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I: Finite Taylor algebras & Constraint Satisfaction Problems
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Non-trivial equations

Universal algebra: A = (A; (fi)i∈I) algebra.
Equations in A⇒ structure of A, e.g., congruence lattice.

Example: A has m(x , x , y) = m(y , x , x) = y → congruences permute.

Extreme case: only know that A satisfies some non-trivial equations.

Non-trivial equations: cannot be satisfied by projections:

6 ∃ ξ : Clo(A)→ 1

Clo(A). . . term clone of A, 1. . . clone of projections on {0,1},
ξ clone homomorphism (“ξ preserves equations"):

ξ preserves arities
ξ preserves projections
ξ(f (g1, . . . ,gn)) = ξ(f )(ξ(g1), . . . , ξ(gn)).
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Taylor algebras

Let A be a finite algebra, idempotent: f (x , . . . , x) = x for all f ∈ Clo(A).
TFAE:

Clo(A) has no clone homomorphism to 1

A satisfies finite non-trivial set of equations
(compactness theorem)

1 /∈ HSP(A) and / or 1 /∈ HSPfin(A) (Birkhoff ’35)

A has Taylor term (non-trivial linear equations) (Taylor ’77)

A has weak near unanimity term
w(x , . . . , x , y) = w(x , . . . , x , y , x) = · · · = w(y , x , . . . , x)
(Maróti + McKenzie ’08)

A has Siggers term s(x , y , x , z, y , z) = s(y , x , z, x , z, y)
(Siggers ’10)

A has cyclic term c(x1, . . . , xn) = c(x2, . . . , xn, x1)
(Barto + Kozik ’11)
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Constraint Satisfaction Problems (CSPs)

Let A = (A; R1, . . . ,Rk ) be a relational structure.

Definition CSP(A)

INPUT: A primitive positive sentence

φ ≡ ∃x1 · · · ∃xn Ri1(. . .) ∧ · · · ∧ Rim (. . .)

QUESTION: A |= φ ?

Conjecture (Feder + Vardi ’98; Bulatov + Jeavons + Krokhin ’02)

Let A be finite, and Pol(A) idempotent. Then:

Pol(A) has clone homomorphism to 1
(and CSP(A) is NP-complete), or

CSP(A) in P.
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Idempotency + cores

NP-hardness when ∃ clone homomorphism Pol(A)→ 1:
=⇒ 1 ∈ HSPfin(Pol(A)) =⇒ A can simulate (“pp-interpret")

1-IN-3SAT := CSP({0,1}; {(0,0,1), (0,1,0), (1,0,0)}).
Reduction to idempotent case:

A is homomorphically equivalent to a core Ac : Aut(Ac) = End(Ac).
=⇒ CSP(A) = CSP(Ac).
CSP(Ac) and CSP(Ac ,a) are polynomial-time equivalent
(for any a ∈ Ac). Add all a ∈ Ac !

Modifications preserve only linear equations (no nesting). . .

Equivalent conjecture (Barto + Opršal + P)

Let A be finite. Then:
Pol(A) has h1 clone homomorphism to 1 (preserving linear equ.)
(and CSP(A) is NP-complete), or
CSP(A) in P.
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Reduction to idempotent case:

A is homomorphically equivalent to a core Ac : Aut(Ac) = End(Ac).
=⇒ CSP(A) = CSP(Ac).
CSP(Ac) and CSP(Ac ,a) are polynomial-time equivalent
(for any a ∈ Ac).

Add all a ∈ Ac !

Modifications preserve only linear equations (no nesting). . .

Equivalent conjecture (Barto + Opršal + P)

Let A be finite. Then:
Pol(A) has h1 clone homomorphism to 1 (preserving linear equ.)
(and CSP(A) is NP-complete), or
CSP(A) in P.

Equations in oligomorphic algebras Michael Pinsker



Idempotency + cores

NP-hardness when ∃ clone homomorphism Pol(A)→ 1:
=⇒ 1 ∈ HSPfin(Pol(A)) =⇒ A can simulate (“pp-interpret")

1-IN-3SAT := CSP({0,1}; {(0,0,1), (0,1,0), (1,0,0)}).
Reduction to idempotent case:

A is homomorphically equivalent to a core Ac : Aut(Ac) = End(Ac).
=⇒ CSP(A) = CSP(Ac).
CSP(Ac) and CSP(Ac ,a) are polynomial-time equivalent
(for any a ∈ Ac). Add all a ∈ Ac !

