Equations in oligomorphic algebras

Michael Pinsker

Technische Universität Wien / Univerzita Karlova v Praze Funded by Austrian Science Fund (FWF) grant P27600

> Arbeitstagung Allgemeine Algebra 93 Bern, February 2017

Equations in oligomorphic algebras

Michael Pinsker

I: Finite Taylor algebras & Constraint Satisfaction Problems

- I: Finite Taylor algebras & Constraint Satisfaction Problems
- **II:** Infinite domains: oligomorphicity

- I: Finite Taylor algebras & Constraint Satisfaction Problems
- **II:** Infinite domains: oligomorphicity
- III: Oligomorphic "Taylor" algebras

- I: Finite Taylor algebras & Constraint Satisfaction Problems
- **II:** Infinite domains: oligomorphicity
- III: Oligomorphic "Taylor" algebras
- IV: Linear equations

- I: Finite Taylor algebras & Constraint Satisfaction Problems
- **II:** Infinite domains: oligomorphicity
- III: Oligomorphic "Taylor" algebras
- IV: Linear equations
- V: Open problems

I: Finite Taylor algebras & Constraint Satisfaction Problems

Equations in oligomorphic algebras

Universal algebra: $\mathbf{A} = (A; (f_i)_{i \in I})$ algebra.

Universal algebra: $\mathbf{A} = (A; (f_i)_{i \in I})$ algebra.

Equations in $A \Rightarrow$ structure of A, e.g., congruence lattice.

Universal algebra: $\mathbf{A} = (A; (f_i)_{i \in I})$ algebra.

Equations in $A \Rightarrow$ structure of A, e.g., congruence lattice.

Example: A has $m(x, x, y) = m(y, x, x) = y \rightarrow$ congruences permute.

Universal algebra: $\mathbf{A} = (A; (f_i)_{i \in I})$ algebra.

Equations in $A \Rightarrow$ structure of A, e.g., congruence lattice.

Example: A has $m(x, x, y) = m(y, x, x) = y \rightarrow$ congruences permute.

Extreme case: only know that A satisfies some non-trivial equations.

Universal algebra: $\mathbf{A} = (A; (f_i)_{i \in I})$ algebra.

Equations in $A \Rightarrow$ structure of A, e.g., congruence lattice.

Example: A has $m(x, x, y) = m(y, x, x) = y \rightarrow$ congruences permute.

Extreme case: only know that A satisfies some non-trivial equations.

Non-trivial equations: cannot be satisfied by projections:

Universal algebra: $\mathbf{A} = (A; (f_i)_{i \in I})$ algebra. Equations in $\mathbf{A} \Rightarrow$ structure of \mathbf{A} , e.g., congruence lattice. Example: \mathbf{A} has $m(x, x, y) = m(y, x, x) = y \rightarrow$ congruences permute. Extreme case: only know that \mathbf{A} satisfies **some** non-trivial equations. Non-trivial equations: cannot be satisfied by projections:

 $\not\exists \xi: \operatorname{Clo}(\mathbf{A}) \to \mathbf{1}$

Clo(A)... term clone of A, 1... clone of projections on $\{0, 1\}$,

Universal algebra: $\mathbf{A} = (A; (f_i)_{i \in I})$ algebra.

Equations in $\mathbf{A} \Rightarrow$ structure of \mathbf{A} , e.g., congruence lattice.

Example: A has $m(x, x, y) = m(y, x, x) = y \rightarrow$ congruences permute. **Extreme case:** only know that **A** satisfies **some** non-trivial equations. Non-trivial equations: cannot be satisfied by projections:

 $\not\exists \xi \colon \operatorname{Clo}(\mathbf{A}) \to \mathbf{1}$

Clo(**A**)...term clone of **A**, **1**...clone of projections on $\{0, 1\}$, ξ clone homomorphism (" ξ preserves equations"):

- ξ preserves arities
- ξ preserves projections

Equations in oligomorphic algebras

Let **A** be a finite algebra, idempotent: f(x, ..., x) = x for all $f \in Clo(A)$. TFAE:

Clo(A) has no clone homomorphism to 1

- Clo(A) has no clone homomorphism to 1
- A satisfies finite non-trivial set of equations (compactness theorem)

- Clo(A) has no clone homomorphism to 1
- A satisfies finite non-trivial set of equations (compactness theorem)
- **1** \notin HSP(A) and / or **1** \notin HSP^{fin}(A) (Birkhoff '35)

- Clo(A) has no clone homomorphism to 1
- A satisfies finite non-trivial set of equations (compactness theorem)
- **1** \notin HSP(**A**) and / or **1** \notin HSP^{fin}(**A**) (Birkhoff '35)
- A has Taylor term (non-trivial linear equations) (Taylor '77)

Let **A** be a finite algebra, idempotent: f(x, ..., x) = x for all $f \in Clo(A)$. TFAE:

- Clo(A) has no clone homomorphism to 1
- A satisfies finite non-trivial set of equations (compactness theorem)
- **1** \notin HSP(**A**) and / or **1** \notin HSP^{fin}(**A**) (Birkhoff '35)

A has Taylor term (non-trivial linear equations) (Taylor '77)

A has weak near unanimity term $w(x,...,x,y) = w(x,...,x,y,x) = \cdots = w(y,x,...,x)$ (Maróti + McKenzie '08)

Let **A** be a finite algebra, idempotent: f(x, ..., x) = x for all $f \in Clo(A)$. TFAE:

- Clo(A) has no clone homomorphism to 1
- A satisfies finite non-trivial set of equations (compactness theorem)
- **1** \notin HSP(**A**) and / or **1** \notin HSP^{fin}(**A**) (Birkhoff '35)

■ A has Taylor term (non-trivial linear equations) (Taylor '77)

A has weak near unanimity term $w(x,...,x,y) = w(x,...,x,y,x) = \cdots = w(y,x,...,x)$ (Maróti + McKenzie '08)

■ A has Siggers term s(x, y, x, z, y, z) = s(y, x, z, x, z, y) (Siggers '10)

Let **A** be a finite algebra, idempotent: f(x, ..., x) = x for all $f \in Clo(A)$. TFAE:

- Clo(A) has no clone homomorphism to 1
- A satisfies finite non-trivial set of equations (compactness theorem)
- **1** \notin HSP(**A**) and / or **1** \notin HSP^{fin}(**A**) (Birkhoff '35)

■ A has Taylor term (non-trivial linear equations) (Taylor '77)

- A has weak near unanimity term $w(x,...,x,y) = w(x,...,x,y,x) = \cdots = w(y,x,...,x)$ (Maróti + McKenzie '08)
- A has Siggers term *s*(*x*, *y*, *x*, *z*, *y*, *z*) = *s*(*y*, *x*, *z*, *x*, *z*, *y*) (Siggers '10)
- A has cyclic term $c(x_1, \ldots, x_n) = c(x_2, \ldots, x_n, x_1)$ (Barto + Kozik '11)

Equations in oligomorphic algebras

Michael Pinsker

Let $\mathbb{A} = (A; R_1, \dots, R_k)$ be a relational structure.

