Making the Infinite Finite: Polymorphisms on Ramsey structures

Michael Pinsker

Université Denis Diderot - Paris 7 (60%) Technische Universität Wien (30%) Hebrew University of Jerusalem (10%)

Workshop on Algebra and CSPs Fields Institute, Toronto, 2011

Outline

Part I

The global picture

■ Part II

Infinite template CSPs are natural Homogeneous structures

■ Part III

Infinite polymorphisms \rightarrow finite polymorphisms Ramsey theory

Part IV

The past and the future

"I liked the doors ... I do not know what they mean, and they confused me, but they look nice."

Welcome to the insane world of MP's talks

Welcome to the insame world/of/MP/s/talks/ madhouse of infinity

Part I

Cloning is fun

"

Because most participants are [...]

"

Because most participants are [...] you can assume basic knowledge of algebra and CSP over a finite set, namely

"

Because most participants are [...] you can assume basic knowledge of algebra and CSP over a finite set, namely

- pp-definitions, polymorphisms, the Galois correspondence
- the complexity of the CSP depends only on the variety generated by the polymorphism algebra, wlog idempotent
- the dichotomy conjecture

"

Let Γ be a finite structure.

Let Γ be a finite structure.

Let Γ be a finite structure. Let Pol (Γ) be its polymorphism clone.

Γ

Let Γ be a finite structure. Let Pol (Γ) be its polymorphism clone.

Let Γ be a finite structure. Let Pol (Γ) be its polymorphism clone.

Let $\mathfrak{A}(\mathsf{Pol}(\Gamma))$ be the abstraction of $\mathsf{Pol}(\Gamma)$.

Pol(Γ)

Let Γ be a finite structure. Let Pol (Γ) be its polymorphism clone.

I

 $Pol(\Gamma)$

Let $\mathfrak{A}(\mathsf{Pol}(\Gamma))$ be the abstraction of $\mathsf{Pol}(\Gamma)$.

 $\mathfrak{A}(\mathsf{Pol}(\Gamma))$

Let Γ be a finite structure. Let Pol (Γ) be its polymorphism clone.

I

 $Pol(\Gamma)$

Let $\mathfrak{A}(\mathsf{Pol}(\Gamma))$ be the abstraction of $\mathsf{Pol}(\Gamma)$.

 $\mathfrak{A}(\mathsf{Pol}(\Gamma))$

 $\label{eq:problem} \mbox{Equations} \rightarrow \mbox{in P} \\ \mbox{No equations} \rightarrow \mbox{NP-complete}$

Let Γ be an infinite structure.

Let Γ be an infinite structure.

Let Γ be an infinite structure.

For nice Γ:

Let Γ be an infinite structure.

For nice Γ:

 $\mathsf{Pol}(\Gamma)$

Let Γ be an infinite structure.

Γ

Let $\mathfrak{A}(\mathsf{Pol}(\Gamma))$ be the abstraction of $\mathsf{Pol}(\Gamma)$.

For nice Γ:

 $\mathsf{Pol}(\Gamma)$

Let Γ be an infinite structure.

Γ

For nice Γ:

 $Pol(\Gamma)$

Let $\mathfrak{A}(\mathsf{Pol}(\Gamma))$ be the abstraction of $\mathsf{Pol}(\Gamma)$.

 $\mathfrak{A}(\mathsf{Pol}(\Gamma))$

Let Γ be an infinite structure.

Γ

For nice Γ:

 $Pol(\Gamma)$

Let $\mathfrak{A}(\mathsf{Pol}(\Gamma))$ be the abstraction of $\mathsf{Pol}(\Gamma)$.

 $\mathfrak{A}(\mathsf{Pol}(\Gamma))$

Let Γ be an infinite structure.

Γ

For nice Γ:

 $Pol(\Gamma)$

Let $\mathfrak{A}(\mathsf{Pol}(\Gamma))$ be the abstraction of $\mathsf{Pol}(\Gamma)$.

 $\mathfrak{A}(\mathsf{Pol}(\Gamma))$

Abstractions seem possible. Reduction to the finite?

Science fiction

Science fiction

Wanted: Reduction of a certain class of infinite CSPs to finite CSPs. This involves:

- Model theory (pp-definability, homogeneous templates Γ)
- Ramsey theory (analyzing polymorphisms, make them finite for algorithms)
- Topological dynamics (topological automorphism groups and clones)
- Set theory (automatic continuity: topological clones vs. abstract clones)
- Universal algebra (equations)
- Complexity theory (algorithms)

Science fiction

Wanted: Reduction of a certain class of infinite CSPs to finite CSPs. This involves:

- Model theory (pp-definability, homogeneous templates Γ)
- Ramsey theory (analyzing polymorphisms, make them finite for algorithms)
- Topological dynamics (topological automorphism groups and clones)
- Set theory (automatic continuity: topological clones vs. abstract clones)
- Universal algebra (equations)
- Complexity theory (algorithms)

It might never work out. But imagine it does...

(We pass on to the next part.)

Part II

Do infinite sheep exist?

Digraph acyclicity

Input: A finite directed graph (V; E)

Question: Is (V; E) acyclic?

Digraph acyclicity

Input: A finite directed graph (V; E)

Question: Is (V; E) acyclic?

Is CSP: template is $(\mathbb{Q}; <)$

Digraph acyclicity

Input: A finite directed graph (V; E)

Question: Is (V; E) acyclic? Is CSP: template is $(\mathbb{Q}; <)$

Betweenness

Input: A finite set of triples of variables (x, y, z)

Question: Is there a weak linear order on the variables such that

for each triple either x < y < z or z < y < x?

Digraph acyclicity

Input: A finite directed graph (V; E)

Question: Is (V; E) acyclic? Is CSP: template is $(\mathbb{Q}; <)$

Betweenness

Input: A finite set of triples of variables (x, y, z)

Question: Is there a weak linear order on the variables such that

for each triple either x < y < z or z < y < x?

Is a CSP: template is $(\mathbb{Q}; \{(x, y, z) \mid (x < y < z) \lor (z < y < x)\})$

Diophantine

Input: A finite system of equations using $=, +, \cdot, 1$

Question: Is there a solution in \mathbb{Z} ?

Diophantine

```
Input: A finite system of equations using =, +, \cdot, 1
```

Question: Is there a solution in \mathbb{Z} ?

Is a CSP: template is $\Gamma := (\mathbb{Z}; 1, +, \cdot, =)$

Diophantine

```
Input: A finite system of equations using =,+,\cdot,1
```

Question: Is there a solution in \mathbb{Z} ?

Is a CSP: template is $\Gamma := (\mathbb{Z}; 1, +, \cdot, =)$

K_n-freeness

Input: A finite undirected graph

Question: Is the graph K_n -free?

Diophantine

Input: A finite system of equations using $=, +, \cdot, 1$

Question: Is there a solution in \mathbb{Z} ?

Is a CSP: template is $\Gamma := (\mathbb{Z}; 1, +, \cdot, =)$

*K*_n-freeness

Input: A finite undirected graph

Question: Is the graph K_n -free?

