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Reducts of homogeneous structures

Let A be a countable relational structure
in a finite language which is homogeneous, i.e.,

For all A, B C A finite, for all isomorphisms i: A— B
there exists oo € Aut(A) extending i.

Definition
A reduct of A is a structure with a first-order (fo) definition in A
(without parameters).

Problem
Classify the reducts of A.

We call A the base structure.
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Classifications up to first-order interdefinability

One possibility of classification:

We can consider two reducts I, " of A equivalent iff
I has a fo-definition from " and vice-versa.

We say that I and I’ are fo-interdefinable.
The relation “T is fo-definable in " is a quasiorder on the reducts.

We factor this quasiorder
by the equivalence relation of fo-interdefinability,
and obtain a complete lattice.
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Finer classifications (syntactic restrictions)

A formula is existential positive iff
it is of the form 3xq, ..., xn.9», where 1 is quantifier-free and positive.

A formula is primitive positive iff
it is existential positive and does not contain disjunctions.

Can consider reducts I', " equivalent iff
I has a .. .-definition from " and vice-versa.

The relation “T is .. .-definable in " is a quasiorder on the reducts.

We factor this quasiorder by the equivalence relation of
.. .-interdefinability and obtain a complete lattice.

Equivalence relation, quasiorder: Transitivity!
Not for all fragments of first-order logic.
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Observe:

Primitive positive (pp) interdefinability is finer than
existential positive (ep) interdefinability is finer than
first order (fo) interdefinability.
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Comparing the classifications

Observe:

Primitive positive (pp) interdefinability is finer than
existential positive (ep) interdefinability is finer than
first order (fo) interdefinability.

In fact:

The lattice corresponding to fo-definability is a factor of
the lattice corresponding to ep-definability is a factor of
the lattice corresponding to pp-definability.
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What is interesting?

Which of the 4 lattices are interesting?
Model theorists: First order!

Complexity theorists: Primitive positive!
Explanation:

m Every finite language reduct defines a computational problem
(Constraint Satisfaction Problem).

m Reducts which are pp-interdefinable have
polynomial time-equivalent computational complexity.

This talk: Method for pp (and ep - submethod).

STOP!

In practice helps also for fo.
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Why is A homogeneous in a finite language?
Question makes sense for arbitrary base structure A.

w-categoricity implies the following:

m fo-closed reducts correspond to closed groups;
m ep-closed reducts correspond to closed transformation monoids;

m pp-closed reducts correspond to closed clones.

Seems that homogeneity in finite language implies few fo-closed
reducts.

For our method, we will need even “more” than homogeneity in a finite
language:

The Ramsey property
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Example: The dense linear order

Denote by (Q; <) be the order of the rationals, and set
betw(x,y,2) :={(x,y,2) €Q® : x <y <zorz<y<x}
cycl(x,y,2) ={(x,y,2) €eQ®: x <y <zorz<x<y
ory<z<x}
sep(x,y,z,w) ={(x,y,z,w) e Q*: ..}

Theorem (Cameron ’76)

Let I' be a reduct of A := (Q; <). Then:
Bl T is first-order interdefinable with (Q; <), o
B T is first-order interdefinable with (Q; betw) or
H T is first-order interdefinable with (Q; cycl), o
A T is first-order interdefinable with (Q; sep), o

(@

B T is first-order interdefinable with =).
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Example: The random graph

Let G = (V; E) be the random graph, and set for all k > 2

R®) .= {(xq,...,x) C V¥ x; distinct, number of edges odd}.

Theorem (Thomas ’91)

Let I be areduct of A := G = (V; E). Then:
El T is first-order interdefinable with (V; E), o
A T is first-order interdefinable with (V; R(3))
B T is first-order interdefinable with (V; R(*), o
A T is first-order interdefinable with (V; R®), o
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Example: The random graph

Let G = (V; E) be the random graph, and set for all k > 2

R®) .= {(xq,...,x) C V¥ x; distinct, number of edges odd}.

Theorem (Thomas ’91)
Let I be areduct of A := G = (V; E). Then:
El T is first-order interdefinable with (V; E), or
B T is first-order interdefinable with (V; R(®)), or
B T is first-order interdefinable with (V; R®), or
B T is first-order interdefinable with (V; R®)), or
B T is first-order interdefinable with (V; =).