Let $\mathbb{A} = (A; R_1, \dots, R_k)$ be a relational structure.

Definition CSP(A)

INPUT: A primitive positive sentence

$$\phi \equiv \exists x_1 \cdots \exists x_n \ R_{i_1}(\ldots) \wedge \cdots \wedge R_{i_m}(\ldots)$$

QUESTION: $\mathbb{A} \models \phi$?

Let $\mathbb{A} = (A; R_1, \dots, R_k)$ be a relational structure.

Definition $CSP(\mathbb{A})$

INPUT: A primitive positive sentence

$$\phi \equiv \exists x_1 \cdots \exists x_n \ R_{i_1}(\ldots) \wedge \cdots \wedge R_{i_m}(\ldots)$$

QUESTION: $\mathbb{A} \models \phi$?

Conjecture (Feder + Vardi '98; Bulatov + Jeavons + Krokhin '02)

Let \mathbb{A} be finite, and Pol(\mathbb{A}) idempotent. Then:

Let $\mathbb{A} = (A; R_1, \dots, R_k)$ be a relational structure.

Definition $CSP(\mathbb{A})$

INPUT: A primitive positive sentence

$$\phi \equiv \exists x_1 \cdots \exists x_n \ R_{i_1}(\ldots) \wedge \cdots \wedge R_{i_m}(\ldots)$$

QUESTION: $\mathbb{A} \models \phi$?

Conjecture (Feder + Vardi '98; Bulatov + Jeavons + Krokhin '02)

Let \mathbb{A} be finite, and Pol(\mathbb{A}) idempotent. Then:

■ Pol(A) has clone homomorphism to 1

Let $\mathbb{A} = (A; R_1, \dots, R_k)$ be a relational structure.

Definition $CSP(\mathbb{A})$

INPUT: A primitive positive sentence

$$\phi \equiv \exists x_1 \cdots \exists x_n \ R_{i_1}(\ldots) \wedge \cdots \wedge R_{i_m}(\ldots)$$

QUESTION: $\mathbb{A} \models \phi$?

Conjecture (Feder + Vardi '98; Bulatov + Jeavons + Krokhin '02)

Let \mathbb{A} be finite, and Pol(\mathbb{A}) idempotent. Then:

Pol(A) has clone homomorphism to 1 (and CSP(A) is NP-complete), or

Let $\mathbb{A} = (A; R_1, \dots, R_k)$ be a relational structure.

Definition $CSP(\mathbb{A})$

INPUT: A primitive positive sentence

$$\phi \equiv \exists x_1 \cdots \exists x_n \ R_{i_1}(\ldots) \wedge \cdots \wedge R_{i_m}(\ldots)$$

QUESTION: $\mathbb{A} \models \phi$?

Conjecture (Feder + Vardi '98; Bulatov + Jeavons + Krokhin '02)

Let \mathbb{A} be finite, and Pol(\mathbb{A}) idempotent. Then:

- Pol(A) has clone homomorphism to 1 (and CSP(A) is NP-complete), or
- CSP(A) in P.

Equations in oligomorphic algebras

NP-hardness when \exists clone homomorphism $Pol(\mathbb{A}) \rightarrow 1$:

NP-hardness when ∃ clone homomorphism $Pol(\mathbb{A}) \rightarrow 1$: ⇒ 1 ∈ HSP^{fin}(Pol(\mathbb{A}))

NP-hardness when ∃ clone homomorphism $Pol(\mathbb{A}) \rightarrow 1$: ⇒ $1 \in HSP^{fin}(Pol(\mathbb{A})) \implies \mathbb{A}$ can simulate ("pp-interpret")

 $1-IN-3SAT := CSP(\{0,1\}; \{(0,0,1), (0,1,0), (1,0,0)\}).$
NP-hardness when ∃ clone homomorphism $Pol(\mathbb{A}) \rightarrow 1$: ⇒ $1 \in HSP^{fin}(Pol(\mathbb{A})) \implies \mathbb{A}$ can simulate ("pp-interpret") $1-IN-3SAT := CSP(\{0,1\}; \{(0,0,1), (0,1,0), (1,0,0)\}).$

Reduction to idempotent case:

NP-hardness when ∃ clone homomorphism $Pol(\mathbb{A}) \rightarrow 1$: ⇒ $1 \in HSP^{fin}(Pol(\mathbb{A})) \implies \mathbb{A}$ can simulate ("pp-interpret")

 $\label{eq:interm} \mbox{1-IN-3SAT} := \mbox{CSP}(\{0,1\};\{(0,0,1),(0,1,0),(1,0,0)\}).$

Reduction to idempotent case:

• A is homomorphically equivalent to a core \mathbb{A}^c : $\operatorname{Aut}(\mathbb{A}^c) = \operatorname{End}(\mathbb{A}^c)$.

 $\begin{array}{l} \text{NP-hardness} \text{ when } \exists \text{ clone homomorphism } \mathsf{Pol}(\mathbb{A}) \to \mathbf{1} : \\ \implies \mathbf{1} \in \mathsf{HSP}^{\mathsf{fin}}(\mathsf{Pol}(\mathbb{A})) \implies \mathbb{A} \text{ can simulate ("pp-interpret")} \end{array}$

 $\label{eq:interm} \mbox{1-IN-3SAT} := \mbox{CSP}(\{0,1\};\{(0,0,1),(0,1,0),(1,0,0)\}).$

Reduction to idempotent case:

■ A is homomorphically equivalent to a core \mathbb{A}^c : Aut(\mathbb{A}^c) = End(\mathbb{A}^c). \implies CSP(\mathbb{A}) = CSP(\mathbb{A}^c).

NP-hardness when \exists clone homomorphism $Pol(\mathbb{A}) \rightarrow \mathbf{1}$:

 \implies **1** \in HSP^{fin}(Pol(\mathbb{A})) \implies \mathbb{A} can simulate ("pp-interpret")

 $\label{eq:interm} \mbox{1-IN-3SAT} := \mbox{CSP}(\{0,1\};\{(0,0,1),(0,1,0),(1,0,0)\}).$

Reduction to idempotent case:

- A is homomorphically equivalent to a core \mathbb{A}^c : Aut(\mathbb{A}^c) = End(\mathbb{A}^c). \implies CSP(\mathbb{A}) = CSP(\mathbb{A}^c).
- CSP(\mathbb{A}^c) and CSP(\mathbb{A}^c , *a*) are polynomial-time equivalent (for any *a* ∈ \mathbb{A}^c).