Is a CSP: template is the homogeneous universal K_n -free graph

Even more infinite sheep in nature

Even more infinite sheep in nature

Klagenfurt sheep

Let *E* be a binary relation symbol.

(Imagine: edge relation of an undirected graph.)

Let Ψ be a finite set of quantifier-free $\{E\}$ -formulas.

Let *E* be a binary relation symbol.

(Imagine: edge relation of an undirected graph.)

Let Ψ be a finite set of quantifier-free $\{E\}$ -formulas.

Computational problem: Graph-SAT(Ψ)

INPUT:

- A finite set *W* of variables (vertices), and
- statements ϕ_1, \dots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable in a graph?

Let *E* be a binary relation symbol.

(Imagine: edge relation of an undirected graph.)

Let Ψ be a finite set of quantifier-free $\{E\}$ -formulas.

Computational problem: Graph-SAT(Ψ)

INPUT:

- A finite set *W* of variables (vertices), and
- statements ϕ_1, \dots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 < i < n} \phi_i$ satisfiable in a graph?

Computational complexity depends on Ψ . Always in NP.

Let *E* be a binary relation symbol.

(Imagine: edge relation of an undirected graph.)

Let Ψ be a finite set of quantifier-free $\{E\}$ -formulas.

Computational problem: Graph-SAT(Ψ)

INPUT:

- A finite set *W* of variables (vertices), and
- statements ϕ_1, \ldots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ.

QUESTION: Is $\bigwedge_{1 < i < n} \phi_i$ satisfiable in a graph?

Computational complexity depends on Ψ . Always in NP.

Question

For which Ψ is Graph-SAT(Ψ) tractable?

Example 1 Let Ψ_1 only contain

$$\psi_{1}(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)).$$

Example 1 Let Ψ_1 only contain

$$\psi_{1}(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)).$$

Graph-SAT(Ψ_1) is NP-complete.

Example 1 Let Ψ_1 only contain

$$\psi_{1}(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)).$$

Graph-SAT(Ψ_1) is NP-complete.

Example 2 Let Ψ_2 only contain

$$\psi_{2}(x,y,z) := (E(x,y) \land \neg E(y,z) \land \neg E(x,z))$$

$$\lor (\neg E(x,y) \land E(y,z) \land \neg E(x,z))$$

$$\lor (\neg E(x,y) \land \neg E(y,z) \land E(x,z))$$

$$\lor (E(x,y) \land E(y,z) \land E(x,z)).$$

Example 1 Let Ψ_1 only contain

$$\psi_1(x, y, z) := (E(x, y) \land \neg E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land E(y, z) \land \neg E(x, z))$$

$$\lor (\neg E(x, y) \land \neg E(y, z) \land E(x, z)).$$

Graph-SAT(Ψ_1) is NP-complete.

Example 2 Let Ψ_2 only contain

$$\psi_{2}(x,y,z) := (E(x,y) \land \neg E(y,z) \land \neg E(x,z))$$

$$\lor (\neg E(x,y) \land E(y,z) \land \neg E(x,z))$$

$$\lor (\neg E(x,y) \land \neg E(y,z) \land E(x,z))$$

$$\lor (E(x,y) \land E(y,z) \land E(x,z)).$$

Graph-SAT(Ψ_2) is in P.

Let G = (V; E) denote the *random graph*, i.e., the unique countably infinite graph which is

Let G = (V; E) denote the *random graph*, i.e., the unique countably infinite graph which is

■ homogeneous, i.e., For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in \operatorname{Aut}(G)$ extending i.

Let G = (V; E) denote the *random graph*, i.e., the unique countably infinite graph which is

- homogeneous, i.e., For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in \operatorname{Aut}(G)$ extending i.
- *universal*, i.e., contains all finite (even countable) graphs.

Let G = (V; E) denote the *random graph*, i.e., the unique countably infinite graph which is

- homogeneous, i.e., For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in \text{Aut}(G)$ extending i.
- *universal*, i.e., contains all finite (even countable) graphs.

For a graph formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1, \ldots, a_n) \in V^n : \psi(a_1, \ldots, a_n)\}.$$

Let G = (V; E) denote the *random graph*, i.e., the unique countably infinite graph which is

- homogeneous, i.e., For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in \operatorname{Aut}(G)$ extending i.
- universal, i.e., contains all finite (even countable) graphs.

For a graph formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1, \ldots, a_n) \in V^n : \psi(a_1, \ldots, a_n)\}.$$

For a set Ψ of graph formulas, define a structure

$$\Gamma_{\Psi} := (V; (R_{\psi} : \psi \in \Psi)).$$

Let G = (V; E) denote the *random graph*, i.e., the unique countably infinite graph which is

- homogeneous, i.e., For all finite $A, B \subseteq G$, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in \operatorname{Aut}(G)$ extending i.
- *universal*, i.e., contains all finite (even countable) graphs.

For a graph formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1, \ldots, a_n) \in V^n : \psi(a_1, \ldots, a_n)\}.$$

For a set Ψ of graph formulas, define a structure

$$\Gamma_{\Psi} := (V; (R_{\psi} : \psi \in \Psi)).$$

 Γ_{Ψ} is a *reduct of* the random graph, i.e., a structure with a first-order definition in *G*.

An instance

- $W = \{w_1, ..., w_m\}$
- \blacksquare ϕ_1, \ldots, ϕ_n

of Graph-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \ldots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

An instance

- $W = \{w_1, ..., w_m\}$
- $\blacksquare \phi_1, \ldots, \phi_n$

of Graph-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \dots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

So Graph-SAT(Ψ) and CSP(Γ_{Ψ}) are one and the same problem.

An instance

- $W = \{w_1, ..., w_m\}$
- $\blacksquare \phi_1, \ldots, \phi_n$

of Graph-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \dots, w_m. \bigwedge_i \phi_i$ holds in Γ_{Ψ} .

So Graph-SAT(Ψ) and CSP(Γ_{Ψ}) are one and the same problem.

Could have used any universal graph.

An instance

- $W = \{w_1, ..., w_m\}$
- \blacksquare ϕ_1,\ldots,ϕ_n

of Graph-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \dots, w_m$. $\bigwedge_i \phi_i$ holds in Γ_{Ψ} .

So Graph-SAT(Ψ) and CSP(Γ_{Ψ}) are one and the same problem.

Could have used any universal graph.

Classifying the complexity of all Graph-SAT problems is the same as classifying the complexity of CSPs of all reducts of the random graph.

Let Ψ be a finite set of propositional formulas.

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)

INPUT:

- A finite set *W* of propositional variables, and
- statements ϕ_1, \dots, ϕ_n about the variables in W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable?

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)

INPUT:

- A finite set *W* of propositional variables, and
- statements ϕ_1, \dots, ϕ_n about the variables in W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable?

Computational complexity depends on Ψ . Always in NP.

The Boolean satisfiability problem

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)

INPUT:

- A finite set W of propositional variables, and
- statements ϕ_1, \dots, ϕ_n about the variables in W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable?

Computational complexity depends on Ψ . Always in NP.

Question

For which Ψ is Boolean-SAT(Ψ) tractable?

