G by a random dense linear order.
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Ramsey classes

Let S,H,P be structures in the same signature τ .

S → (H)P

means:

For any coloring of the copies of P in S with 2 colors
there exists a copy of H in S
such that the copies of P in H all have the same color.

Definition
A class C of τ -structures is called a Ramsey class iff
for all H,P ∈ C there exists S in C such that S → (H)P .
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Canonical functions on Ramsey structures

Let ∆ now be an arbitrary structure.

Definition
f : ∆→ ∆ is canonical iff
for all tuples (x1, . . . , xn), (y1, . . . , yn) of the same type
(f (x1), . . . , f (xn)) and (f (y1), . . . , f (yn)) have the same type too.

Observation. If ∆ is
Ramsey
ordered
ω-categorical,

then all finite substructures of ∆ have a copy in ∆
on which f is canonical.

Thus: If ∆ is in addition homogeneous in a finite language, then any
f : ∆→ ∆ generates a canonical function, but it could be the identity.
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What we would like to do...

We would like to fix c1, . . . , cn ∈ ∆ witnessing
that f does something interesting (e.g., violate a certain relation),

and have canonical behavior of f as a function
from (∆, c1, . . . , cn) to ∆.

Why don’t you just do it?
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Adding constants to Ramsey structures

Problem
If ∆ is Ramsey, is (∆, c1, . . . , cn) still Ramsey?

Theorem (Kechris, Pestov, Todorcevic ’05)
An ordered homogeneous structure is Ramsey iff
its automorphism group is extremely amenable, i.e.,
it has a fixed point whenever it acts on a compact Hausdorff space.

Observation
Every open subgroup of an extremely amenable group
is extremely amenable.

Corollary

If ∆ is ordered, homogeneous, and Ramsey, then so is (∆, c1, . . . , cn).
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Canonizing functions on Ramsey structures

Proposition

(new proof at Fields, July 2011!)

If ∆ is ordered Ramsey homogeneous finite language, f : ∆k → ∆,
and c1, . . . , cn ∈ ∆, then f generates a function which

is canonical as a function from (∆, c1, . . . , cn)k to ∆

behaves like f on {c1, . . . , cn}.

Set S := {g : ∆k → ∆ | g agrees with f on {c1, . . . , cn}}.

Set g ∼ h iff there is α ∈ Aut(∆) such that g = αh.

Fact. S/ ∼ is compact.

Let Aut(∆, c1, . . . , cn)k act on S/ ∼ by

(β1, . . . , βk )([g(x1, . . . , xk )]∼) := [g(β1(x1), . . . , βk (xk ))]∼

The continuous action has a fixed point [h(x1, . . . , xk )]∼.

Any element of the fixed point is canonical. �
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Minimal clones above Ramsey structures

Theorem (Bodirsky, MP, Tsankov ’10)
Let Γ be a reduct of a finite language homogeneous ordered Ramsey
structure ∆. Then:

Every minimal closed superclone of Pol(Γ) is generated by such a
canonical function.
If Γ has a finite language, then there are finitely many minimal
closed superclones of Pol(Γ).
(Arity bound!)
Every closed superclone of Pol(Γ) contains a minimal closed
superclone of Pol(Γ).
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The Graph-SAT dichotomy visualized
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The Graph-SAT dichotomy in more detail

Theorem (Bodirsky, MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ has one out of 17 canonical polymorphisms,
and CSP(Γ) is tractable,

or CSP(Γ) is NP-complete.

Theorem (Bodirsky, MP ’10)
Let Γ be a reduct of the random graph. Then:

Either Γ pp-defines one out of 4 hard relations,
and CSP(Γ) is NP-complete,

or CSP(Γ) is tractable.
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Theorem
The following 17 distinct clones are precisely the minimal tractable local clones
containing Aut(G):

1 The clone generated by a constant operation.

2 The clone generated by a balanced binary injection of type max.

3 The clone generated by a balanced binary injection of type min.

4 The clone generated by an E-dominated binary injection of type max.

5 The clone generated by an N-dominated binary injection of type min.

6 The clone generated by a function of type majority which is hyperplanely
balanced and of type projection.

7 The clone generated by a function of type majority which is hyperplanely
E-constant.

8 The clone generated by a function of type majority which is hyperplanely
N-constant.

9 The clone generated by a function of type majority which is hyperplanely of type
max and E-dominated.

10 The clone generated by a function of type majority which is hyperplanely of type
min and N-dominated.

11 The clone generated by a function of type minority which is hyperplanely
balanced and of type projection.

12 The clone generated by a function of type minority which is hyperplanely of type
projection and E-dominated.

13 The clone generated by a function of type minority which is hyperplanely of type
projection and N-dominated.

14 The clone generated by a function of type minority which is hyperplanely of type
xnor and E-dominated.

15 The clone generated by a function of type minority which is hyperplanely of type
xor and N-dominated.

16 The clone generated by a binary injection which is E-constant.

17 The clone generated by a binary injection which is N-constant.

Making the infinite finite Michael Pinsker (Paris 7)



The Meta Problem

Meta-Problem of Graph-SAT(Ψ)
INPUT: A finite set Ψ of graph formulas.

QUESTION: Is Graph-SAT(Ψ) in P?

Theorem (Bodirsky, MP ’10)
The Meta-Problem of Graph-SAT(Ψ) is decidable.
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Part IV

The past and the future

Making the infinite finite Michael Pinsker (Paris 7)



The Past: What we can do

Climb up the clone lattice
Violate (hard) relations canonically
Decide pp definability:

Theorem (Bodirsky, MP, Tsankov ’10)
Let ∆ be

ordered Ramsey
homogeneous
with finite language
finitely bounded.

Then the following problem is decidable:

INPUT: Two finite language reducts Γ1, Γ2 of ∆.
QUESTION: Is Γ1 primitive positive definable in Γ2?
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The Future
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The Future

1
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The Future

Generalize setting of method

Is every structure ∆ which is

homogeneous
with finite language
finitely bounded

a reduct of a structure ∆′ which is

ordered Ramsey
homogeneous
with finite language
finitely bounded.

?
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The Future

2
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The Future

Apply method

Random partial order
Random tournament
Random Kn-free graph
Atomless Boolean algebra
Random lattice
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The Future

3
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The Future

Develop method

Abstract cloning→ Manuel’s talk
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T H A N K

Y O U
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