NP-hardness when \exists clone homomorphism $Pol(\mathbb{A}) \rightarrow 1$:

 \implies **1** \in HSP^{fin}(Pol(\mathbb{A})) \implies \mathbb{A} can simulate ("pp-interpret")

 $\label{eq:interm} \begin{array}{l} 1\text{-}IN\text{-}3SAT := CSP(\{0,1\};\{(0,0,1),(0,1,0),(1,0,0)\}). \end{array}$

Reduction to idempotent case:

- A is homomorphically equivalent to a core \mathbb{A}^c : Aut(\mathbb{A}^c) = End(\mathbb{A}^c). ⇒ CSP(\mathbb{A}) = CSP(\mathbb{A}^c).
- CSP(\mathbb{A}^c) and CSP(\mathbb{A}^c , *a*) are polynomial-time equivalent (for any *a* ∈ \mathbb{A}^c). Add all *a* ∈ \mathbb{A}^c !

NP-hardness when \exists clone homomorphism $Pol(\mathbb{A}) \rightarrow 1$:

 $\implies \mathbf{1} \in \mathsf{HSP}^{\mathsf{fin}}(\mathsf{Pol}(\mathbb{A})) \implies \mathbb{A} \text{ can simulate ("pp-interpret")}$

 $\label{eq:interm} \mbox{1-IN-3SAT} := \mbox{CSP}(\{0,1\};\{(0,0,1),(0,1,0),(1,0,0)\}).$

Reduction to idempotent case:

- A is homomorphically equivalent to a core \mathbb{A}^c : Aut(\mathbb{A}^c) = End(\mathbb{A}^c). ⇒ CSP(\mathbb{A}) = CSP(\mathbb{A}^c).
- CSP(\mathbb{A}^c) and CSP(\mathbb{A}^c , *a*) are polynomial-time equivalent (for any *a* ∈ \mathbb{A}^c). Add all *a* ∈ \mathbb{A}^c !

Modifications preserve only linear equations (no nesting)...

NP-hardness when \exists clone homomorphism $Pol(\mathbb{A}) \rightarrow 1$:

 $\implies \mathbf{1} \in \mathsf{HSP}^{\mathsf{fin}}(\mathsf{Pol}(\mathbb{A})) \implies \mathbb{A} \text{ can simulate ("pp-interpret")}$

 $\label{eq:interm} \begin{array}{l} 1\text{-}\text{IN-3SAT} := \text{CSP}(\{0,1\};\{(0,0,1),(0,1,0),(1,0,0)\}). \end{array}$

Reduction to idempotent case:

- A is homomorphically equivalent to a core \mathbb{A}^c : Aut(\mathbb{A}^c) = End(\mathbb{A}^c). ⇒ CSP(\mathbb{A}) = CSP(\mathbb{A}^c).
- CSP(\mathbb{A}^c) and CSP(\mathbb{A}^c , *a*) are polynomial-time equivalent (for any *a* ∈ \mathbb{A}^c). Add all *a* ∈ \mathbb{A}^c !

Modifications preserve only linear equations (no nesting)...

Equivalent conjecture (Barto + Opršal + P)

NP-hardness when \exists clone homomorphism $Pol(\mathbb{A}) \rightarrow \mathbf{1}$:

 $\implies \textbf{1} \in \mathsf{HSP}^{\mathsf{fin}}(\mathsf{Pol}(\mathbb{A})) \implies \mathbb{A} \text{ can simulate ("pp-interpret")}$

 $\label{eq:interm} \begin{array}{l} 1\text{-}\text{IN-3SAT} := \text{CSP}(\{0,1\};\{(0,0,1),(0,1,0),(1,0,0)\}). \end{array}$

Reduction to idempotent case:

- A is homomorphically equivalent to a core \mathbb{A}^c : Aut(\mathbb{A}^c) = End(\mathbb{A}^c). ⇒ CSP(\mathbb{A}) = CSP(\mathbb{A}^c).
- CSP(\mathbb{A}^c) and CSP(\mathbb{A}^c , *a*) are polynomial-time equivalent (for any *a* ∈ \mathbb{A}^c). Add all *a* ∈ \mathbb{A}^c !

Modifications preserve only linear equations (no nesting)...

Equivalent conjecture (Barto + Opršal + P)

Let \mathbb{A} be finite. Then:

 Pol(A) has h1 clone homomorphism to 1 (preserving linear equ.) (and CSP(A) is NP-complete), or

• $CSP(\mathbb{A})$ in P.

II: Infinite domains: oligomorphicity

Equations in oligomorphic algebras

Trouble with infinite A:

Trouble with infinite A:

 $\blacksquare \exists \text{ clone homomorphism Pol}(A) \rightarrow 1 \implies 1 \in \mathsf{HSP}^{\mathsf{fin}}(A)$

Trouble with infinite A:

- $\blacksquare \ \exists \ \text{clone homomorphism Pol}(\textbf{A}) \rightarrow \textbf{1} \implies \textbf{1} \in \text{HSP}^{\text{fin}}(\textbf{A})$
- **1** \in HSP^{fin}(A) \implies simulation of 1-IN-3SAT

Trouble with infinite A:

- $\blacksquare \exists \text{ clone homomorphism Pol}(\textbf{A}) \rightarrow \textbf{1} \implies \textbf{1} \in \mathsf{HSP}^{\mathsf{fin}}(\textbf{A})$
- **1** \in HSP^{fin}(A) \implies simulation of 1-IN-3SAT

Solution:

Trouble with infinite A:

- $\blacksquare \exists \text{ clone homomorphism Pol}(\textbf{A}) \rightarrow \textbf{1} \implies \textbf{1} \in \mathsf{HSP}^{\mathsf{fin}}(\textbf{A})$
- **1** \in HSP^{fin}(A) \implies simulation of 1-IN-3SAT

Solution:

Let G be permutation group acting on countable set D.

Trouble with infinite A:

- $\blacksquare \exists \text{ clone homomorphism Pol}(\textbf{A}) \rightarrow \textbf{1} \implies \textbf{1} \in \mathsf{HSP}^{\mathsf{fin}}(\textbf{A})$
- **1** \in HSP^{fin}(A) \implies simulation of 1-IN-3SAT

Solution:

Let \mathcal{G} be permutation group acting on countable set D. \mathcal{G} oligomorphic : \Leftrightarrow componentwise action of \mathcal{G} on D^n

$$(\alpha, (\mathbf{d}_1, \ldots, \mathbf{d}_n)) \mapsto (\alpha(\mathbf{d}_1), \ldots, \alpha(\mathbf{d}_n))$$

has finitely many orbits, for all $n \ge 1$.

