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Constraint Satisfaction Problems (CSPs)
Let I be a structure in a finite relational language.

Definition
CSP(I') is the decision problem:

INPUT: primitive positive (pp-) sentence ¢
(existentially quantified conjunction).

QUESTION: does ¢ hold in I'?

Conjecture

For reducts I of finitely bounded homogeneous structures,
CSP(I) is either in P or NP-complete.

Examples:

m order of the rationals;
m random graph;
m binary branching homogeneous C-relation.
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CSP reductions

Let A, T be relational structures in finite languages o, 7.
CSP(A) reduces to CSP(I') when:
(i) A has a primitive positive (pp-) interpretation in I, or
(h) A and I are homomorphically equivalent, or
(c) A= (l,c),i.e.,isthe expansion of I by a constant (for certain I').

Explanations:

(i): a pp-interpretation is a first-order-interpretation where
all involved formulas are pp.

(h): ¢ = 7, and there exist homomorphisms A — Tand ' — A.
Then in fact CSP(I') = CSP(A).

(c): for w-categorical cores I, i.e.,
Aut(I) is oligomorphic and dense in End(T).
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Applying the three reductions
Idea for determining NP-hardness of CSP(I):

Apply (i), (h), (c).
If you obtain a known NP-hard A, then CSP(I") is NP-hard.
Otherwise, itis in P

Example:
A = ({0,1};{(0,0,1),(0,1,0),(1,0,0)}) aka positive 1-in-3-SAT.

Radical idea:
The only source of NP-hardness is pos. 1-in-3-SAT.

Conjecture (Bulatov + Krokhin + Jeavons ’00; Feder + Vardi '93)
Let I' be finite.

Either pos. 1-in-3-SAT can be obtained using (i), (h), (c),
or CSP(IN) isin P.
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The three reductions, systematically

Approach for finite I': use the following order.

(h): Homomorphic equivalence, until obtain core.

¢): Add constants, until it is idempotent

H (
(i.e., has only the trivial endomorphism).

H (i): pp-interpretations.

Proposition

Let I' be finite. Then:

m There exists an idempotent A obtained from I by (h), then (c).

m If pos. 1-in-3-SAT can be obtained from I' by {(i), (h), (¢)},
then it can be obtained from A by (/).

Conjecture (Bulatov + Krokhin + Jeavons '00; Feder + Vardi '93)
Let A be finite and idempotent.
Then pos. 1-in-3-SAT is pp-interpretable in A, or CSP(A) isin P.
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The infinite case, systematically

There is also a nicest structure obtained by (h):

Theorem (Bodirsky '06)

Every w-categorical structure is homomorphically equivalent
to a unique w-categorical core.

Conijecture (direct analogue of the finite CSP conjecture)

Let I' be a reduct of a finitely bounded homogeneous structure. Then:
Some expansion (A, ¢) of its core A by finitely many constants
pp-interprets pos. 1-in-3-SAT,

or CSP(N) isin P.

Follows the (h) then (c) then (i) idea.
However: don’t know if this is ideal!
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The infinite case, chaotically

Conjecture (less audacious)
Let I' be a reduct of a finitely bounded homogeneous structure. Then:

m Either pos. 1-in-3-SAT can be obtained from I by {(i), (h), (c)},
m or CSP(NisinP.
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Polymorphism clones

Let I' be a relational structure.
Pol(T). .. set of all homomorphisms f: " — T', where 1 < n < w.
Elements of Pol(I") are called polymorphisms of T

Pol(I) is a function clone:

m closed under composition
m contains projections 7]'(Xy, ..., Xp) = X;.

Theorem (Bulatov + Jeavons + Krokhin ’00; Bodirsky + Nesetfil ‘03)
For w-categorical I', the complexity of CSP(I") only depends on Pol(T). J
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Clone homomorphisms

Function clones carry algebraic structure via equations.

Let G, D be function clones.
&: € — D clone homomorphism if it preserves composition.