—~ —~ —~
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Further examples

Theorem (Thomas '91)

The homogeneous universal K,-free graph has 2 reducts up to
fo-interdefinability.
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Further examples

Theorem (Thomas '91)

The homogeneous universal K,-free graph has 2 reducts up to
fo-interdefinability.

Theorem (Thomas ’'96)

The homogeneous universal k-graph has 2% + 1 reducts up to
fo-interdefinability.
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Further examples

Theorem (Thomas ’91)

The homogeneous universal K,-free graph has 2 reducts up to
fo-interdefinability.

Theorem (Thomas '96)

The homogeneous universal k-graph has 2% + 1 reducts up to
fo-interdefinability.

Theorem (Junker, Ziegler '08)
(Q; <,0) has 116 reducts up to fo-interdefinability.
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Very recent examples

Theorem (Pach, P., Pluhar, Pongracz, Szab6 ’'11)
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Very recent examples

Theorem (Pach, P., Pluhar, Pongracz, Szab6 ’'11)
The random partial order has 5 reducts up to fo-interdefinability.

Theorem (Pongracz '11)

The homogeneous universal K,-free graph plus constant has 13
reducts if n = 3, and 16 reducts if n > 4, up to fo-interdefinability.

Depressing fact (Horvath, Pongracz, P. ’11)

The random graph with a constant has too many reducts up to
fo-interdefinability.
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Thomas’ conjecture

Conjecture (Thomas '91)
Let A be homogeneous in a finite language.
Then A has finitely many reducts up to fo-interdefinability.
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Back to finer classifications

Theorem (Bodirsky, Chen, P. "08)
For the structure A := (X; =), there exist:
m 1 reduct up to first order / existential interdefinability

m X, reducts up to existential positive interdefinability
m 2% reducts up to primitive positive interdefinability
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Permutation groups

Theorem (Ryll-Nardzewski)
Let A be w-categorical.

The mapping
I — Aut(l)

is a one-to-one correspondence between
the first-order closed reducts of A and
the closed permutation groups containing Aut(A).

first order closed = contains all fo-definable relations
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Monoids

Theorem (follows from the Homomorphism preservation thm)
Let A be w-categorical.

The mapping
I — End(I)

is a one-to-one correspondence between
the existential positive closed reducts of A and
the closed transformation monoids containing Aut(A).

A monoid of functions from A to A is closed iff
it is closed in the Baire space A2.
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Clones

The canonical approach Michael Pinsker (Paris 7)



Clones

Theorem (Bodirsky, NesSetfil '03)
Let A be w-categorical. Then
I — Pol(I)

is a one-to-one correspondence between
the primitive positive closed reducts of A and
the closed clones containing Aut(A).

A clone is a set of finitary operations on A which
m contains all projections 7'(x1, ..., Xn) = X;, and
m is closed under composition.

Pol(I") is the clone of all homomorphisms from finite powers of ' to I'.

A clone C is closed if for each n > 1, the set of n-ary operations in C is
a closed subset of the Baire space A2,
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Groups, Monoids, Clones

For w-categorical A:

Reducts up to fo-interdefinability «»
closed permutation groups D Aut(A);

Reducts up to ep-interdefinability «>
closed monoids D Aut(A)

Reducts up to pp-interdefinability <>

closed clones D Aut(A).

The canonical approach Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V; E) be the random graph.

The canonical approach Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V; E) be the random graph.
Let G be the graph that arises by switching edges and non-edges.

The canonical approach Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V; E) be the random graph.
Let G be the graph that arises by switching edges and non-edges.
Let —: V — V be an isomorphism between G and G.

The canonical approach Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V; E) be the random graph.
Let G be the graph that arises by switching edges and non-edges.
Let —: V — V be an isomorphism between G and G.

For c € V, let G; be the graph that arises by switching
all edges and non-edges containing c.

The canonical approach Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V; E) be the random graph.
Let G be the graph that arises by switching edges and non-edges.
Let —: V — V be an isomorphism between G and G.

For c € V, let G; be the graph that arises by switching
all edges and non-edges containing c.

Let swe : V — V be an isomorphism between G and Gc.

The canonical approach Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V; E) be the random graph.
Let G be the graph that arises by switching edges and non-edges.
Let —: V — V be an isomorphism between G and G.