Modifications preserve only linear equations (no nesting). . .

Equivalent conjecture (Barto + Opršal + P)

Let A be finite. Then:
Pol(A) has h1 clone homomorphism to 1 (preserving linear equ.)
(and CSP(A) is NP-complete), or
CSP(A) in P.

Equations in oligomorphic algebras Michael Pinsker



Idempotency + cores

NP-hardness when ∃ clone homomorphism Pol(A)→ 1:
=⇒ 1 ∈ HSPfin(Pol(A)) =⇒ A can simulate (“pp-interpret")

1-IN-3SAT := CSP({0,1}; {(0,0,1), (0,1,0), (1,0,0)}).
Reduction to idempotent case:

A is homomorphically equivalent to a core Ac : Aut(Ac) = End(Ac).
=⇒ CSP(A) = CSP(Ac).
CSP(Ac) and CSP(Ac ,a) are polynomial-time equivalent
(for any a ∈ Ac). Add all a ∈ Ac !

Modifications preserve only linear equations (no nesting). . .

Equivalent conjecture (Barto + Opršal + P)

Let A be finite. Then:
Pol(A) has h1 clone homomorphism to 1 (preserving linear equ.)
(and CSP(A) is NP-complete), or
CSP(A) in P.

Equations in oligomorphic algebras Michael Pinsker



Idempotency + cores

NP-hardness when ∃ clone homomorphism Pol(A)→ 1:
=⇒ 1 ∈ HSPfin(Pol(A)) =⇒ A can simulate (“pp-interpret")

1-IN-3SAT := CSP({0,1}; {(0,0,1), (0,1,0), (1,0,0)}).
Reduction to idempotent case:

A is homomorphically equivalent to a core Ac : Aut(Ac) = End(Ac).
=⇒ CSP(A) = CSP(Ac).
CSP(Ac) and CSP(Ac ,a) are polynomial-time equivalent
(for any a ∈ Ac). Add all a ∈ Ac !

Modifications preserve only linear equations (no nesting). . .

Equivalent conjecture (Barto + Opršal + P)

Let A be finite. Then:
Pol(A) has h1 clone homomorphism to 1 (preserving linear equ.)
(and CSP(A) is NP-complete), or
CSP(A) in P.

Equations in oligomorphic algebras Michael Pinsker



Idempotency + cores

NP-hardness when ∃ clone homomorphism Pol(A)→ 1:
=⇒ 1 ∈ HSPfin(Pol(A)) =⇒ A can simulate (“pp-interpret")

1-IN-3SAT := CSP({0,1}; {(0,0,1), (0,1,0), (1,0,0)}).
Reduction to idempotent case:

A is homomorphically equivalent to a core Ac : Aut(Ac) = End(Ac).
=⇒ CSP(A) = CSP(Ac).
CSP(Ac) and CSP(Ac ,a) are polynomial-time equivalent
(for any a ∈ Ac). Add all a ∈ Ac !

Modifications preserve only linear equations (no nesting). . .

Equivalent conjecture (Barto + Opršal + P)

Let A be finite. Then:
Pol(A) has h1 clone homomorphism to 1 (preserving linear equ.)
(and CSP(A) is NP-complete), or
CSP(A) in P.

Equations in oligomorphic algebras Michael Pinsker



II: Infinite domains: oligomorphicity
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Oligomorphicity

Trouble with infinite A:
∃ clone homomorphism Pol(A)→ 1 =⇒ 1 ∈ HSPfin(A)

1 ∈ HSPfin(A) =⇒ simulation of 1-IN-3SAT

Solution:
Let G be permutation group acting on countable set D.
G oligomorphic :⇔ componentwise action of G on Dn

(α, (d1, . . . ,dn)) 7→ (α(d1), . . . , α(dn))

has finitely many orbits, for all n ≥ 1.

Structure A oligomorphic (aka ω-categorical) :⇔ Aut(A) oligomorphic.
Clone is oligomorphic :⇔ contains an oligomorphic group.
Algebra is oligomorphic :⇔ term clone is oligomorphic.

For every n ≥ 1, there are only finitely many n-tuples
in the algebra / clone / structure modulo the group.
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Topological Birkhoff

Theorem (Bodirsky + P ’11)

Let A be oligomorphic. TFAE:
Pol(A) has continuous clone homomorphism to 1.
1 ∈ HSPfin(Pol(A))

1-IN-3SAT has pp-interpretation in A.