For a Boolean formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1, \dots, a_n) \in \{0, 1\}^n : \psi(a_1, \dots, a_n)\}.$$

For a Boolean formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1, \ldots, a_n) \in \{0, 1\}^n : \psi(a_1, \ldots, a_n)\}.$$

For a set Ψ of Boolean formulas, define a structure

$$\Gamma_{\Psi} := (\{0,1\}; (R_{\psi} : \psi \in \Psi)).$$

For a Boolean formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1, \dots, a_n) \in \{0, 1\}^n : \psi(a_1, \dots, a_n)\}.$$

For a set Ψ of Boolean formulas, define a structure

$$\Gamma_{\Psi} := (\{0,1\}; (R_{\psi} : \psi \in \Psi)).$$

An instance

- $\blacksquare W = \{w_1, \ldots, w_m\}$
- $\blacksquare \phi_1, \ldots, \phi_n$

of Boolean-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \ldots, w_m. \bigwedge_i \phi_i$ holds in Γ_{Ψ} .

For a Boolean formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1, \dots, a_n) \in \{0, 1\}^n : \psi(a_1, \dots, a_n)\}.$$

For a set Ψ of Boolean formulas, define a structure

$$\Gamma_{\Psi} := (\{0,1\}; (R_{\psi} : \psi \in \Psi)).$$

An instance

- $\blacksquare W = \{w_1, \ldots, w_m\}$
- $\blacksquare \phi_1, \ldots, \phi_n$

of Boolean-SAT(Ψ) has a positive solution \leftrightarrow the sentence $\exists w_1, \ldots, w_m. \bigwedge_i \phi_i$ holds in Γ_{Ψ} .

So Boolean-SAT(Ψ) and CSP(Γ_{Ψ}) are one and the same problem.

Let < be a binary relation symbol.

(Imagine: linear order relation.)

Let Ψ be a finite set of quantifier-free $\{<\}$ -formulas.

Let < be a binary relation symbol.

(Imagine: linear order relation.)

Let Ψ be a finite set of quantifier-free $\{<\}$ -formulas.

Computational problem: Temp-SAT(Ψ)

INPUT:

- A finite set *W* of variables (vertices), and
- statements ϕ_1, \dots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable in a linear order?

Let < be a binary relation symbol.

(Imagine: linear order relation.)

Let Ψ be a finite set of quantifier-free $\{<\}$ -formulas.

Computational problem: Temp-SAT(Ψ)

INPUT:

- A finite set *W* of variables (vertices), and
- statements ϕ_1, \dots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable in a linear order?

Computational complexity depends on Ψ . Always in NP.

Let < be a binary relation symbol.

(Imagine: linear order relation.)

Let Ψ be a finite set of quantifier-free $\{<\}$ -formulas.

Computational problem: Temp-SAT(Ψ)

INPUT:

- A finite set *W* of variables (vertices), and
- statements ϕ_1, \dots, ϕ_n about the elements of W, where each ϕ_i is taken from Ψ .

QUESTION: Is $\bigwedge_{1 \le i \le n} \phi_i$ satisfiable in a linear order?

Computational complexity depends on Ψ . Always in NP.

Question

For which Ψ is Temp-SAT(Ψ) tractable?

Let $(\mathbb{Q}; <)$ denote the order of the rationals.

Let $(\mathbb{Q}; <)$ denote the order of the rationals.

For a $\{<\}$ -formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1,\ldots,a_n) \in \mathbb{Q}^n : \psi(a_1,\ldots,a_n)\}.$$

Let $(\mathbb{Q}; <)$ denote the order of the rationals.

For a $\{<\}$ -formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1,\ldots,a_n) \in \mathbb{Q}^n : \psi(a_1,\ldots,a_n)\}.$$

For a set Ψ of $\{<\}$ -formulas, define a structure

$$\Gamma_{\Psi} := (\mathbb{Q}; (R_{\psi} : \psi \in \Psi)).$$

Let $(\mathbb{Q}; <)$ denote the order of the rationals.

For a $\{<\}$ -formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1,\ldots,a_n) \in \mathbb{Q}^n : \psi(a_1,\ldots,a_n)\}.$$

For a set Ψ of $\{<\}$ -formulas, define a structure

$$\Gamma_{\Psi} := (\mathbb{Q}; (R_{\psi} : \psi \in \Psi)).$$

 Γ_{Ψ} is a reduct of $(\mathbb{Q};<)$.

Let $(\mathbb{Q}; <)$ denote the order of the rationals.

For a $\{<\}$ -formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1,\ldots,a_n) \in \mathbb{Q}^n : \psi(a_1,\ldots,a_n)\}.$$

For a set Ψ of $\{<\}$ -formulas, define a structure

$$\Gamma_{\Psi} := (\mathbb{Q}; (R_{\psi} : \psi \in \Psi)).$$

 Γ_{Ψ} is a reduct of $(\mathbb{Q};<)$.

Temp-SAT(Ψ) and CSP(Γ_{Ψ}) are one and the same problem.

Let $(\mathbb{Q}; <)$ denote the order of the rationals.

For a $\{<\}$ -formula $\psi(x_1,\ldots,x_n)$, define a relation

$$R_{\psi} := \{(a_1,\ldots,a_n) \in \mathbb{Q}^n : \psi(a_1,\ldots,a_n)\}.$$

For a set Ψ of $\{<\}$ -formulas, define a structure

$$\Gamma_{\Psi} := (\mathbb{Q}; (R_{\psi} : \psi \in \Psi)).$$

 Γ_{Ψ} is a reduct of $(\mathbb{Q};<)$.

Temp-SAT(Ψ) and CSP(Γ_{Ψ}) are one and the same problem.

Could have used any infinite linear order, but $(\mathbb{Q}; <)$ is homogeneous.

Three classification theorems

All problems Boolean-SAT(Ψ), Graph-SAT(Ψ), and Temp-SAT(Ψ) are either in P or NP-complete.

Three classification theorems

All problems Boolean-SAT(Ψ), Graph-SAT(Ψ), and Temp-SAT(Ψ) are either in P or NP-complete.

Given Ψ , we can decide in which class the problem falls.

Three classification theorems

All problems Boolean-SAT(Ψ), Graph-SAT(Ψ), and Temp-SAT(Ψ) are either in P or NP-complete.

Given Ψ , we can decide in which class the problem falls.

- Boolean-SAT: Schaefer (1978)
- Temp-SAT: Bodirsky and Kára (2007)
- Graph-SAT: Bodirsky and MP (2010)

Homogeneous structures

Graph-SAT(Ψ): Is there a finite graph such that... (constraints)

Temp-SAT(\Psi): Is there a linear order such that...

Homogeneous structures

Graph-SAT(Ψ): Is there a finite graph such that... (constraints)

Temp-SAT(\Psi): Is there a linear order such that...

The classes of finite graphs and linear orders are amalgamation classes.

Theorem (Fraïssé)

- If C is a countable class of structures closed under substructures which has amalgamation, then there exists a unique homogeneous structure with age C.
- The age of a homogeneous structure is an amalgamation class.