Trouble with infinite A:

- $\blacksquare \ \exists \ \text{clone homomorphism Pol}(\textbf{A}) \rightarrow \textbf{1} \implies \textbf{1} \in \text{HSP}^{\text{fin}}(\textbf{A})$
- **1** \in HSP^{fin}(A) \implies simulation of 1-IN-3SAT

Solution:

Let \mathcal{G} be permutation group acting on countable set D. \mathcal{G} oligomorphic : \Leftrightarrow componentwise action of \mathcal{G} on D^n

$$(\alpha, (\mathbf{d}_1, \ldots, \mathbf{d}_n)) \mapsto (\alpha(\mathbf{d}_1), \ldots, \alpha(\mathbf{d}_n))$$

has finitely many orbits, for all $n \ge 1$.

Structure \mathbb{A} oligomorphic (aka ω -categorical) : \Leftrightarrow Aut(\mathbb{A}) oligomorphic.

Trouble with infinite A:

- $\blacksquare \ \exists \ \text{clone homomorphism Pol}(\textbf{A}) \rightarrow \textbf{1} \implies \textbf{1} \in \text{HSP}^{\text{fin}}(\textbf{A})$
- **1** \in HSP^{fin}(A) \implies simulation of 1-IN-3SAT

Solution:

Let \mathcal{G} be permutation group acting on countable set D. \mathcal{G} oligomorphic : \Leftrightarrow componentwise action of \mathcal{G} on D^n

$$(\alpha, (\mathbf{d}_1, \ldots, \mathbf{d}_n)) \mapsto (\alpha(\mathbf{d}_1), \ldots, \alpha(\mathbf{d}_n))$$

has finitely many orbits, for all $n \ge 1$.

Structure \mathbb{A} oligomorphic (aka ω -categorical) : \Leftrightarrow Aut(\mathbb{A}) oligomorphic. Clone is oligomorphic : \Leftrightarrow contains an oligomorphic group.

Trouble with infinite A:

- $\blacksquare \ \exists \ \text{clone homomorphism Pol}(\textbf{A}) \rightarrow \textbf{1} \implies \textbf{1} \in \text{HSP}^{\text{fin}}(\textbf{A})$
- **1** \in HSP^{fin}(A) \implies simulation of 1-IN-3SAT

Solution:

Let \mathcal{G} be permutation group acting on countable set D. \mathcal{G} oligomorphic : \Leftrightarrow componentwise action of \mathcal{G} on D^n

$$(\alpha, (\mathbf{d}_1, \ldots, \mathbf{d}_n)) \mapsto (\alpha(\mathbf{d}_1), \ldots, \alpha(\mathbf{d}_n))$$

has finitely many orbits, for all $n \ge 1$.

Structure \mathbb{A} oligomorphic (aka ω -categorical) : \Leftrightarrow Aut(\mathbb{A}) oligomorphic. Clone is oligomorphic : \Leftrightarrow contains an oligomorphic group. Algebra is oligomorphic : \Leftrightarrow term clone is oligomorphic.

Trouble with infinite A:

- $\blacksquare \ \exists \ \text{clone homomorphism Pol}(\textbf{A}) \rightarrow \textbf{1} \implies \textbf{1} \in \text{HSP}^{\text{fin}}(\textbf{A})$
- **1** \in HSP^{fin}(A) \implies simulation of 1-IN-3SAT

Solution:

Let \mathcal{G} be permutation group acting on countable set D. \mathcal{G} oligomorphic : \Leftrightarrow componentwise action of \mathcal{G} on D^n

$$(\alpha, (\mathbf{d}_1, \ldots, \mathbf{d}_n)) \mapsto (\alpha(\mathbf{d}_1), \ldots, \alpha(\mathbf{d}_n))$$

has finitely many orbits, for all $n \ge 1$.

Structure \mathbb{A} oligomorphic (aka ω -categorical) : \Leftrightarrow Aut(\mathbb{A}) oligomorphic. Clone is oligomorphic : \Leftrightarrow contains an oligomorphic group. Algebra is oligomorphic : \Leftrightarrow term clone is oligomorphic.

For every $n \ge 1$, there are only finitely many *n*-tuples in the algebra / clone / structure modulo the group.

Equations in oligomorphic algebras

Theorem (Bodirsky + P '11)

Let \mathbb{A} be oligomorphic. TFAE:

Theorem (Bodirsky + P '11)

- Let \mathbb{A} be oligomorphic. TFAE:
 - Pol(A) has continuous clone homomorphism to 1.
 - $\blacksquare \ 1 \in \mathsf{HSP}^{\mathsf{fin}}(\mathsf{Pol}(\mathbb{A}))$
 - 1-IN-3SAT has pp-interpretation in A.

Theorem (Bodirsky + P '11)

- Let \mathbb{A} be oligomorphic. TFAE:
 - Pol(A) has continuous clone homomorphism to 1.
 - $\blacksquare \ 1 \in \mathsf{HSP}^{\mathsf{fin}}(\mathsf{Pol}(\mathbb{A}))$
 - 1-IN-3SAT has pp-interpretation in A.

Theorem (Bodirsky + P '11)

- Let \mathbbm{A} be oligomorphic. TFAE:
 - Pol(A) has continuous clone homomorphism to 1.
 - $\blacksquare \ 1 \in \mathsf{HSP}^{\mathsf{fin}}(\mathsf{Pol}(\mathbb{A}))$
 - 1-IN-3SAT has pp-interpretation in A.

Remarks

Topology on clones = topology of pointwise convergence

Theorem (Bodirsky + P '11)

- Let \mathbbm{A} be oligomorphic. TFAE:
 - Pol(A) has continuous clone homomorphism to 1.
 - $\blacksquare \ 1 \in \mathsf{HSP}^{\mathsf{fin}}(\mathsf{Pol}(\mathbb{A}))$
 - 1-IN-3SAT has pp-interpretation in A.

Remarks

Topology on clones = topology of pointwise convergence $(f_i)_{i \in \omega} \rightarrow f : \leftrightarrow f_i(\bar{a}) = f(\bar{a})$ eventually, for all \bar{a} . $(f_i, f \text{ of same arity; "sorts" are clopen sets})$

Theorem (Bodirsky + P '11)

- Let \mathbbm{A} be oligomorphic. TFAE:
 - Pol(A) has continuous clone homomorphism to **1**.
 - $\blacksquare \ 1 \in \mathsf{HSP}^{\mathsf{fin}}(\mathsf{Pol}(\mathbb{A}))$
 - 1-IN-3SAT has pp-interpretation in A.

Remarks

Topology on clones = topology of pointwise convergence $(f_i)_{i \in \omega} \to f : \leftrightarrow f_i(\bar{a}) = f(\bar{a})$ eventually, for all \bar{a} . $(f_i, f \text{ of same arity; "sorts" are clopen sets})$

Failure of the above ⇔ something positive, and algebraic?