For c € V, let G; be the graph that arises by switching
all edges and non-edges containing c.

Let swe : V — V be an isomorphism between G and Gc.

Theorem (Thomas '91)
The closed groups containing Aut(G) are the following:

The canonical approach Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V; E) be the random graph.
Let G be the graph that arises by switching edges and non-edges.
Let —: V — V be an isomorphism between G and G.

For c € V, let G; be the graph that arises by switching
all edges and non-edges containing c.

Let swe : V — V be an isomorphism between G and Gc.

Theorem (Thomas '91)
The closed groups containing Aut(G) are the following:
H Aut(G)

The canonical approach Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V; E) be the random graph.
Let G be the graph that arises by switching edges and non-edges.
Let —: V — V be an isomorphism between G and G.

For c € V, let G; be the graph that arises by switching
all edges and non-edges containing c.

Let swe : V — V be an isomorphism between G and Gc.

Theorem (Thomas '91)

The closed groups containing Aut(G) are the following:
H Aut(G)
B ({-}UAu(q))

The canonical approach Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V; E) be the random graph.
Let G be the graph that arises by switching edges and non-edges.
Let —: V — V be an isomorphism between G and G.

For c € V, let G; be the graph that arises by switching
all edges and non-edges containing c.

Let swe : V — V be an isomorphism between G and Gc.

Theorem (Thomas '91)

The closed groups containing Aut(G) are the following:
H Aut(G)
B ({-}UAu(q))
B ({sw¢} UAut(G))

The canonical approach Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V; E) be the random graph.
Let G be the graph that arises by switching edges and non-edges.
Let —: V — V be an isomorphism between G and G.

For c € V, let G; be the graph that arises by switching
all edges and non-edges containing c.

Let swe : V — V be an isomorphism between G and Gc.

Theorem (Thomas '91)
The closed groups containing Aut(G) are the following:
H Aut(G)
B ({-}UAu(q))
B ({sw¢} UAut(G))
A ({—,sw¢} UAut(G))

The canonical approach Michael Pinsker (Paris 7)



The reducts of the random graph, revisited

Let G := (V; E) be the random graph.
Let G be the graph that arises by switching edges and non-edges.
Let —: V — V be an isomorphism between G and G.

For c € V, let G; be the graph that arises by switching
all edges and non-edges containing c.

Let swe : V — V be an isomorphism between G and Gc.

Theorem (Thomas '91)
The closed groups containing Aut(G) are the following:
H Aut(G)
B ({-}UAu(q))
B ({swc}UAut(G))
A ({—,sw¢} UAut(G))
B The full symmetric group Sy.
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Climb up the lattice!

The canonical approach Michael Pinsker (Paris 7)



Canonical functions between structures

The canonical approach Michael Pinsker (Paris 7)



Canonical functions between structures

Let A, A be structures.

Definition

f: A — Nis canonical iff

for all tuples (x1, ..., Xn), (V1,...,yn) of the same type in A
(f(x1),...,f(xn)) and (f(y1), ..., f(yn)) have the same type in A.
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Then f : G — G is canonical iff
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then (f(x), f(y)) and (f(u), f(v)) have the same type in G.

The canonical approach Michael Pinsker (Paris 7)



Canonical functions between structures

Let A, A be structures.

Definition
f: A — Nis canonical iff
for all tuples (x1, ..., Xn), (V1,...,yn) of the same type in A

(f(x1),...,f(xn)) and (f(y1), ..., f(yn)) have the same type in A.

Example. Let G = (V; E) be the random graph.

Then f: G — G is canonical iff

forall x,y,u,v eV,

if (x,y) and (u, v) have the same type in G,

then (f(x), f(y)) and (f(u), f(v)) have the same type in G.

Possible types: edge, non-edge, point.
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Examples of canonical functions

General examples.
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Examples of canonical functions
General examples.

m Automorphisms / embeddings are canonical.
m Homomorphisms are NOT canonical.
m Constant functions are canonical.

Possibilities on G.

m — is canonical.
B sw. is canonical as a function from (V; E,c) to (V; E).
B ¢ (injection onto a clique) is canonical.

m ey (injection onto an independent set) is canonical.
Canonical functions induce functions on types.