Theorem (Fraïssé)

- If C is a countable class of structures closed under substructures which has amalgamation, then there exists a unique homogeneous structure with age C.
- The age of a homogeneous structure is an amalgamation class.

Theorem (Fraïssé)

- If C is a countable class of structures closed under substructures which has amalgamation, then there exists a unique homogeneous structure with age C.
- The age of a homogeneous structure is an amalgamation class.

Further amalgamation classes.

Partial orders

Theorem (Fraïssé)

- If C is a countable class of structures closed under substructures which has amalgamation, then there exists a unique homogeneous structure with age C.
- The age of a homogeneous structure is an amalgamation class.

- Partial orders
- Lattices (Jónsson)

Theorem (Fraïssé)

- If C is a countable class of structures closed under substructures which has amalgamation, then there exists a unique homogeneous structure with age C.
- The age of a homogeneous structure is an amalgamation class.

- Partial orders
- Lattices (Jónsson)
- Distributive lattices (Pierce)

Theorem (Fraïssé)

- If C is a countable class of structures closed under substructures which has amalgamation, then there exists a unique homogeneous structure with age C.
- The age of a homogeneous structure is an amalgamation class.

- Partial orders
- Lattices (Jónsson)
- Distributive lattices (Pierce)
- Trivial lattices (Day, Ježek)

Theorem (Fraïssé)

- If C is a countable class of structures closed under substructures which has amalgamation, then there exists a unique homogeneous structure with age C.
- The age of a homogeneous structure is an amalgamation class.

- Partial orders
- Lattices (Jónsson)
- Distributive lattices (Pierce)
- Trivial lattices (Day, Ježek)
- Metric spaces with rational distances

Theorem (Fraïssé)

- If C is a countable class of structures closed under substructures which has amalgamation, then there exists a unique homogeneous structure with age C.
- The age of a homogeneous structure is an amalgamation class.

- Partial orders
- Lattices (Jónsson)
- Distributive lattices (Pierce)
- Trivial lattices (Day, Ježek)
- Metric spaces with rational distances
- Tournaments

Theorem (Fraïssé)

- If C is a countable class of structures closed under substructures which has amalgamation, then there exists a unique homogeneous structure with age C.
- The age of a homogeneous structure is an amalgamation class.

- Partial orders
- Lattices (Jónsson)
- Distributive lattices (Pierce)
- Trivial lattices (Day, Ježek)
- Metric spaces with rational distances
- Tournaments
- Henson digraphs (forbidden tournaments)

Theorem (Fraïssé)

- If C is a countable class of structures closed under substructures which has amalgamation, then there exists a unique homogeneous structure with age C.
- The age of a homogeneous structure is an amalgamation class.

Further amalgamation classes.

- Partial orders
- Lattices (Jónsson)
- Distributive lattices (Pierce)
- Trivial lattices (Day, Ježek)
- Metric spaces with rational distances
- Tournaments
- Henson digraphs (forbidden tournaments)

Homogeneous digraphs classified by Cherlin.

Part III

Making the infinite finite

Let Δ be a countable homogeneous relational structure in a finite language. We call Δ the *base structure*.

Let Δ be a countable homogeneous relational structure in a finite language. We call Δ the *base structure*.

Definition

A *reduct* of Δ is a structure with a first-order definition in Δ .

For us it makes sense to consider two reducts Γ , Γ' of Δ *equivalent* iff Γ has a pp-definition from Γ' and vice-versa.

Let Δ be a countable homogeneous relational structure in a finite language. We call Δ the *base structure*.

Definition

A *reduct* of Δ is a structure with a first-order definition in Δ .

For us it makes sense to consider two reducts Γ , Γ' of Δ *equivalent* iff Γ has a pp-definition from Γ' and vice-versa.

We say that Γ and Γ' are *pp-interdefinable*.

Let Δ be a countable homogeneous relational structure in a finite language. We call Δ the *base structure*.

Definition

A *reduct* of Δ is a structure with a first-order definition in Δ .

For us it makes sense to consider two reducts Γ, Γ' of Δ *equivalent* iff Γ has a pp-definition from Γ' and vice-versa.

We say that Γ and Γ' are *pp-interdefinable*.

The relation " Γ is pp-definable in Γ " is a quasiorder on the reducts.

Let Δ be a countable homogeneous relational structure in a finite language. We call Δ the *base structure*.

Definition

A *reduct* of Δ is a structure with a first-order definition in Δ .

For us it makes sense to consider two reducts Γ, Γ' of Δ *equivalent* iff Γ has a pp-definition from Γ' and vice-versa.

We say that Γ and Γ' are *pp-interdefinable*.

The relation " Γ is pp-definable in Γ " is a quasiorder on the reducts.

We factor this quasiorder by the equivalence relation of pp-interdefinability, and obtain a complete lattice.

Reducts and closed clones

Problem

Classify the reducts of Δ up to pp-interdefinability.

Reducts and closed clones

Problem

Classify the reducts of Δ up to pp-interdefinability.

Definition

A clone \mathcal{C} on D is *closed* iff for each $n \geq 1$, the set of its n-ary functions $\mathcal{C} \cap D^{D^n}$ it is a closed subset of the Baire space D^{D^n} .

Reducts and closed clones

Problem

Classify the reducts of Δ up to pp-interdefinability.

Definition

A clone \mathcal{C} on D is *closed* iff for each $n \geq 1$, the set of its n-ary functions $\mathcal{C} \cap D^{D^n}$ it is a closed subset of the Baire space D^{D^n} .

Theorem (Bodirsky, Nešetřil '03)

Let Δ be $\omega\text{-categorical}$ (e.g., homogeneous in a finite language). Then

$$\Gamma \mapsto \mathsf{Pol}(\Gamma)$$

is a one-to-one correspondence between the *primitive positive closed* reducts of Δ and the *closed clones* containing $\operatorname{Aut}(\Delta)$.

We thus have to understand the closed clones $\supseteq Aut(\Delta)$.

We thus have to understand the closed clones $\supseteq Aut(\Delta)$.

Theorem (Bodirsky, Chen, MP '08)

The structure $\Delta := (D; =)$ has 2^{\aleph_0} reducts up to primitive positive interdefinability.

We thus have to understand the closed clones $\supseteq Aut(\Delta)$.

Theorem (Bodirsky, Chen, MP '08)

The structure $\Delta := (D; =)$ has 2^{\aleph_0} reducts up to primitive positive interdefinability.

Where is the border between NP-completeness and tractability?

We thus have to understand the closed clones $\supseteq Aut(\Delta)$.

Theorem (Bodirsky, Chen, MP '08)

The structure $\Delta := (D; =)$ has 2^{\aleph_0} reducts up to primitive positive interdefinability.

Where is the border between NP-completeness and tractability?

Are we in NP at all?

There exist 2^{\aleph_0} non-isomorphic homogeneous digraphs.

There exist 2^{\aleph_0} non-isomorphic homogeneous digraphs.

Easy to see that they have distinct CSPs.

There exist 2^{\aleph_0} non-isomorphic homogeneous digraphs.