Equations in oligomorphic algebras

Michael Pinsker

Oligomorphicity = anti-idempotency!

Oligomorphicity = anti-idempotency!

Theorem (Bodirsky '03; Barto + Kompatscher + Olšák + Pham + P '16) Every oligomorphic structure \mathbb{A} is homomorphically equivalent to a unique oligomorphic model-complete core \mathbb{A}^{c} :

 $\overline{\operatorname{Aut}(\mathbb{A}^c)} = \operatorname{End}(\mathbb{A}^c)$

Oligomorphicity = anti-idempotency!

Theorem (Bodirsky '03; Barto + Kompatscher + Olšák + Pham + P '16) Every oligomorphic structure \mathbb{A} is homomorphically equivalent to a unique oligomorphic model-complete core \mathbb{A}^{c} :

 $\overline{\operatorname{Aut}(\mathbb{A}^c)} = \operatorname{End}(\mathbb{A}^c)$

Oligomorphicity = anti-idempotency!

Theorem (Bodirsky '03; Barto + Kompatscher + Olšák + Pham + P '16) Every oligomorphic structure \mathbb{A} is homomorphically equivalent to a unique oligomorphic model-complete core \mathbb{A}^{c} :

 $\overline{\operatorname{Aut}(\mathbb{A}^c)} = \operatorname{End}(\mathbb{A}^c)$

$$\blacksquare \operatorname{CSP}(\mathbb{A}) = \operatorname{CSP}(\mathbb{A}^c)$$

Oligomorphicity = anti-idempotency!

Theorem (Bodirsky '03; Barto + Kompatscher + Olšák + Pham + P '16) Every oligomorphic structure \mathbb{A} is homomorphically equivalent to a unique oligomorphic model-complete core \mathbb{A}^{c} :

 $\overline{\operatorname{Aut}(\mathbb{A}^c)} = \operatorname{End}(\mathbb{A}^c)$

- $\blacksquare \operatorname{CSP}(\mathbb{A}) = \operatorname{CSP}(\mathbb{A}^c)$
- $CSP(\mathbb{A}^c)$ and $CSP(\mathbb{A}^c, a)$ polynomial-time equivalent

Oligomorphicity = anti-idempotency!

Theorem (Bodirsky '03; Barto + Kompatscher + Olšák + Pham + P '16) Every oligomorphic structure \mathbb{A} is homomorphically equivalent to a unique oligomorphic model-complete core \mathbb{A}^{c} :

 $\overline{\operatorname{Aut}(\mathbb{A}^c)} = \operatorname{End}(\mathbb{A}^c)$

- $\blacksquare \operatorname{CSP}(\mathbb{A}) = \operatorname{CSP}(\mathbb{A}^c)$
- $CSP(\mathbb{A}^c)$ and $CSP(\mathbb{A}^c, a)$ polynomial-time equivalent
- $Pol(\mathbb{A}^c, a)$ is the stabilizer of a in $Pol(\mathbb{A}^c)$

Oligomorphicity = anti-idempotency!

Theorem (Bodirsky '03; Barto + Kompatscher + Olšák + Pham + P '16) Every oligomorphic structure \mathbb{A} is homomorphically equivalent to a unique oligomorphic model-complete core \mathbb{A}^{c} :

 $\overline{\operatorname{Aut}(\mathbb{A}^c)} = \operatorname{End}(\mathbb{A}^c)$

- $\blacksquare \ \mathsf{CSP}(\mathbb{A}) = \mathsf{CSP}(\mathbb{A}^c)$
- $CSP(\mathbb{A}^c)$ and $CSP(\mathbb{A}^c, a)$ polynomial-time equivalent
- $Pol(\mathbb{A}^{c}, a)$ is the stabilizer of a in $Pol(\mathbb{A}^{c})$
- Can only add finitely many $a \in \mathbb{A}^c$, so no idempotency

The old infinite CSP conjecture

Equations in oligomorphic algebras

Michael Pinsker
Old Conjecture (Bodirsky + P '11)

Let \mathbb{A} be a reduct of finitely bounded homogeneous structure (\implies oligomorphic).

Old Conjecture (Bodirsky + P '11)

Let $\mathbb A$ be a reduct of finitely bounded homogeneous structure (\implies oligomorphic).

Then:

■ Some stabilizer of Pol(A^c) has cont. clone homomorphism to 1 (⇒ CSP(A) is NP-complete), or

• $CSP(\mathbb{A})$ in P.

III: Oligomorphic "Taylor" algebras

Equations in oligomorphic algebras

Finite case: A Taylor \Leftrightarrow idempotent + non-trivial equations.

Finite case: A Taylor \Leftrightarrow idempotent + non-trivial equations.

Oligomorphic case: Cannot have idempotency, but model-complete core.

Finite case: A Taylor \Leftrightarrow idempotent + non-trivial equations.

Oligomorphic case: Cannot have idempotency, but model-complete core.

What happens for oligomorphic model-complete core \mathbb{A} when:

Finite case: A Taylor \Leftrightarrow idempotent + non-trivial equations.

Oligomorphic case: Cannot have idempotency, but model-complete core.

What happens for oligomorphic model-complete core \mathbb{A} when:

(1) $\not\exists$ clone homomorphism $Pol(\mathbb{A}) \rightarrow 1$?

Finite case: A Taylor \Leftrightarrow idempotent + non-trivial equations.

Oligomorphic case: Cannot have idempotency, but model-complete core.

What happens for oligomorphic model-complete core \mathbb{A} when:

- (1) $\not\exists$ clone homomorphism $Pol(\mathbb{A}) \rightarrow 1$?
- (2) $\not\exists$ continuous clone homomorphism $Pol(\mathbb{A}) \rightarrow 1$?

Finite case: A Taylor \Leftrightarrow idempotent + non-trivial equations.

Oligomorphic case: Cannot have idempotency, but model-complete core.

What happens for oligomorphic model-complete core \mathbb{A} when:

- (1) $\not\exists$ clone homomorphism $\mathsf{Pol}(\mathbb{A}) \to \mathbf{1}$?
- (2) $\not\exists$ continuous clone homomorphism $Pol(\mathbb{A}) \rightarrow 1$?
- (3) $\not\exists$ continuous clone homomorphism from any $Pol(\mathbb{A}, a_1, \ldots, a_n) \rightarrow \mathbf{1}$?

Finite case: A Taylor \Leftrightarrow idempotent + non-trivial equations.

Oligomorphic case: Cannot have idempotency, but model-complete core.

