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Constraint Satisfaction Problems (CSPs)

Let Γ = (D; R1, . . . ,Rn) be a relational structure.

Definition CSP(Γ)

INPUT: A primitive positive sentence

φ ≡ ∃x1 · · · ∃xn Ri1(. . .) ∧ · · · ∧ Rim (. . .)

QUESTION: Γ |= φ ???

Γ (i.e., its domain) can be finite or infinite.
Number of relations finite.
Any computational problem can be modeled as CSP(Γ).
Γ ω-categorical =⇒ “algebraic-topological approach".

ω-categorical: countable and Γn/Aut(Γ) is finite for all n ≥ 1.

ONE conjecture for infinite CSPs Michael Pinsker
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The algebraic-topological approach: clones

CSP(Γ)
↓

Pol(Γ) = {h : Γn → Γ | n ≥ 1, h homomorphism}

“Polymorphism clone"

“poor" Γ ⇔ “rich" Pol(Γ)

“rich" Γ ⇔ “poor" Pol(Γ)

In the following:
Γ poor :⇔ CSP(Γ) in P
Γ rich :⇔ CSP(Γ) NP-hard

Goal:

Characterize these by structural properties of Pol(Γ).
When is Pol(Γ) “rich" / “poor"?
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Structure of Pol(Γ)

algebraic structure: identities (universally quantified equations)
Example: ∀x , y , z. u(s(x , y , x , z, y , z)) = v(s(y , x , z, x , z, y))

topological / metric structure:
(fi)i∈ω → f :↔ ∀c (fi(c) = f (c) eventually).

Theorem (Bodirsky + P ’11)
Let Γ,∆ be ω-categorical.

Suppose Pol(Γ), Pol(∆) have identical structure:
∃ξ : Pol(Γ)→ Pol(∆), bijective, preserving identities, uniformly cont.

Then CSP(Γ) and CSP(∆) are polynomial-time equivalent.

Henceforth assume ω-categoricity.
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Richness and poverty of Pol(Γ)

Poorest polymorphism clone:

Clone P of projections on domain {0,1}.
Polymorphism clone of a structure with NP-complete CSP.
P→ Pol(Γ) (preserving structure: identities + topology) for any Γ.

Theorem (Bodirsky + P ’11)

If Pol(Γ)→ P, then CSP(Γ) is NP-hard.

Richness:

Theorem (Barto + P ’16)

Pol(Γ) 9 P, even after some preprocessing⇔ Pol(Γ) contains u, v , s:
u(s(x , y , x , z, y , z)) = v(s(y , x , z, x , z, y)) “Pseudo-Siggers".

Dichotomy Conjecture (Bodirsky + P ’11)

For a certain class of Γ, richness of Pol(Γ) forces CSP(Γ) into P.
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The wonderland of the new rich

Alternative poverty:
Pol(Γ) 99K P if there exists a mapping preserving linear identities
(no nesting), uniformly continuous.

Theorem (Barto + Opršal + P ’15)

If Pol(Γ) 99K P, then CSP(Γ) is NP-hard.

New Dichotomy Conjecture (Barto + Opršal + P ’15)

For a certain class of Γ, new richness of Pol(Γ) forces CSP(Γ) into P.

Pol(Γ)→ P =⇒ CSP(Γ) NP-hard
Pol(Γ) 99K P =⇒ CSP(Γ) NP-hard

Pol(Γ) 6→ P (even after preprocessing)⇒ Pseudo-Siggers ?
=⇒

CSP(Γ) in P

Pol(Γ) 699K P ?
=⇒ CSP(Γ) in P

ONE conjecture for infinite CSPs Michael Pinsker
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Comparing the rich and the new rich

Preprocessing:
replacing Γ by its model-complete core
(obtaining Aut(Γ) = End(Γ))
adding finitely many constants to Γ (making Pol(Γ) poorer).

Irrelevant for Pol(Γ) 99K P, but not for Pol(Γ)→ P.

Theorem
Let Γ be the countable atomless Boolean algebra.
Then Pol(Γ) 99K P, but Pol(Γ) 6→ P after preprocessing.

Theorem
Any such Γ must have at least double exponential orbit growth:
For every n ≥ 1, Γn/Aut(Γ) has at least 22n

elements asymptotically.
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Topology is irrelevant

Theorem
Let Γ be first-order definable in a finitely bounded homogeneous
structure. Then the following are equivalent:

Pol(Γ) 6→ P after preprocessing.
Pol(Γ) 699K P.
Pol(Γ) satisfies the Pseudo-Siggers identity.

? CSP(Γ) in P.

The Open Problem
Are the above equivalent to the satisfaction of linear identities?

Examples:
Temp-SAT problems (rational order)
Graph-SAT problems (random graph)
Poset-SAT problems (random partial order)
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Thank you!

ONE conjecture for infinite CSPs Michael Pinsker


