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LetI = (D; Ry, ..., Ry) be arelational structure.

Definition CSP(T')
INPUT: A primitive positive sentence

¢ = Ixq---3Ixp R,'1(...)/\--'/\R,'m(...)
QUESTION: T E ¢ 277

m [ (i.e., its domain) can be finite or infinite.

m Number of relations finite.

m Any computational problem can be modeled as CSP(I').
m [ w-categorical = “algebraic-topological approach”.

w-categorical: countable and I'" /Aut(I') is finite for all n > 1.
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Pol(lN) ={h: T" =T | n>1, hhomomorphism}
“Polymorphism clone”

“poor" ' < “rich" Pol(I)
“rich"I' < “poor" Pol(I)

In the following:
m [ poor = CSP(N) in P
m [ rich :< CSP(I') NP-hard
Goal:
m Characterize these by structural properties of Pol(T).
m When is Pol(I") “rich" / “poor"?
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Example: Vx,y,z. u(s(x,y,x,z,y,2)) = v(s(y,x,z,x,2,¥))

m topological / metric structure:
(f)icw — f ¢+ VT (fi(C) = f(C) eventually).

Theorem (Bodirsky + P ’11)
Let ', A be w-categorical.

Suppose Pol(I'), Pol(A) have identical structure:
3¢: Pol(I') — Pol(A), bijective, preserving identities, uniformly cont.

Then CSP(I') and CSP(A) are polynomial-time equivalent.

Henceforth assume w-categoricity.
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m replacing I' by its model-complete core

(obtaining Aut(I') = End(I"))
m adding finitely many constants to I' (making Pol(I") poorer).

Irrelevant for Pol(I") --+ P, but not for Pol(I') — P.

Theorem

Let I' be the countable atomless Boolean algebra.
Then Pol(T) --» P, but Pol(I") /4 P after preprocessing.

Theorem

Any such I must have at least double exponential orbit growth:
For every n > 1, I"/Aut(I") has at least 22" elements asymptotically.

v
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m Pol(I") 4 P after preprocessing.
m Pol(l') /~» P.

m Pol(I") satisfies the Pseudo-Siggers identity.
? CSP(I)inP.

The Open Problem

Are the above equivalent to the satisfaction of linear identities?
Examples:

m Temp-SAT problems (rational order)
m Graph-SAT problems (random graph)
m Poset-SAT problems (random partial order)
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