Easy to see that they have distinct CSPs.

Thus there exist homogeneous digraphs with undecidable CSP.

There exist 2^{\aleph_0} non-isomorphic homogeneous digraphs.

Easy to see that they have distinct CSPs.

Thus there exist homogeneous digraphs with undecidable CSP.

Definition

A class ${\mathfrak C}$ of τ -structures is *finitely bounded* iff there exists a finite set ${\mathfrak F}$ of τ -structures such that for all τ -structures ${\mathcal A}$ (${\mathcal A} \in {\mathfrak C}$ iff no ${\mathcal F} \in {\mathfrak F}$ embeds into ${\mathfrak C}$).

F... set of "forbidden substructures"

There exist 2^{\aleph_0} non-isomorphic homogeneous digraphs.

Easy to see that they have distinct CSPs.

Thus there exist homogeneous digraphs with undecidable CSP.

Definition

A class $\mathcal C$ of τ -structures is *finitely bounded* iff there exists a finite set $\mathcal F$ of τ -structures such that for all τ -structures A ($A \in \mathcal C$ iff no $F \in \mathcal F$ embeds into $\mathcal C$). $\mathcal F$... set of "forbidden substructures"

There exist 2^{\aleph_0} non-isomorphic homogeneous digraphs.

Easy to see that they have distinct CSPs.

Thus there exist homogeneous digraphs with undecidable CSP.

Definition

A class $\mathcal C$ of τ -structures is *finitely bounded* iff there exists a finite set $\mathcal F$ of τ -structures such that for all τ -structures A ($A \in \mathcal C$ iff no $F \in \mathcal F$ embeds into $\mathcal C$). $\mathcal F$... set of "forbidden substructures"

Examples

Partial orders

There exist 2^{\aleph_0} non-isomorphic homogeneous digraphs.

Easy to see that they have distinct CSPs.

Thus there exist homogeneous digraphs with undecidable CSP.

Definition

A class ${\mathfrak C}$ of τ -structures is *finitely bounded* iff there exists a finite set ${\mathfrak F}$ of τ -structures such that for all τ -structures ${\mathcal A}$ (${\mathcal A} \in {\mathfrak C}$ iff no ${\mathcal F} \in {\mathfrak F}$ embeds into ${\mathfrak C}$).

F... set of "forbidden substructures"

- Partial orders
- Lattices

There exist 2^{\aleph_0} non-isomorphic homogeneous digraphs.

Easy to see that they have distinct CSPs.

Thus there exist homogeneous digraphs with undecidable CSP.

Definition

A class ${\mathfrak C}$ of τ -structures is *finitely bounded* iff there exists a finite set ${\mathfrak F}$ of τ -structures such that for all τ -structures ${\mathcal A}$ (${\mathcal A} \in {\mathfrak C}$ iff no ${\mathcal F} \in {\mathfrak F}$ embeds into ${\mathfrak C}$).

F... set of "forbidden substructures"

- Partial orders
- Lattices
- Graphs

There exist 2^{\aleph_0} non-isomorphic homogeneous digraphs.

Easy to see that they have distinct CSPs.

Thus there exist homogeneous digraphs with undecidable CSP.

Definition

A class ${\mathfrak C}$ of τ -structures is *finitely bounded* iff there exists a finite set ${\mathfrak F}$ of τ -structures such that for all τ -structures ${\mathcal A}$ (${\mathcal A} \in {\mathfrak C}$ iff no ${\mathcal F} \in {\mathfrak F}$ embeds into ${\mathfrak C}$).

F... set of "forbidden substructures"

- Partial orders
- Lattices
- Graphs
- \blacksquare K_n -free graphs

NP

Observation

If a homogeneous structure in a finite language is finitely bounded, then the CSP of its reducts is in NP.

NP

Observation

If a homogeneous structure in a finite language is finitely bounded, then the CSP of its reducts is in NP.

Still, how to cope with infinite polymorphisms?

NP

Observation

If a homogeneous structure in a finite language is finitely bounded, then the CSP of its reducts is in NP.

Still, how to cope with infinite polymorphisms?

Use Ramsey theory to make them finite.

Let G = (V; E) be the random graph.

Definition. $f: G \rightarrow G$ is canonical iff

Let G = (V; E) be the random graph.

Definition. $f: G \rightarrow G$ is *canonical* iff for all $x, y, u, v \in V$,

if (x, y) and (u, v) have the same type in G,

Let G = (V; E) be the random graph.

Definition. $f: G \to G$ is *canonical* iff for all $x, y, u, v \in V$, if (x, y) and (u, v) have the same type in G, then (f(x), f(y)) and (f(u), f(v)) have the same type in G.

Let G = (V; E) be the random graph.

Definition. $f: G \to G$ is *canonical* iff for all $x, y, u, v \in V$, if (x, y) and (u, v) have the same type in G, then (f(x), f(y)) and (f(u), f(v)) have the same type in G.

Let G = (V; E) be the random graph.

Definition. $f: G \to G$ is *canonical* iff for all $x, y, u, v \in V$, if (x, y) and (u, v) have the same type in G, then (f(x), f(y)) and (f(u), f(v)) have the same type in G.

Examples.

Automorphisms / Embeddings are canonical.

Let G = (V; E) be the random graph.

Definition. $f: G \to G$ is *canonical* iff for all $x, y, u, v \in V$, if (x, y) and (u, v) have the same type in G, then (f(x), f(y)) and (f(u), f(v)) have the same type in G.

- Automorphisms / Embeddings are canonical.
- Constant functions are canonical.

Let G = (V; E) be the random graph.

Definition. $f: G \to G$ is *canonical* iff for all $x, y, u, v \in V$, if (x, y) and (u, v) have the same type in G, then (f(x), f(y)) and (f(u), f(v)) have the same type in G.

- Automorphisms / Embeddings are canonical.
- Constant functions are canonical.
- Homomorphisms are not necessarily canonical.

Let G = (V; E) be the random graph.

Definition. $f: G \to G$ is *canonical* iff for all $x, y, u, v \in V$, if (x, y) and (u, v) have the same type in G, then (f(x), f(y)) and (f(u), f(v)) have the same type in G.

- Automorphisms / Embeddings are canonical.
- Constant functions are canonical.
- Homomorphisms are not necessarily canonical.
- is canonical.

Let G = (V; E) be the random graph.

Definition. $f: G \to G$ is *canonical* iff for all $x, y, u, v \in V$, if (x, y) and (u, v) have the same type in G, then (f(x), f(y)) and (f(u), f(v)) have the same type in G.

- Automorphisms / Embeddings are canonical.
- Constant functions are canonical.
- Homomorphisms are not necessarily canonical.
- is canonical.
- \blacksquare e_E and e_N are canonical.

Finding canonical behaviour

The class of finite graphs has the following **Ramsey property**:

The class of finite graphs has the following **Ramsey property**:

For all graphs *H* there exists a graph *S* such that

The class of finite graphs has the following **Ramsey property**:

For all graphs *H* there exists a graph *S* such that if the edges of *S* are colored with 3 colors,

The class of finite graphs has the following **Ramsey property**:

For all graphs *H* there exists a graph *S* such that if the edges of *S* are colored with 3 colors, then there is a copy of *H* in *S* on which the coloring is constant.