Write € — D if there exists a clone homomorphism from € into D.

Functions clones carry also topological structure:

Pointwise convergence on functions f: D" — D.
D. . .discrete; DP" product topology.
Set of all finitary functions | J, DP". .. sum space.

If D countable: complete metric.
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LetT be w-categorical, and A be finite. TFAE:
m Pol(I') — Pol(A) continuously;
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m Pol(I') — Pol(A) continuously;
m A has a pp interpretation inT.

Let 1 be the clone of projections on a 2-element set.

Fact: It is the polymorphism clone of pos. 1-in-3-SAT.

Corollary
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pp interpretations and topological clones

Theorem (Bodirsky + MP ’11)

LetT be w-categorical, and A be finite. TFAE:
m Pol(I') — Pol(A) continuously;
m A has a pp interpretation inT.

Let 1 be the clone of projections on a 2-element set.

Fact: It is the polymorphism clone of pos. 1-in-3-SAT.

Corollary
LetT be w-categorical. TFAE:
m Pol(I') — 1 continuously;
m pos. 1-in-3-SAT has a pp interpretation in T ;
m All finite structures have a pp interpretation in T .

Clone conjectures Michael Pinsker
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The ambitious conjecture, reformulated

Conjecture (Bodirsky + MP ’11)

Let I' be a reduct of a finitely bounded homogeneous structure.
Let A be its core. Then:

m there exists a finite tuple ¢ such that Pol(A, ¢) — 1 continuously, or
m CSP(INisinP.

Problems:

m Does not use full power of reductions (i), (h), (c).
m Is criterion about structure of Pol(A, ¢), rather than Pol(T).
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h1 clone homomorphisms

Let G, D be function clones.

Function £ from € to D is an h1 clone homomorphism if

it preserves height 1 equations: £(f(x;,, ..., X;,)) = £&(F) (X, , -

If there exists such a function, we write € ~ D.

Theorem (Barto + Oprsal + MP ’15)
Let I' be w-categorical, let A be finite. TFAE:

m A can be obtained from I by {(i), (h), (c)}.

..,X,'n).

Clone conjectures Michael Pinsker



h1 clone homomorphisms

Let G, D be function clones.

Function £ from € to D is an h1 clone homomorphism if

it preserves height 1 equations: £(f(x;,, ..., X;,)) = £&(F) (X, , -

If there exists such a function, we write € ~ D.

Theorem (Barto + Oprsal + MP ’15)
Let I' be w-categorical, let A be finite. TFAE:

m A can be obtained from I by {(i), (h), (c)}.
m Pol(I") ~» Pol(A) uniformly continuously.

..,X,'n).
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The new conjecture

New Conjecture

Let I be a reduct of a finitely bounded homogeneous structure. Then:
m Pol(I") ~» 1 uniformly continuously, or
m CSP(INisinP.
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The new conjecture

New Conjecture

Let I' be a reduct of a finitely bounded homogeneous structure. Then:
m Pol(T') ~» 1 uniformly continuously, or
m CSP(INisinP.

Old Conjecture

Let I be a reduct of a finitely bounded homogeneous structure.
Let A be its core. Then:

m there exists a finite tuple ¢ such that Pol(A, ¢) — 1 continuously, or
m CSP(INisinP.
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Conjecture comparison

Achievement:
m Truer conjecture
m Easier conjecture: avoids core (loss of properties, etc.)
m Easier conjecture: height 1 equations
m Criterion in terms of Pol(T).

Possibilities:
m Both false: we do not understand homogeneous structures.
m Old false, new true: method for disproving old conjecture.
m Both true: structural insight on clones of w-categorical structures.
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Disproving the old conjecture?

Problem (Conjectures equivalent?)

Let I' be an w-categorical core such that
Pol(I") ~~ 1 uniformly continuously.

Then Pol(T, ¢) — 1 continuously for some ¢?
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Disproving the old conjecture?

Problem (Conjectures equivalent?)