What happens for oligomorphic model-complete core A when:

- (1) $\not\exists$ clone homomorphism $\mathsf{Pol}(\mathbb{A}) \to \mathbf{1}$?
- (2) $\not\exists$ continuous clone homomorphism $Pol(\mathbb{A}) \rightarrow 1$?
- (3) $\not\exists$ continuous clone homomorphism from any $Pol(\mathbb{A}, a_1, \ldots, a_n) \rightarrow \mathbf{1}$?

Finite case: A Taylor \Leftrightarrow idempotent + non-trivial equations.

Oligomorphic case: Cannot have idempotency, but model-complete core.

What happens for oligomorphic model-complete core A when:

- (1) $\not\exists$ clone homomorphism $\mathsf{Pol}(\mathbb{A}) \to \mathbf{1}$?
- (2) $\not\exists$ continuous clone homomorphism $Pol(\mathbb{A}) \rightarrow 1$?
- (3) $\not\exists$ continuous clone homomorphism from any $Pol(\mathbb{A}, a_1, \ldots, a_n) \rightarrow 1$?

Remarks

■ (1) and (2) equivalent? Open.

Finite case: A Taylor \Leftrightarrow idempotent + non-trivial equations.

Oligomorphic case: Cannot have idempotency, but model-complete core.

What happens for oligomorphic model-complete core A when:

- (1) $\not\exists$ clone homomorphism $\mathsf{Pol}(\mathbb{A}) \to \mathbf{1}$?
- (2) $\not\exists$ continuous clone homomorphism $Pol(\mathbb{A}) \rightarrow 1$?
- (3) $\not\exists$ continuous clone homomorphism from any $Pol(\mathbb{A}, a_1, \ldots, a_n) \rightarrow 1$?

- (1) and (2) equivalent? Open.
- (2) and (3) not equivalent.

Finite case: A Taylor \Leftrightarrow idempotent + non-trivial equations.

Oligomorphic case: Cannot have idempotency, but model-complete core.

What happens for oligomorphic model-complete core A when:

- (1) $\not\exists$ clone homomorphism $\mathsf{Pol}(\mathbb{A}) \to \mathbf{1}$?
- (2) $\not\exists$ continuous clone homomorphism $Pol(\mathbb{A}) \rightarrow 1$?
- (3) $\not\exists$ continuous clone homomorphism from any $Pol(\mathbb{A}, a_1, \ldots, a_n) \rightarrow \mathbf{1}$?

- (1) and (2) equivalent? Open.
- (2) and (3) not equivalent.
- (3) is relevant for CSP ⇒ our definition of "Taylor algebra"!

Equations in oligomorphic algebras

Theorem (Barto + P '16)

Let \mathbb{A} be an oligomorphic model-complete core. TFAE:

Theorem (Barto + P '16)

Let \mathbb{A} be an oligomorphic model-complete core. TFAE:

■ No stabilizer of Pol(A) has cont. clone homomorphism to 1.

Theorem (Barto + P '16)

Let \mathbb{A} be an oligomorphic model-complete core. TFAE:

- No stabilizer of Pol(A) has cont. clone homomorphism to 1.
- Pol(\mathbb{A}) contains u, v, f with

$$uf(x, y, x, z, y, z) = vf(y, x, z, x, z, y)$$

Theorem (Barto + P '16)

Let \mathbb{A} be an oligomorphic model-complete core. TFAE:

- No stabilizer of Pol(A) has cont. clone homomorphism to 1.
- Pol(\mathbb{A}) contains u, v, f with

$$uf(x, y, x, z, y, z) = vf(y, x, z, x, z, y)$$

Theorem (Barto + P '16)

Let \mathbb{A} be an oligomorphic model-complete core. TFAE:

- No stabilizer of Pol(A) has cont. clone homomorphism to 1.
- Pol(\mathbb{A}) contains u, v, f with

$$uf(x, y, x, z, y, z) = vf(y, x, z, x, z, y)$$

Remarks

■ *f* called pseudo-Siggers function.

Theorem (Barto + P '16)

Let \mathbb{A} be an oligomorphic model-complete core. TFAE:

- No stabilizer of Pol(A) has cont. clone homomorphism to 1.
- Pol(\mathbb{A}) contains u, v, f with

$$uf(x, y, x, z, y, z) = vf(y, x, z, x, z, y)$$

- *f* called pseudo-Siggers function.
- Pseudo-Siggers equation "survives" stabilizing prevents clone homomorphisms to 1 from all stabilizers.

Theorem (Barto + P '16)

Let \mathbb{A} be an oligomorphic model-complete core. TFAE:

- No stabilizer of Pol(A) has cont. clone homomorphism to 1.
- Pol(\mathbb{A}) contains u, v, f with

$$uf(x, y, x, z, y, z) = vf(y, x, z, x, z, y)$$

- *f* called pseudo-Siggers function.
- Pseudo-Siggers equation "survives" stabilizing prevents clone homomorphisms to 1 from all stabilizers.
- Criterion positive, algebraic, finite.

Old Conjecture (reformulated)

Let $\mathbb A$ be a reduct of finitely bounded homogeneous structure (\implies oligomorphic).

Then:

- Some stabilizer of Pol(A^c) has cont. clone homomorphism to 1 (⇒ CSP(A) is NP-complete), or
- $Pol(\mathbb{A}^{c})$ has pseudo-Siggers function, and $CSP(\mathbb{A})$ in P.

Old Conjecture (reformulated)

Let $\mathbb A$ be a reduct of finitely bounded homogeneous structure (\implies oligomorphic).

Then:

- Some stabilizer of Pol(A^c) has cont. clone homomorphism to 1 (⇒ CSP(A) is NP-complete), or
- $Pol(\mathbb{A}^{c})$ has pseudo-Siggers function, and $CSP(\mathbb{A})$ in P.

Old Conjecture (reformulated)

Let $\mathbb A$ be a reduct of finitely bounded homogeneous structure (\implies oligomorphic).

Then:

- Some stabilizer of Pol(A^c) has cont. clone homomorphism to 1 (⇒ CSP(A) is NP-complete), or
- $Pol(\mathbb{A}^{c})$ has pseudo-Siggers function, and $CSP(\mathbb{A})$ in P.

Remarks

■ Algebraic criterion in terms of $Pol(\mathbb{A}^c)$, not $Pol(\mathbb{A})$

Old Conjecture (reformulated)

Let $\mathbb A$ be a reduct of finitely bounded homogeneous structure (\implies oligomorphic).

Then:

- Some stabilizer of Pol(A^c) has cont. clone homomorphism to 1 (⇒ CSP(A) is NP-complete), or
- $Pol(\mathbb{A}^{c})$ has pseudo-Siggers function, and $CSP(\mathbb{A})$ in P.