Remarks

Topology on clones = topology of pointwise convergence
(fi)i∈ω → f :↔ fi(ā) = f (ā) eventually, for all ā.
(fi , f of same arity; “sorts" are clopen sets)

Failure of the above⇔ something positive, and algebraic?
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Oligomorphicity vs. Idempotency

Oligomorphicity = anti-idempotency!

Theorem (Bodirsky ’03; Barto + Kompatscher + Olšák + Pham + P ’16)

Every oligomorphic structure A is homomorphically equivalent to
a unique oligomorphic model-complete core Ac :

Aut(Ac) = End(Ac)

Remarks

CSP(A) = CSP(Ac)

CSP(Ac) and CSP(Ac ,a) polynomial-time equivalent

Pol(Ac ,a) is the stabilizer of a in Pol(Ac)

Can only add finitely many a ∈ Ac , so no idempotency
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The old infinite CSP conjecture

Old Conjecture (Bodirsky + P ’11)

Let A be a reduct of finitely bounded homogeneous structure
( =⇒ oligomorphic).

Then:

Some stabilizer of Pol(Ac) has cont. clone homomorphism to 1
( =⇒ CSP(A) is NP-complete), or

CSP(A) in P.
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III: Oligomorphic “Taylor" algebras
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What is an oligomorphic Taylor algebra?

Finite case: A Taylor⇔ idempotent + non-trivial equations.

Oligomorphic case: Cannot have idempotency,
but model-complete core.

What happens for oligomorphic model-complete core A when:

(1) 6 ∃ clone homomorphism Pol(A)→ 1?
(2) 6 ∃ continuous clone homomorphism Pol(A)→ 1?
(3) 6 ∃ continuous clone homomorphism from any

Pol(A,a1, . . . ,an)→ 1?

Remarks

(1) and (2) equivalent? Open.
(2) and (3) not equivalent.
(3) is relevant for CSP =⇒ our definition of “Taylor algebra"!
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Pseudo-Siggers terms

Theorem (Barto + P ’16)

Let A be an oligomorphic model-complete core. TFAE:

No stabilizer of Pol(A) has cont. clone homomorphism to 1.

Pol(A) contains u, v , f with

u f (x , y , x , z, y , z) = v f (y , x , z, x , z, y)

Remarks

f called pseudo-Siggers function.

Pseudo-Siggers equation “survives" stabilizing =⇒
prevents clone homomorphisms to 1 from all stabilizers.

Criterion positive, algebraic, finite.
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The old infinite CSP conjecture, reformulated

Old Conjecture (reformulated)
Let A be a reduct of finitely bounded homogeneous structure
( =⇒ oligomorphic).
Then:

Some stabilizer of Pol(Ac) has cont. clone homomorphism to 1
( =⇒ CSP(A) is NP-complete), or

Pol(Ac) has pseudo-Siggers function, and CSP(A) in P.

Remarks

Algebraic criterion in terms of Pol(Ac), not Pol(A)

Relies on possibly non-optimal order:
A =⇒ Ac =⇒ stabilize =⇒ pp-interpret
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The new infinite CSP conjecture

New Conjecture (Barto + Opršal + P ’14)

Let A be a reduct of finitely bounded homogeneous structure. Then:

Pol(A) has uniformly cont. h1 clone homomorphism to 1
( =⇒ CSP(A) is NP-complete), or

CSP(A) in P.

Remarks
New Conjecture uses optimal order of general CSP reductions
(homomorphic equivalence, pp-interpretations, adding constants)
Old =⇒ New
For finite A equivalent (Siggers vs. Pseudo-Siggers)
Positive and algebraic criterions missing.
Criterion in terms of Pol(A) rather than Pol(Ac).
Avoids model-complete core Ac .
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IV: Linear equations
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More oligomorphic Taylor notions

Two statements for oligomorphic A:

(1) Pol(A) has no uniformly cont. h1 clone homomorphism to 1.
(2) Pol(Ac) has pseudo-Siggers function.

(1)⇒ (2):
no u.c. h1 clone homomorphism from Pol(A) =⇒
no u.c. (h1) clone homomorphism from any stabilizer of Pol(Ac) =⇒
pseudo-Siggers function.

Theorem (Barto + Kompatscher + Olšák + Pham + P ’16)

For the countable atomless Boolean algebra A:
A is oligomorphic model-complete core;
Pol(A) has uniformly cont. h1 clone homomorphism to 1;
Pol(A) has pseudo-Siggers function.