If the structures A, A are homogeneous in a finite language, then there
are just finitely many canonical behaviors for f : A — A.
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Ramsey classes

Let S, H, P be finite structures in the same signature 7.
S — (H)P

means:
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For any coloring of the copies of P in S with 2 colors
there exists a copy of Hin S
such that the copies of P in H all have the same color.
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Ramsey classes

Let S, H, P be finite structures in the same signature 7.
S— (H)F

means:

For any coloring of the copies of P in S with 2 colors
there exists a copy of Hin S
such that the copies of P in H all have the same color.

Definition
A class € of 7-structures is called a Ramsey class iff
for all H, P € @ there exists S in € such that S — (H)P.
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Ramsey structures

Definition
A structure A is called Ramsey iff its age is a Ramsey class.

The canonical approach Michael Pinsker (Paris 7)



Ramsey structures

Definition
A structure A is called Ramsey iff its age is a Ramsey class.

Observation. If
m A be Ramsey and ordered (i.e., it has a linear order)
m and A is w-categorical,

then every finite substructure F of A has a copy in A
on which f is canonical.
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Ramsey structures

Definition
A structure A is called Ramsey iff its age is a Ramsey class.

Observation. If
m A be Ramsey and ordered (i.e., it has a linear order)
m and A is w-categorical,

then every finite substructure F of A has a copy in A
on which f is canonical.

Why? Let ty, ..., t, be all tuples in F of length at most |F|.

For each t;: color all tuples in A of the same type as t; according to the
type of f({) in A.

Ramsey property implies that all colorings are constant on a copy of F,
even simultaneously.
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Canonizing functions on Ramsey structures

Magical proposition
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Magical proposition
If
m A is ordered Ramsey homogeneous finite language,
mf:AK S A,
B Ci,...,Ch €A,
then the closed clone generated by f U Aut(A) contains a function g
which

m is canonical as a function from (A, ¢y,...,ch) to A
m is identical with fon {c1,...,¢cn}.
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Canonizing functions on Ramsey structures

Magical proposition
If
m A is ordered Ramsey homogeneous finite language,
mf:AK S A,
B Ci,...,Ch €A,
then the closed clone generated by f U Aut(A) contains a function g
which

m is canonical as a function from (A, ¢y,...,ch) to A
m is identical with fon {c1,...,¢cn}.
Note:

m only finitely many different behaviors of canonical functions.
m g, 9’ same behavior — generate one another (with Aut(A)).
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Topological dynamics

The modern proof of the magical proposition completely relies on the
following.

The canonical approach Michael Pinsker (Paris 7)



Topological dynamics

The modern proof of the magical proposition completely relies on the
following.

Theorem (Kechris, Pestov, Todorcevic '05)
Let A be ordered homogeneous. Then:

A is Ramsey if and only if

Aut(A) is extremely amenable, i.e.,
any continuous action of Aut(A) on any compact Hausdorff space X
has a fixed point.

Fixed point: x € X such that gx = x for all g € Aut(A).
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Proof of the magical proposition

Simplification k = 1, i.e., f has just one variable.
WIlog domain of A is w. So functions on A are sequences.
Let S:={Bofoa:BcAut(D),acAut(A,c,...,cn)} C AA

For each n > 1, consider {h[, : h € S}.
Pick a representative for all types of tuples in this set.

Do it so that initial segments of representatives are representatives.
The set of representatives is a finitely branching tree.

Let B be the branches. Each branch is a function in S.

Each h € S corresponds to a unique branch B(h) in R.

1

Let Aut(A, cy,...,cpn) act on B by setting ab := B(boa ).
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Proof of the magical proposition

Simplification k = 1, i.e., f has just one variable.
WIlog domain of A is w. So functions on A are sequences.
Let S:={Bofoa:BcAut(D),acAut(A,c,...,cn)} C AA

For each n > 1, consider {h[, : h € S}.
Pick a representative for all types of tuples in this set.

Do it so that initial segments of representatives are representatives.
The set of representatives is a finitely branching tree.

Let B be the branches. Each branch is a function in S.

Each h € S corresponds to a unique branch B(h) in R.

Let Aut(A, c1, . . ., cy) act on B by setting ab := B(boa ).