Let I' be an w-categorical core such that
Pol(I") ~~ 1 uniformly continuously.

Then Pol(T, ¢) — 1 continuously for some ¢?

Observe: Pol(I',c) C Pol(I") (“stabilizer”).

Proposition

There is an w-categorical core I

with a uniformly continuous h1 clone homomorphism &: Pol(I') ~ 1
such that no restriction of ¢ to any Pol(T, €) is a clone homomorphism.
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Proving the conjectures

Old conjecture:

Let I' be an w-categorical core.

Suppose for no expansion (I, ¢)

the clone Pol(T, ¢) has a continuous clone homomorphism to 1.

Problem
Are there non-trivial equations that hold in Pol(T'), i.e., Pol(l') - 1?

Then: apply Ramsey method to turn equations into an algorithm.

New conjecture:

Problem

Let Pol(I") have no uniformly continuously h1 homomorphism to 1.
Then —=(Pol(T") ~~ 1)?
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Ternary h1 equations

Proposition

If =(Pol(T") ~~ 1), then there are finitely many ternary h1 equations
holding in Pol(T") that are unsatisfiable in 1.
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Proposition

If =(Pol(T") ~~ 1), then there are finitely many ternary h1 equations
holding in Pol(T") that are unsatisfiable in 1.

ternary h1 equations: of the form

f(X7X7y):g(y7X7y)
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Ternary h1 equations

Proposition

If =(Pol(T") ~~ 1), then there are finitely many ternary h1 equations
holding in Pol(T") that are unsatisfiable in 1.

ternary h1 equations: of the form

f(X7X7y):g(y7X7y)

Proposition

If =(Pol(") — 1), then there are finitely many ternary h1 equations
modulo unaries holding in Pol(I") that are unsatisfiable in 1.
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Ternary h1 equations

Proposition

If =(Pol(T") ~~ 1), then there are finitely many ternary h1 equations
holding in Pol(T") that are unsatisfiable in 1.

ternary h1 equations: of the form

f(X7X7y):g(y)X7y)

Proposition

If =(Pol(") — 1), then there are finitely many ternary h1 equations
modulo unaries holding in Pol(I") that are unsatisfiable in 1.

Example:
af(Bx,vy) = éf(ey, x)
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Known CSP classifications

Theorem (Bodirsky + Kéara ’08)

Let I' be a reduct of (Q; <), and A be its core.

Then (A, ¢) — 1 continuously for some c,
or Pol(A) satisfies af(x, x,y) = pf(x,y, x) = vf(y, X, X).
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Known CSP classifications

Theorem (Bodirsky + Kéara ’08)
Let I' be a reduct of (Q; <), and A be its core.

Then (A, ¢) — 1 continuously for some c,
or Pol(A) satisfies af(x, x,y) = pf(x,y, x) = vf(y, X, X).

Random graph: af(x,y,z) = f(z,x,y)
(Bodirsky + MP ’11)

Knh-free graph: af(x,y,z) = f(z,x,y)
(Bodirsky + Martin + MP + Pongracz '15)

Binary branching homogeneous C-relation: af(x, y) = Bf(y, X).
(Bodirsky + Jonsson + Van Pham ’15)
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Siggers polymorphisms
Any f satisfying
f(x.y,x,2,y,2) = H(y,x,2,X,2,¥)
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Siggers polymorphisms
Any f satisfying
f(x.y,x,2,y,2) = H(y,x,2,X,2,¥)

Theorem (Siggers '09)
Every finite idempotent I with ' -» 1 has a Siggers polymorphism.

Theorem / Claim (Barto + ? + MP)
Let I be an w-categorical core. Then:

m Either Pol(T", ¢) — 1 continuously for some c,
m or Pol(I") satisfies

af(x7y7x7z7y7z) = ﬂf(y7x7z7x7z7y)
(and Pol(l") - 1).
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Thank you!
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Thanks to the organizers!
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Thanks to Norbert!

Clone conjectures Michael Pinsker