The class of finite graphs has the following **Ramsey property**:

For all graphs H there exists a graph S such that if the edges of S are colored with 3 colors, then there is a copy of H in S on which the coloring is constant.

Given $f: G \to G$, color the edges of G according to the type of their image: 3 possibilities.

Same for non-edges.

The class of finite graphs has the following **Ramsey property**:

For all graphs H there exists a graph S such that if the edges of S are colored with 3 colors, then there is a copy of H in S on which the coloring is constant.

Given $f: G \to G$, color the edges of G according to the type of their image: 3 possibilities.

Same for non-edges.

Conclusion: Every finite graph has a copy in *G* on which *f* is canonical.

A canonical function $f: G \to G$ induces a function $f': \{E, N, =\} \to \{E, N, =\}$ (i.e., a function on the 2-types of G).

A canonical function $f: G \to G$ induces a function $f': \{E, N, =\} \to \{E, N, =\}$ (i.e., a function on the 2-types of G).

Converse does not hold.

A canonical function $f: G \to G$ induces a function $f': \{E, N, =\} \to \{E, N, =\}$ (i.e., a function on the 2-types of G).

Converse does not hold.

A canonical function $f: G \to G$ induces a function $f': \{E, N, =\} \to \{E, N, =\}$ (i.e., a function on the 2-types of G).

Converse does not hold.

The following are all possibilities of canonical functions:

■ Turning everything into edges (e_E)

A canonical function $f: G \to G$ induces a function $f': \{E, N, =\} \to \{E, N, =\}$ (i.e., a function on the 2-types of G).

Converse does not hold.

- Turning everything into edges (e_E)
- turning everything into non-edges (e_N)

A canonical function $f: G \to G$ induces a function $f': \{E, N, =\} \to \{E, N, =\}$ (i.e., a function on the 2-types of G).

Converse does not hold.

- Turning everything into edges (e_E)
- turning everything into non-edges (e_N)
- behaving like –

A canonical function $f: G \to G$ induces a function $f': \{E, N, =\} \to \{E, N, =\}$ (i.e., a function on the 2-types of G).

Converse does not hold.

- Turning everything into edges (e_E)
- turning everything into non-edges (*e_N*)
- behaving like —
- being constant

A canonical function $f: G \to G$ induces a function $f': \{E, N, =\} \to \{E, N, =\}$ (i.e., a function on the 2-types of G).

Converse does not hold.

- Turning everything into edges (e_E)
- turning everything into non-edges (*e_N*)
- behaving like –
- being constant
- behaving like an automorphism.

A canonical function $f: G \to G$ induces a function $f': \{E, N, =\} \to \{E, N, =\}$ (i.e., a function on the 2-types of G).

Converse does not hold.

The following are all possibilities of canonical functions:

- Turning everything into edges (e_E)
- turning everything into non-edges (*e_N*)
- behaving like –
- being constant
- behaving like an automorphism.

Given any $f: G \to G$, we know that one of these behaviors appears for arbitrary finite subgraphs of G.

A canonical function $f: G \to G$ induces a function $f': \{E, N, =\} \to \{E, N, =\}$ (i.e., a function on the 2-types of G).

Converse does not hold.

The following are all possibilities of canonical functions:

- Turning everything into edges (e_E)
- turning everything into non-edges (*e_N*)
- behaving like –
- being constant
- behaving like an automorphism.

Given any $f: G \to G$, we know that one of these behaviors appears for arbitrary finite subgraphs of G.

Problem: Keeping some information on f when canonizing.

Let $f: G \rightarrow G$.

If f violates a relation R, then there are $c_1, \ldots, c_n \in V$ witnessing this.

Let $f: G \rightarrow G$.

If f violates a relation R, then there are $c_1, \ldots, c_n \in V$ witnessing this.

Fact.

The structure $(V; E, c_1, \dots, c_n)$ has that Ramsey property, too.

Let $f: G \rightarrow G$.

If f violates a relation R, then there are $c_1, \ldots, c_n \in V$ witnessing this.

Fact.

The structure $(V; E, c_1, \dots, c_n)$ has that Ramsey property, too.

Consider f as a function from $(V; E, c_1, \ldots, c_n)$ to (V; E).

Let $f: G \rightarrow G$.

If f violates a relation R, then there are $c_1, \ldots, c_n \in V$ witnessing this.

Fact.

The structure $(V; E, c_1, \ldots, c_n)$ has that Ramsey property, too.

Consider f as a function from $(V; E, c_1, \ldots, c_n)$ to (V; E).

Again, f is canonical on arbitrarily large finite substructures of $(V; E, c_1, \ldots, c_n)$.

Let $f: G \rightarrow G$.

If f violates a relation R, then there are $c_1, \ldots, c_n \in V$ witnessing this.

Fact.

The structure $(V; E, c_1, \ldots, c_n)$ has that Ramsey property, too.

Consider f as a function from $(V; E, c_1, \ldots, c_n)$ to (V; E).

Again, f is canonical on arbitrarily large finite substructures of $(V; E, c_1, \ldots, c_n)$.

We can assume that it shows the *same* behavior on all these substructures.

Let $f: G \rightarrow G$.

If f violates a relation R, then there are $c_1, \ldots, c_n \in V$ witnessing this.

Fact.

The structure $(V; E, c_1, \dots, c_n)$ has that Ramsey property, too.

Consider f as a function from $(V; E, c_1, \ldots, c_n)$ to (V; E).

Again, f is canonical on arbitrarily large finite substructures of $(V; E, c_1, \ldots, c_n)$.

We can assume that it shows the *same* behavior on all these substructures.

By topological closure, *f* generates a function which:

- behaves like f on $\{c_1, \ldots, c_n\}$, and
- is canonical as a function from $(V; E, c_1, ..., c_n)$ to (V; E).

The minimal clones on the random graph

Theorem (Bodirsky, MP '10)

Let *f* be a finitary operation on *G* which "is" not an automorphism.

Then *f* generates one of the following:

- A constant operation
- e_E
- \blacksquare e_N
- _
- \blacksquare SW_C
- One of 9 canonical binary injections.

The minimal clones on the random graph

Theorem (Bodirsky, MP '10)

Let *f* be a finitary operation on *G* which "is" not an automorphism.

Then *f* generates one of the following:

- A constant operation
- e_E
- \blacksquare e_N
- _
- \blacksquare SW_C
- One of 9 canonical binary injections.

We thus know the *minimal closed clones* containing Aut(G).

The minimal clones on the random graph

Theorem (Bodirsky, MP '10)

Let *f* be a finitary operation on *G* which "is" not an automorphism.

Then *f* generates one of the following:

- A constant operation
- e_E
- \blacksquare e_N
- _
- \blacksquare SW_C
- One of 9 canonical binary injections.

We thus know the *minimal closed clones* containing Aut(*G*).

More involved argument: Extend G by a random dense linear order.