Equations in oligomorphic algebras Michael Pinsker



More oligomorphic Taylor notions

Two statements for oligomorphic A:

(1) Pol(A) has no uniformly cont. h1 clone homomorphism to 1.
(2) Pol(Ac) has pseudo-Siggers function.

(1)⇒ (2):
no u.c. h1 clone homomorphism from Pol(A) =⇒
no u.c. (h1) clone homomorphism from any stabilizer of Pol(Ac) =⇒
pseudo-Siggers function.

Theorem (Barto + Kompatscher + Olšák + Pham + P ’16)

For the countable atomless Boolean algebra A:
A is oligomorphic model-complete core;
Pol(A) has uniformly cont. h1 clone homomorphism to 1;
Pol(A) has pseudo-Siggers function.

Equations in oligomorphic algebras Michael Pinsker



More oligomorphic Taylor notions

Two statements for oligomorphic A:

(1) Pol(A) has no uniformly cont. h1 clone homomorphism to 1.

(2) Pol(Ac) has pseudo-Siggers function.

(1)⇒ (2):
no u.c. h1 clone homomorphism from Pol(A) =⇒
no u.c. (h1) clone homomorphism from any stabilizer of Pol(Ac) =⇒
pseudo-Siggers function.

Theorem (Barto + Kompatscher + Olšák + Pham + P ’16)

For the countable atomless Boolean algebra A:
A is oligomorphic model-complete core;
Pol(A) has uniformly cont. h1 clone homomorphism to 1;
Pol(A) has pseudo-Siggers function.

Equations in oligomorphic algebras Michael Pinsker



More oligomorphic Taylor notions

Two statements for oligomorphic A:

(1) Pol(A) has no uniformly cont. h1 clone homomorphism to 1.
(2) Pol(Ac) has pseudo-Siggers function.

(1)⇒ (2):
no u.c. h1 clone homomorphism from Pol(A) =⇒
no u.c. (h1) clone homomorphism from any stabilizer of Pol(Ac) =⇒
pseudo-Siggers function.

Theorem (Barto + Kompatscher + Olšák + Pham + P ’16)

For the countable atomless Boolean algebra A:
A is oligomorphic model-complete core;
Pol(A) has uniformly cont. h1 clone homomorphism to 1;
Pol(A) has pseudo-Siggers function.

Equations in oligomorphic algebras Michael Pinsker



More oligomorphic Taylor notions

Two statements for oligomorphic A:

(1) Pol(A) has no uniformly cont. h1 clone homomorphism to 1.
(2) Pol(Ac) has pseudo-Siggers function.

(1)⇒ (2):
no u.c. h1 clone homomorphism from Pol(A) =⇒
no u.c. (h1) clone homomorphism from any stabilizer of Pol(Ac) =⇒
pseudo-Siggers function.

Theorem (Barto + Kompatscher + Olšák + Pham + P ’16)

For the countable atomless Boolean algebra A:
A is oligomorphic model-complete core;
Pol(A) has uniformly cont. h1 clone homomorphism to 1;
Pol(A) has pseudo-Siggers function.

Equations in oligomorphic algebras Michael Pinsker



More oligomorphic Taylor notions

Two statements for oligomorphic A:

(1) Pol(A) has no uniformly cont. h1 clone homomorphism to 1.
(2) Pol(Ac) has pseudo-Siggers function.

(1)⇒ (2):
no u.c. h1 clone homomorphism from Pol(A) =⇒
no u.c. (h1) clone homomorphism from any stabilizer of Pol(Ac) =⇒
pseudo-Siggers function.

Theorem (Barto + Kompatscher + Olšák + Pham + P ’16)

For the countable atomless Boolean algebra A:
A is oligomorphic model-complete core;
Pol(A) has uniformly cont. h1 clone homomorphism to 1;
Pol(A) has pseudo-Siggers function.

Equations in oligomorphic algebras Michael Pinsker



Orbit growth!

Theorem (Barto + Kompatscher + Olšák + Pham + P ’16)

Let A be oligomorphic model-complete core such that:
A has uniformly cont. h1 clone homomorphism to 1.
A has pseudo-Siggers function.

Then the number orbits of the action of Aut(A) on An

grows double exponentially in n.

Corollary
Old Conjecture⇔ New Conjecture.

Proof. Reducts of finitely bounded homogeneous structures have
at most exponential orbit growth.