Remarks

- Algebraic criterion in terms of $Pol(\mathbb{A}^c)$, not $Pol(\mathbb{A})$
- Relies on possibly non-optimal order:

 $\mathbb{A} \implies \mathbb{A}^{c} \implies \text{stabilize} \implies \text{pp-interpret}$

Equations in oligomorphic algebras

Michael Pinsker

New Conjecture (Barto + Opršal + P '14)

Let $\ensuremath{\mathbb{A}}$ be a reduct of finitely bounded homogeneous structure. Then:

- Pol(A) has uniformly cont. h1 clone homomorphism to 1 (⇒ CSP(A) is NP-complete), or
- $CSP(\mathbb{A})$ in P.

New Conjecture (Barto + Opršal + P '14)

Let $\ensuremath{\mathbb{A}}$ be a reduct of finitely bounded homogeneous structure. Then:

- Pol(A) has uniformly cont. h1 clone homomorphism to 1 (⇒ CSP(A) is NP-complete), or
- $CSP(\mathbb{A})$ in P.

Remarks

 New Conjecture uses optimal order of general CSP reductions (homomorphic equivalence, pp-interpretations, adding constants)

New Conjecture (Barto + Opršal + P '14)

Let $\ensuremath{\mathbb{A}}$ be a reduct of finitely bounded homogeneous structure. Then:

- Pol(A) has uniformly cont. h1 clone homomorphism to 1 (⇒ CSP(A) is NP-complete), or
- $CSP(\mathbb{A})$ in P.

- New Conjecture uses optimal order of general CSP reductions (homomorphic equivalence, pp-interpretations, adding constants)
- $\blacksquare \mathsf{Old} \implies \mathsf{New}$

New Conjecture (Barto + Opršal + P '14)

Let $\ensuremath{\mathbb{A}}$ be a reduct of finitely bounded homogeneous structure. Then:

- Pol(A) has uniformly cont. h1 clone homomorphism to 1 (⇒ CSP(A) is NP-complete), or
- $CSP(\mathbb{A})$ in P.

- New Conjecture uses optimal order of general CSP reductions (homomorphic equivalence, pp-interpretations, adding constants)
- $\blacksquare \mathsf{Old} \implies \mathsf{New}$
- For finite A equivalent (Siggers vs. Pseudo-Siggers)

New Conjecture (Barto + Opršal + P '14)

Let \mathbbm{A} be a reduct of finitely bounded homogeneous structure. Then:

- Pol(A) has uniformly cont. h1 clone homomorphism to 1 (⇒ CSP(A) is NP-complete), or
- $CSP(\mathbb{A})$ in P.

- New Conjecture uses optimal order of general CSP reductions (homomorphic equivalence, pp-interpretations, adding constants)
- $\blacksquare \mathsf{Old} \implies \mathsf{New}$
- For finite A equivalent (Siggers vs. Pseudo-Siggers)
- Positive and algebraic criterions missing.

New Conjecture (Barto + Opršal + P '14)

Let $\ensuremath{\mathbb{A}}$ be a reduct of finitely bounded homogeneous structure. Then:

- Pol(A) has uniformly cont. h1 clone homomorphism to 1 (⇒ CSP(A) is NP-complete), or
- $CSP(\mathbb{A})$ in P.

- New Conjecture uses optimal order of general CSP reductions (homomorphic equivalence, pp-interpretations, adding constants)
- $\blacksquare \mathsf{Old} \implies \mathsf{New}$
- For finite A equivalent (Siggers vs. Pseudo-Siggers)
- Positive and algebraic criterions missing.
- Criterion in terms of $Pol(\mathbb{A})$ rather than $Pol(\mathbb{A}^c)$.

New Conjecture (Barto + Opršal + P '14)

Let $\ensuremath{\mathbb{A}}$ be a reduct of finitely bounded homogeneous structure. Then:

- Pol(A) has uniformly cont. h1 clone homomorphism to 1 (⇒ CSP(A) is NP-complete), or
- $CSP(\mathbb{A})$ in P.

- New Conjecture uses optimal order of general CSP reductions (homomorphic equivalence, pp-interpretations, adding constants)
- $\blacksquare \mathsf{Old} \implies \mathsf{New}$
- For finite A equivalent (Siggers vs. Pseudo-Siggers)
- Positive and algebraic criterions missing.
- Criterion in terms of $Pol(\mathbb{A})$ rather than $Pol(\mathbb{A}^c)$.
- Avoids model-complete core \mathbb{A}^{c} .

IV: Linear equations
Equations in oligomorphic algebras

Two statements for oligomorphic A:

Two statements for oligomorphic A:

(1) $Pol(\mathbb{A})$ has no uniformly cont. h1 clone homomorphism to 1.

Two statements for oligomorphic A:

- (1) $Pol(\mathbb{A})$ has no uniformly cont. h1 clone homomorphism to 1.
- (2) $Pol(\mathbb{A}^c)$ has pseudo-Siggers function.

Two statements for oligomorphic A:

- (1) $Pol(\mathbb{A})$ has no uniformly cont. h1 clone homomorphism to 1.
- (2) $Pol(\mathbb{A}^{c})$ has pseudo-Siggers function.

(1) ⇒ **(2)**:

no u.c. h1 clone homomorphism from $Pol(\mathbb{A}) \implies$

no u.c. (h1) clone homomorphism from any stabilizer of $Pol(\mathbb{A}^c) \implies$ pseudo-Siggers function.

Two statements for oligomorphic A:

- (1) $Pol(\mathbb{A})$ has no uniformly cont. h1 clone homomorphism to 1.
- (2) $Pol(\mathbb{A}^c)$ has pseudo-Siggers function.

(1) ⇒ **(2)**:

no u.c. h1 clone homomorphism from $Pol(\mathbb{A}) \implies$ no u.c. (h1) clone homomorphism from any stabilizer of $Pol(\mathbb{A}^c) \implies$

pseudo-Siggers function.

Theorem (Barto + Kompatscher + Olšák + Pham + P '16)

For the countable atomless Boolean algebra A:

- A is oligomorphic model-complete core;
- **Pol**(\mathbb{A}) has uniformly cont. h1 clone homomorphism to **1**;
- Pol(A) has pseudo-Siggers function.

Equations in oligomorphic algebras

Theorem (Barto + Kompatscher + Olšák + Pham + P '16)

Let \mathbbm{A} be oligomorphic model-complete core such that:

- \blacksquare A has uniformly cont. h1 clone homomorphism to 1.
- A has pseudo-Siggers function.

Theorem (Barto + Kompatscher + Olšák + Pham + P '16)

Let \mathbb{A} be oligomorphic model-complete core such that:

- \blacksquare A has uniformly cont. h1 clone homomorphism to **1**.
- A has pseudo-Siggers function.