Let S, H, P be structures in the same signature τ .

$$S \rightarrow (H)^P$$

means:

Let S, H, P be structures in the same signature τ .

$$S \rightarrow (H)^P$$

means:

For any coloring of the copies of *P* in *S* with 2 colors there exists a copy of *H* in *S* such that the copies of *P* in *H* all have the same color.

Let S, H, P be structures in the same signature τ .

$$S \rightarrow (H)^P$$

means:

For any coloring of the copies of *P* in *S* with 2 colors there exists a copy of *H* in *S* such that the copies of *P* in *H* all have the same color.

Definition

A class \mathcal{C} of τ -structures is called a *Ramsey class* iff for all $H, P \in \mathcal{C}$ there exists S in \mathcal{C} such that $S \to (H)^P$.

Let Δ now be an arbitrary structure.

Let Δ now be an arbitrary structure.

Definition

```
f: \Delta \to \Delta is canonical iff for all tuples (x_1, \ldots, x_n), (y_1, \ldots, y_n) of the same type (f(x_1), \ldots, f(x_n)) and (f(y_1), \ldots, f(y_n)) have the same type too.
```

Let Δ now be an arbitrary structure.

Definition

```
f: \Delta \to \Delta is canonical iff for all tuples (x_1, \ldots, x_n), (y_1, \ldots, y_n) of the same type (f(x_1), \ldots, f(x_n)) and (f(y_1), \ldots, f(y_n)) have the same type too.
```

Observation. If Δ is

- Ramsey
- ordered
- lacksquare ω -categorical,

then all finite substructures of Δ have a copy in Δ on which f is canonical.

Let Δ now be an arbitrary structure.

Definition

```
f: \Delta \to \Delta is canonical iff for all tuples (x_1, \ldots, x_n), (y_1, \ldots, y_n) of the same type (f(x_1), \ldots, f(x_n)) and (f(y_1), \ldots, f(y_n)) have the same type too.
```

Observation. If Δ is

- Ramsey
- ordered
- \blacksquare ω -categorical,

then all finite substructures of Δ have a copy in Δ on which f is canonical.

Thus: If Δ is in addition homogeneous in a finite language, then any $f: \Delta \to \Delta$ generates a canonical function,

Let Δ now be an arbitrary structure.

Definition

```
f: \Delta \to \Delta is canonical iff for all tuples (x_1, \ldots, x_n), (y_1, \ldots, y_n) of the same type (f(x_1), \ldots, f(x_n)) and (f(y_1), \ldots, f(y_n)) have the same type too.
```

Observation. If Δ is

- Ramsey
- ordered
- \blacksquare ω -categorical,

then all finite substructures of Δ have a copy in Δ on which f is canonical.

Thus: If Δ is in addition homogeneous in a finite language, then any $f: \Delta \to \Delta$ generates a canonical function, but it could be the identity.

What we would like to do...

We would like to fix $c_1, \ldots, c_n \in \Delta$ witnessing that f does something interesting (e.g., violate a certain relation), and have canonical behavior of f as a function from $(\Delta, c_1, \ldots, c_n)$ to Δ .

What we would like to do...

We would like to fix $c_1, \ldots, c_n \in \Delta$ witnessing that f does something interesting (e.g., violate a certain relation), and have canonical behavior of f as a function from $(\Delta, c_1, \ldots, c_n)$ to Δ .

Why don't you just do it?

Problem

If Δ is Ramsey, is $(\Delta, c_1, \dots, c_n)$ still Ramsey?

Problem

If Δ is Ramsey, is $(\Delta, c_1, \dots, c_n)$ still Ramsey?

Theorem (Kechris, Pestov, Todorcevic '05)

An ordered homogeneous structure is Ramsey iff its automorphism group is *extremely amenable*, i.e., it has a fixed point whenever it acts on a compact Hausdorff space.

Problem

If Δ is Ramsey, is $(\Delta, c_1, \dots, c_n)$ still Ramsey?

Theorem (Kechris, Pestov, Todorcevic '05)

An ordered homogeneous structure is Ramsey iff its automorphism group is *extremely amenable*, i.e., it has a fixed point whenever it acts on a compact Hausdorff space.

Observation

Every open subgroup of an extremely amenable group is extremely amenable.

Problem

If Δ is Ramsey, is $(\Delta, c_1, \dots, c_n)$ still Ramsey?

Theorem (Kechris, Pestov, Todorcevic '05)

An ordered homogeneous structure is Ramsey iff its automorphism group is *extremely amenable*, i.e., it has a fixed point whenever it acts on a compact Hausdorff space.

Observation

Every open subgroup of an extremely amenable group is extremely amenable.

Corollary

If Δ is ordered, homogeneous, and Ramsey, then so is $(\Delta, c_1, \dots, c_n)$.

Proposition

If Δ is ordered Ramsey homogeneous finite language, $f: \Delta^k \to \Delta$, and $c_1, \ldots, c_n \in \Delta$, then f generates a function which

- is canonical as a function from $(\Delta, c_1, \dots, c_n)^k$ to Δ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Proposition (new proof at Fields, July 2011!)

If Δ is ordered Ramsey homogeneous finite language, $f: \Delta^k \to \Delta$, and $c_1, \ldots, c_n \in \Delta$, then f generates a function which

- is canonical as a function from $(\Delta, c_1, \dots, c_n)^k$ to Δ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Set $S := \{g : \Delta^k \to \Delta \mid g \text{ agrees with f on } \{c_1, \dots, c_n\}\}.$

Proposition (new proof at Fields, July 2011!)

If Δ is ordered Ramsey homogeneous finite language, $f: \Delta^k \to \Delta$, and $c_1, \ldots, c_n \in \Delta$, then f generates a function which

- is canonical as a function from $(\Delta, c_1, \dots, c_n)^k$ to Δ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Set
$$S := \{g : \Delta^k \to \Delta \mid g \text{ agrees with f on } \{c_1, \ldots, c_n\}\}.$$

Set $g \sim h$ iff there is $\alpha \in Aut(\Delta)$ such that $g = \alpha h$.

Proposition (new proof at Fields, July 2011!)

If Δ is ordered Ramsey homogeneous finite language, $f: \Delta^k \to \Delta$, and $c_1, \ldots, c_n \in \Delta$, then f generates a function which

- is canonical as a function from $(\Delta, c_1, \dots, c_n)^k$ to Δ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Set $S := \{g : \Delta^k \to \Delta \mid g \text{ agrees with f on } \{c_1, \dots, c_n\}\}.$

Set $g \sim h$ iff there is $\alpha \in Aut(\Delta)$ such that $g = \alpha h$.

Fact. S/\sim is compact.

Proposition (new proof at Fields, July 2011!)

If Δ is ordered Ramsey homogeneous finite language, $f: \Delta^k \to \Delta$, and $c_1, \ldots, c_n \in \Delta$, then f generates a function which

- is canonical as a function from $(\Delta, c_1, \dots, c_n)^k$ to Δ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Set
$$S := \{g : \Delta^k \to \Delta \mid g \text{ agrees with f on } \{c_1, \dots, c_n\}\}.$$

Set $g \sim h$ iff there is $\alpha \in Aut(\Delta)$ such that $g = \alpha h$.