Remark. Higher-arity structure of Pol(A) =⇒ structure of Aut(A)!
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Linear equations

Equivalent in model-complete core A with
less than double exponential orbit growth:

Pol(A) has pseudo-Siggers function.
Pol(A) has no uniformly cont. h1 clone homomorphism to 1.

So: pseudo-Siggers =⇒ which linear equations?
None! (or maybe some?)

Theorem (Barto + Kompatscher + Olšák + Pham + P ’16)

Let A be a reduct of finitely bounded homogeneous structure D.
Suppose Pol(A) contains function f (x1, . . . , xk ) for large enough k such
that for all permutations σ of {1, . . . , k}

uσ f (x1, . . . , xk ) = vσ f (xσ(1), . . . , xσ(k))

for unary uσ, vσ ∈ End(D).
Then Pol(A) satisfies non-trivial linear equations.
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less than double exponential orbit growth:

Pol(A) has pseudo-Siggers function.
Pol(A) has no uniformly cont. h1 clone homomorphism to 1.

So: pseudo-Siggers =⇒ which linear equations?
None! (or maybe some?)

Theorem (Barto + Kompatscher + Olšák + Pham + P ’16)
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Examples

Successful CSP classifications
for reducts of finitely bounded homogeneous structures:

(N; =) (“Equality CSPs"; Bodirsky + Kára ’06)
(Q;<) (“Temporal CSPs"; Bodirsky + Kára ’08)
Random graph (“Graph-SAT problems"; Bodirsky + P ’11)
Random partial order (“Poset-SAT problems";
Kompatscher + Pham ’16)

Theorem (Barto + Kompatscher + Olšák + Pham + P ’16)

If A is a reduct of any of the above structures, then:

Pol(A) has uniformly cont. h1 clone homomorphism to 1,
and CSP(A) is NP-complete, or

Pol(A) satisfies non-trivial linear equations,
and CSP(A) is in P.
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V: Open problems

Equations in oligomorphic algebras Michael Pinsker



Open problems

For infinite A:

Problem
If Pol(A) has a clone homomorphism to 1,
does it have a continuous such homomorphism?

Problem

If 1 ∈ HSP(Pol(A)) then 1 ∈ HSPfin(Pol(A))?

Problem
If Pol(A) has an h1 clone homomorphism to 1,
does it have a uniformly continuous such homomorphism?

Equations in oligomorphic algebras Michael Pinsker



Open problems

For infinite A:

Problem
If Pol(A) has a clone homomorphism to 1,
does it have a continuous such homomorphism?

Problem

If 1 ∈ HSP(Pol(A)) then 1 ∈ HSPfin(Pol(A))?

Problem
If Pol(A) has an h1 clone homomorphism to 1,
does it have a uniformly continuous such homomorphism?

Equations in oligomorphic algebras Michael Pinsker



Open problems

For infinite A:

Problem
If Pol(A) has a clone homomorphism to 1,
does it have a continuous such homomorphism?

Problem

If 1 ∈ HSP(Pol(A)) then 1 ∈ HSPfin(Pol(A))?

Problem
If Pol(A) has an h1 clone homomorphism to 1,
does it have a uniformly continuous such homomorphism?

Equations in oligomorphic algebras Michael Pinsker



Open problems

For infinite A:

Problem
If Pol(A) has a clone homomorphism to 1,
does it have a continuous such homomorphism?

Problem

If 1 ∈ HSP(Pol(A)) then 1 ∈ HSPfin(Pol(A))?

Problem
If Pol(A) has an h1 clone homomorphism to 1,
does it have a uniformly continuous such homomorphism?

Equations in oligomorphic algebras Michael Pinsker



Open problems

For infinite A:

Problem
If Pol(A) has a clone homomorphism to 1,
does it have a continuous such homomorphism?

Problem

If 1 ∈ HSP(Pol(A)) then 1 ∈ HSPfin(Pol(A))?

Problem
If Pol(A) has an h1 clone homomorphism to 1,
does it have a uniformly continuous such homomorphism?

Equations in oligomorphic algebras Michael Pinsker



Reference

L. Barto, M. Kompatscher, M. Olšák, T. V. Pham, and M. Pinsker

Equations in oligomorphic clones and the
Constraint Satisfaction Problem for ω-categorical structures

Preprint arXiv:1612.07551

Equations in oligomorphic algebras Michael Pinsker



Thank you!
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