Aut(A, ¢y, ..., cn) open subgroup of Aut(A) — extremely amenable.
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Proof of the magical proposition

Simplification k = 1, i.e., f has just one variable.
WIlog domain of A is w. So functions on A are sequences.
Let S:={Bofoa:BcAut(D),acAut(A,c,...,cn)} C AA

For each n > 1, consider {h[, : h € S}.
Pick a representative for all types of tuples in this set.

Do it so that initial segments of representatives are representatives.
The set of representatives is a finitely branching tree.

Let B be the branches. Each branch is a function in S.

Each h € S corresponds to a unique branch B(h) in R.

Let Aut(A, c1, . . ., cy) act on B by setting ab := B(boa ).

Aut(A, ¢y, ..., cn) open subgroup of Aut(A) — extremely amenable.
Easy: continuous action. Hence it has fixed point g € B C S.
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Proof of the magical proposition

Simplification k = 1, i.e., f has just one variable.
WIlog domain of A is w. So functions on A are sequences.
Let S:={Bofoa:BcAut(D),acAut(A,c,...,cn)} C AA

For each n > 1, consider {h[, : h € S}.
Pick a representative for all types of tuples in this set.

Do it so that initial segments of representatives are representatives.
The set of representatives is a finitely branching tree.

Let B be the branches. Each branch is a function in S.

Each h € S corresponds to a unique branch B(h) in R.

Let Aut(A, c1, . . ., cy) act on B by setting ab := B(boa ).

Aut(A, ¢y, ..., cn) open subgroup of Aut(A) — extremely amenable.
Easy: continuous action. Hence it has fixed point g € B C S.

g is canonical: B(goa~') = gforall a € Aut(A, ¢y, ..., cn).
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The climbing up theorem

Theorem (Bodirsky, P., Tsankov ’10)
Let I be a finite language reduct
of a finite language homogeneous ordered Ramsey structure A.
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The climbing up theorem

Theorem (Bodirsky, P., Tsankov ’10)
Let I' be a finite language reduct
of a finite language homogeneous ordered Ramsey structure A.

m Every minimal closed supermonoid of End(I) is generated by a
canonical function after adding constants

(number bounded by maximal arity of relations of I').
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Let I' be a finite language reduct
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(number bounded by maximal arity of relations of I').
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Going to products of I': same theorem for Pol(I") and clones.
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The climbing up theorem

Theorem (Bodirsky, P., Tsankov ’10)
Let I' be a finite language reduct
of a finite language homogeneous ordered Ramsey structure A.

m Every minimal closed supermonoid of End(I) is generated by a
canonical function after adding constants
(number bounded by maximal arity of relations of I').

m There are finitely many minimal closed supermonoids of End(I").

m Every closed supermonoid of End(I") contains a minimal closed
supermonoid of End(T").

Going to products of I': same theorem for Pol(I") and clones.

Non-trivial: arity bound!
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Reducts of the random graph
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Finding canonical behaviour on G

Consider the universal homogeneous linearly ordered graph.

The canonical approach Michael Pinsker (Paris 7)



Finding canonical behaviour on G

Consider the universal homogeneous linearly ordered graph.

m lts “graph part” is the random graph
m its “order part” is the order of the rationals.

The canonical approach Michael Pinsker (Paris 7)



Finding canonical behaviour on G

Consider the universal homogeneous linearly ordered graph.

m lts “graph part” is the random graph
m its “order part” is the order of the rationals.

We can thus write (G, <) = (V; E, <) for this limit.

The canonical approach Michael Pinsker (Paris 7)



Finding canonical behaviour on G

Consider the universal homogeneous linearly ordered graph.

m lts “graph part” is the random graph
m its “order part” is the order of the rationals.

We can thus write (G, <) = (V; E, <) for this limit.

Theorem (NeSetril- Rodl)
(G, <) is Ramsey.

The canonical approach Michael Pinsker (Paris 7)



Finding canonical behaviour on G

Consider the universal homogeneous linearly ordered graph.

m lts “graph part” is the random graph
m its “order part” is the order of the rationals.

We can thus write (G, <) = (V; E, <) for this limit.

Theorem (NeSetril- Rodl)
(G, <) is Ramsey.

Observation: If f : (G, <) — (G, <) is canonical,
then it is also canonical as a function from G to G.