Fact. S/\sim is compact.

Let Aut
$$(\Delta, c_1, \ldots, c_n)^k$$
 act on S/\sim by
$$(\beta_1, \ldots, \beta_k)([g(x_1, \ldots, x_k)]_{\sim}) := [g(\beta_1(x_1), \ldots, \beta_k(x_k))]_{\sim}$$

Proposition (new proof at Fields, July 2011!)

If Δ is ordered Ramsey homogeneous finite language, $f: \Delta^k \to \Delta$, and $c_1, \ldots, c_n \in \Delta$, then f generates a function which

- is canonical as a function from $(\Delta, c_1, \dots, c_n)^k$ to Δ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Set $S := \{g : \Delta^k \to \Delta \mid g \text{ agrees with f on } \{c_1, \dots, c_n\}\}.$

Set $g \sim h$ iff there is $\alpha \in Aut(\Delta)$ such that $g = \alpha h$.

Fact. S/\sim is compact.

Let $\operatorname{Aut}(\Delta, c_1, \dots, c_n)^k$ act on S/\sim by

$$(\beta_1, \ldots, \beta_k)([g(x_1, \ldots, x_k)]_{\sim}) := [g(\beta_1(x_1), \ldots, \beta_k(x_k))]_{\sim}$$

The continuous action has a fixed point $[h(x_1, \ldots, x_k)]_{\sim}$.

Proposition (new proof at Fields, July 2011!)

If Δ is ordered Ramsey homogeneous finite language, $f: \Delta^k \to \Delta$, and $c_1, \ldots, c_n \in \Delta$, then f generates a function which

- is canonical as a function from $(\Delta, c_1, \dots, c_n)^k$ to Δ
- behaves like f on $\{c_1, \ldots, c_n\}$.

Set
$$S := \{g : \Delta^k \to \Delta \mid g \text{ agrees with f on } \{c_1, \dots, c_n\}\}.$$

Set $g \sim h$ iff there is $\alpha \in Aut(\Delta)$ such that $g = \alpha h$.

Fact. S/\sim is compact.

Let
$$\operatorname{Aut}(\Delta, c_1, \dots, c_n)^k$$
 act on S/\sim by

$$(\beta_1, \ldots, \beta_k)([g(x_1, \ldots, x_k)]_{\sim}) := [g(\beta_1(x_1), \ldots, \beta_k(x_k))]_{\sim}$$

The continuous action has a fixed point $[h(x_1, \ldots, x_k)]_{\sim}$.

Any element of the fixed point is canonical.

Theorem (Bodirsky, MP, Tsankov '10)

Let Γ be a reduct of a finite language homogeneous ordered Ramsey structure Δ . Then:

Theorem (Bodirsky, MP, Tsankov '10)

Let Γ be a reduct of a finite language homogeneous ordered Ramsey structure Δ . Then:

■ Every minimal closed superclone of $Pol(\Gamma)$ is generated by such a canonical function.

Theorem (Bodirsky, MP, Tsankov '10)

Let Γ be a reduct of a finite language homogeneous ordered Ramsey structure Λ . Then:

- **Every** minimal closed superclone of $Pol(\Gamma)$ is generated by such a canonical function.
- \blacksquare If Γ has a finite language, then there are finitely many minimal closed superclones of $Pol(\Gamma)$.

(Arity bound!)

Theorem (Bodirsky, MP, Tsankov '10)

Let Γ be a reduct of a finite language homogeneous ordered Ramsey structure Δ . Then:

- Every minimal closed superclone of $Pol(\Gamma)$ is generated by such a canonical function.
- If Γ has a finite language, then there are finitely many minimal closed superclones of Pol(Γ). (Arity bound!)
- **Every closed superclone of Pol**(Γ) contains a minimal closed superclone of Pol(Γ).

The Graph-SAT dichotomy visualized

The Graph-SAT dichotomy in more detail

Theorem (Bodirsky, MP '10)

Let Γ be a reduct of the random graph. Then:

- Either Γ has one out of 17 canonical polymorphisms, and CSP(Γ) is tractable,
- \blacksquare or CSP(Γ) is NP-complete.

The Graph-SAT dichotomy in more detail

Theorem (Bodirsky, MP '10)

Let Γ be a reduct of the random graph. Then:

- **■** Either Γ has one out of 17 canonical polymorphisms, and $CSP(\Gamma)$ is tractable,
- \blacksquare or CSP(Γ) is NP-complete.

Theorem (Bodirsky, MP '10)

Let Γ be a reduct of the random graph. Then:

- Either Γ pp-defines one out of 4 hard relations, and CSP(Γ) is NP-complete,
- or CSP(Γ) is tractable.

Theorem

The following 17 distinct clones are precisely the minimal tractable local clones containing Aut(G):

- 1 The clone generated by a constant operation.
- The clone generated by a balanced binary injection of type max.
- The clone generated by a balanced binary injection of type min.
- 4 The clone generated by an E-dominated binary injection of type max.
- 5 The clone generated by an *N*-dominated binary injection of type min.
- The clone generated by a function of type majority which is hyperplanely balanced and of type projection.
- 7 The clone generated by a function of type majority which is hyperplanely *E*-constant.
- The clone generated by a function of type majority which is hyperplanely *N*-constant.
- 9 The clone generated by a function of type majority which is hyperplanely of type max and *E*-dominated.
- The clone generated by a function of type majority which is hyperplanely of type min and *N*-dominated.

The Meta Problem

The Meta Problem

Meta-Problem of Graph-SAT(Ψ)

INPUT: A finite set Ψ of graph formulas.

QUESTION: Is Graph-SAT(Ψ) in P?

The Meta Problem

Meta-Problem of Graph-SAT(Ψ)

INPUT: A finite set Ψ of graph formulas.

QUESTION: Is Graph-SAT(Ψ) in P?

Theorem (Bodirsky, MP '10)

The Meta-Problem of Graph-SAT(Ψ) is decidable.

Part IV

The past and the future

■ Climb up the clone lattice

- Climb up the clone lattice
- Violate (hard) relations canonically

- Climb up the clone lattice
- Violate (hard) relations canonically
- Decide pp definability:

- Climb up the clone lattice
- Violate (hard) relations canonically
- Decide pp definability:

Theorem (Bodirsky, MP, Tsankov '10)

Let Δ be

- ordered Ramsey
- homogeneous
- with finite language
- finitely bounded.

Then the following problem is decidable:

INPUT: Two finite language reducts Γ_1 , Γ_2 of Δ .

QUESTION: Is Γ_1 primitive positive definable in Γ_2 ?

1

Generalize setting of method

Is every structure Δ which is

- homogeneous
- with finite language
- finitely bounded

a reduct of a structure Δ' which is

- ordered Ramsey
- homogeneous
- with finite language
- finitely bounded.

2

Apply method

- Random partial order
- Random tournament
- Random K_n -free graph
- Atomless Boolean algebra
- Random lattice

3

Develop method

Abstract cloning \rightarrow Manuel's talk