Then the number orbits of the action of $Aut(\mathbb{A})$ on \mathbb{A}^n grows double exponentially in *n*.

Theorem (Barto + Kompatscher + Olšák + Pham + P '16)

Let \mathbb{A} be oligomorphic model-complete core such that:

- \blacksquare A has uniformly cont. h1 clone homomorphism to **1**.
- A has pseudo-Siggers function.

Then the number orbits of the action of $Aut(\mathbb{A})$ on \mathbb{A}^n grows double exponentially in *n*.

Corollary

Old Conjecture \Leftrightarrow New Conjecture.

Theorem (Barto + Kompatscher + Olšák + Pham + P '16)

Let \mathbb{A} be oligomorphic model-complete core such that:

- \blacksquare A has uniformly cont. h1 clone homomorphism to **1**.
- A has pseudo-Siggers function.

Then the number orbits of the action of $Aut(\mathbb{A})$ on \mathbb{A}^n grows double exponentially in *n*.

Corollary

Old Conjecture \Leftrightarrow New Conjecture.

Proof. Reducts of finitely bounded homogeneous structures have at most exponential orbit growth.

Theorem (Barto + Kompatscher + Olšák + Pham + P '16)

Let \mathbb{A} be oligomorphic model-complete core such that:

- \blacksquare A has uniformly cont. h1 clone homomorphism to **1**.
- A has pseudo-Siggers function.

Then the number orbits of the action of $Aut(\mathbb{A})$ on \mathbb{A}^n grows double exponentially in *n*.

Corollary

Old Conjecture \Leftrightarrow New Conjecture.

Proof. Reducts of finitely bounded homogeneous structures have at most exponential orbit growth.

Remark. Higher-arity structure of $Pol(\mathbb{A}) \implies structure of Aut(\mathbb{A})!$

Equations in oligomorphic algebras

Equivalent in model-complete core \mathbb{A} with less than double exponential orbit growth:

Equivalent in model-complete core \mathbb{A} with less than double exponential orbit growth:

- Pol(A) has pseudo-Siggers function.
- **Pol**(\mathbb{A}) has no uniformly cont. h1 clone homomorphism to **1**.

Equivalent in model-complete core \mathbb{A} with less than double exponential orbit growth:

- Pol(A) has pseudo-Siggers function.
- **Pol**(\mathbb{A}) has no uniformly cont. h1 clone homomorphism to **1**.

So: pseudo-Siggers \implies which linear equations?

Equivalent in model-complete core \mathbb{A} with less than double exponential orbit growth:

- Pol(A) has pseudo-Siggers function.
- **Pol**(\mathbb{A}) has no uniformly cont. h1 clone homomorphism to **1**.

So: pseudo-Siggers \implies which linear equations? None! (or maybe some?)

Equivalent in model-complete core \mathbb{A} with less than double exponential orbit growth:

- Pol(A) has pseudo-Siggers function.
- Pol(\mathbb{A}) has no uniformly cont. h1 clone homomorphism to 1.

So: pseudo-Siggers \implies which linear equations? None! (or maybe some?)

Theorem (Barto + Kompatscher + Olšák + Pham + P '16)

Let $\mathbb A$ be a reduct of finitely bounded homogeneous structure $\mathbb D.$

Suppose $Pol(\mathbb{A})$ contains function $f(x_1, ..., x_k)$ for large enough k such that for all permutations σ of $\{1, ..., k\}$

$$u_{\sigma} f(x_1,\ldots,x_k) = v_{\sigma} f(x_{\sigma(1)},\ldots,x_{\sigma(k)})$$

for unary $u_{\sigma}, v_{\sigma} \in \mathsf{End}(\mathbb{D})$.

Then $Pol(\mathbb{A})$ satisfies non-trivial linear equations.

Equations in oligomorphic algebras

Successful CSP classifications

Successful CSP classifications

for reducts of finitely bounded homogeneous structures:

■ (N; =) ("Equality CSPs"; Bodirsky + Kára '06)

Successful CSP classifications

- (N; =) ("Equality CSPs"; Bodirsky + Kára '06)
- (Q; <) ("Temporal CSPs"; Bodirsky + Kára '08)

Successful CSP classifications

- (N; =) ("Equality CSPs"; Bodirsky + Kára '06)
- (Q; <) ("Temporal CSPs"; Bodirsky + Kára '08)
- Random graph ("Graph-SAT problems"; Bodirsky + P '11)

Successful CSP classifications

- (N; =) ("Equality CSPs"; Bodirsky + Kára '06)
- (Q; <) ("Temporal CSPs"; Bodirsky + Kára '08)
- Random graph ("Graph-SAT problems"; Bodirsky + P '11)
- Random partial order ("Poset-SAT problems"; Kompatscher + Pham '16)

Successful CSP classifications

for reducts of finitely bounded homogeneous structures:

- (N; =) ("Equality CSPs"; Bodirsky + Kára '06)
- (Q; <) ("Temporal CSPs"; Bodirsky + Kára '08)
- Random graph ("Graph-SAT problems"; Bodirsky + P '11)
- Random partial order ("Poset-SAT problems"; Kompatscher + Pham '16)

Theorem (Barto + Kompatscher + Olšák + Pham + P '16)

If $\mathbb A$ is a reduct of any of the above structures, then:

- Pol(A) has uniformly cont. h1 clone homomorphism to 1, and CSP(A) is NP-complete, or
- Pol(A) satisfies non-trivial linear equations, and CSP(A) is in P.

V: Open problems

Equations in oligomorphic algebras

For infinite \mathbb{A} :

For infinite \mathbb{A} :

Problem If $Pol(\mathbb{A})$ has a clone homomorphism to **1**, does it have a continuous such homomorphism?

For infinite \mathbb{A} :

Problem If $Pol(\mathbb{A})$ has a clone homomorphism to **1**, does it have a continuous such homomorphism?

Problem

```
If 1 \in HSP(Pol(\mathbb{A})) then 1 \in HSP^{fin}(Pol(\mathbb{A}))?
```

For infinite \mathbb{A} :

Problem

If $Pol(\mathbb{A})$ has a clone homomorphism to **1**, does it have a continuous such homomorphism?

Problem

```
If 1 \in HSP(Pol(\mathbb{A})) then 1 \in HSP^{fin}(Pol(\mathbb{A}))?
```

Problem

If $Pol(\mathbb{A})$ has an h1 clone homomorphism to **1**, does it have a uniformly continuous such homomorphism?

- L. Barto, M. Kompatscher, M. Olšák, T. V. Pham, and M. Pinsker
- Equations in oligomorphic clones and the Constraint Satisfaction Problem for ω -categorical structures
- Preprint arXiv:1612.07551

Thank you!

Equations in oligomorphic algebras

Michael Pinsker