The canonical approach Michael Pinsker (Paris 7)



Finding canonical behaviour on G

Consider the universal homogeneous linearly ordered graph.

m lts “graph part” is the random graph
m its “order part” is the order of the rationals.

We can thus write (G, <) = (V; E, <) for this limit.

Theorem (NeSetril- Rodl)
(G, <) is Ramsey.

Observation: If f : (G, <) — (G, <) is canonical,
then it is also canonical as a function from G to G.

Conclusion: If f : G — G is any function, and ¢y,...,chp € V,
then f with Aut(G) generates a function which

m agrees with fon {cy,...,¢Cn}

m is canonical as a function from (G, ¢y, ..., cy) to G.
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The minimal monoids on the random graph
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The minimal monoids on the random graph

Theorem (Thomas '96)

Let f: G — G a function

which does not locally look like an automorphism.
(that is, it violates at least one edge or a non-edge.)
Then f generates one of the following:

m A constant operation
u er

ey

" —

B SW.

The canonical approach Michael Pinsker (Paris 7)



The minimal monoids on the random graph

Theorem (Thomas ’96)

Let f: G — G afunction

which does not locally look like an automorphism.
(that is, it violates at least one edge or a non-edge.)

Then f generates one of the following:

m A constant operation
m ec

H ey

" —

W SW.

We thus know the minimal closed monoids containing Aut(G).

The canonical approach Michael Pinsker (Paris 7)



The minimal monoids on the random graph

Theorem (Thomas ’96)

Let f: G — G afunction

which does not locally look like an automorphism.
(that is, it violates at least one edge or a non-edge.)

Then f generates one of the following:

m A constant operation
m ec

H ey

" —

W SW.

We thus know the minimal closed monoids containing Aut(G).

Generalized to minimal closed clones (14) by Bodirsky, P. 2010.
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The closed groups above Aut(G)

Lemma
Let G D Aut(G) be a closed group. Then G contains — or sw.
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Lemma
Let G D Aut(G) be a closed group. Then G contains — or sw.

Lemma
LetG D ({—} UAut(G)) be a closed group. Then G contains swc.
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The closed groups above Aut(G)

Lemma
Let G D Aut(G) be a closed group. Then G contains — or sw.

Lemma
LetG D ({—} UAut(G)) be a closed group. Then G contains swc.

Etc.
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What we can do

and
what we cannot do
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What we can do

m Climb up the monoid and clone lattices
m Decide pp and ep interdefinability:

Theorem (Bodirsky, P., Tsankov ’10)
Let A be

m ordered

m homogeneous

m Ramsey

m with finite language

m finitely bounded.

Then the following problem is decidable:

INPUT: Two finite language reducts I', I’ of A.
QUESTION: Are I', " pp (ep-) interdefinable?

The canonical approach Michael Pinsker (Paris 7)



What we cannot do

The canonical approach Michael Pinsker (Paris 7)



What we cannot do

We do not know how to:

The canonical approach Michael Pinsker (Paris 7)



What we cannot do

We do not know how to:

m Climb up the permutation group lattice

The canonical approach Michael Pinsker (Paris 7)



What we cannot do

We do not know how to:

m Climb up the permutation group lattice
m Decide fo-interdefinability

The canonical approach Michael Pinsker (Paris 7)



What we cannot do

We do not know how to:

m Climb up the permutation group lattice
m Decide fo-interdefinability

Open problems:

The canonical approach Michael Pinsker (Paris 7)



What we cannot do

We do not know how to:

m Climb up the permutation group lattice
m Decide fo-interdefinability

Open problems:

m Does Thomas’ conjecture hold in the ordered Ramsey context?

The canonical approach Michael Pinsker (Paris 7)



What we cannot do

We do not know how to:

m Climb up the permutation group lattice
m Decide fo-interdefinability
Open problems:

m Does Thomas’ conjecture hold in the ordered Ramsey context?

m Is the ordered Ramsey context really a proper special case of the
homogeneous in a finite language context?

The canonical approach Michael Pinsker (Paris 7)



What we cannot do

We do not know how to:

m Climb up the permutation group lattice
m Decide fo-interdefinability

Open problems:

m Does Thomas’ conjecture hold in the ordered Ramsey context?

m Is the ordered Ramsey context really a proper special case of the
homogeneous in a finite language context?

m s fo-interdefinability decidable?
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