The Equivalence of Two Dichotomy Conjectures for Infinite Domain CSPs

Libor Barto⁰ Michael Kompatscher^{∞} Miroslav Olšák⁰ Trung Van Pham^{∞} <u>Michael Pinsker</u>^{0, ∞}

⁰ Univerzita Karlova v Praze

 $^\infty$ Technische Universität Wien

Funded by Austrian Science Fund (FWF) grant P27600

LICS 2017, Reykjavík

ONE conjecture for infinite CSPs

Michael Pinsker

ONE conjecture for infinite CSPs

Michael Pinsker

Let $\Gamma = (D; R_1, \ldots, R_n)$ be a relational structure.

Let $\Gamma = (D; R_1, \ldots, R_n)$ be a relational structure.

Definition $CSP(\Gamma)$

INPUT: A primitive positive sentence

$$\phi \equiv \exists x_1 \cdots \exists x_n \ R_{i_1}(\ldots) \wedge \cdots \wedge R_{i_m}(\ldots)$$

Let $\Gamma = (D; R_1, \ldots, R_n)$ be a relational structure.

Definition $CSP(\Gamma)$

INPUT: A primitive positive sentence

$$\phi \equiv \exists x_1 \cdots \exists x_n \ R_{i_1}(\ldots) \wedge \cdots \wedge R_{i_m}(\ldots)$$

QUESTION: $\Gamma \models \phi$???

 \blacksquare Γ (i.e., its domain) can be finite or infinite.

Let $\Gamma = (D; R_1, \ldots, R_n)$ be a relational structure.

Definition $CSP(\Gamma)$

INPUT: A primitive positive sentence

$$\phi \equiv \exists x_1 \cdots \exists x_n \ R_{i_1}(\ldots) \wedge \cdots \wedge R_{i_m}(\ldots)$$

- Γ (i.e., its domain) can be finite or infinite.
- Number of relations finite.

Let $\Gamma = (D; R_1, \ldots, R_n)$ be a relational structure.

Definition $CSP(\Gamma)$

INPUT: A primitive positive sentence

$$\phi \equiv \exists x_1 \cdots \exists x_n \ R_{i_1}(\ldots) \wedge \cdots \wedge R_{i_m}(\ldots)$$

- \blacksquare Γ (i.e., its domain) can be finite or infinite.
- Number of relations finite.
- Any computational problem can be modeled as $CSP(\Gamma)$.

Let $\Gamma = (D; R_1, \ldots, R_n)$ be a relational structure.

Definition $CSP(\Gamma)$

INPUT: A primitive positive sentence

$$\phi \equiv \exists x_1 \cdots \exists x_n \ R_{i_1}(\ldots) \wedge \cdots \wedge R_{i_m}(\ldots)$$

- \blacksquare Γ (i.e., its domain) can be finite or infinite.
- Number of relations finite.
- Any computational problem can be modeled as $CSP(\Gamma)$.
- \blacksquare $\Gamma \omega$ -categorical \Longrightarrow "algebraic-topological approach".

Let $\Gamma = (D; R_1, \ldots, R_n)$ be a relational structure.

Definition $CSP(\Gamma)$

INPUT: A primitive positive sentence

$$\phi \equiv \exists x_1 \cdots \exists x_n \ R_{i_1}(\ldots) \wedge \cdots \wedge R_{i_m}(\ldots)$$

QUESTION: $\Gamma \models \phi$???

- \blacksquare Γ (i.e., its domain) can be finite or infinite.
- Number of relations finite.
- Any computational problem can be modeled as $CSP(\Gamma)$.
- **\Box** Γ ω -categorical \implies "algebraic-topological approach".

ω-categorical: countable and $\Gamma^n/Aut(\Gamma)$ is finite for all $n \ge 1$.

ONE conjecture for infinite CSPs

Michael Pinsker

 $CSP(\Gamma)$

 $\mathsf{CSP}(\Gamma) \\ \downarrow \\ \mathsf{Pol}(\Gamma) = \{h: \Gamma^n \to \Gamma \mid n \ge 1, \ h \text{ homomorphism} \}$

$$\mathsf{CSP}(\Gamma) \\ \downarrow \\ \mathsf{Pol}(\Gamma) = \{h: \Gamma^n \to \Gamma \mid n \ge 1, h \text{ homomorphism} \}$$

"Polymorphism clone"

$$\mathsf{CSP}(\Gamma) \\ \downarrow \\ \mathsf{Pol}(\Gamma) = \{h: \Gamma^n \to \Gamma \mid n \ge 1, \ h \text{ homomorphism} \}$$

"Polymorphism clone"

"poor" $\Gamma \Leftrightarrow$ "rich" Pol(Γ) "rich" $\Gamma \Leftrightarrow$ "poor" Pol(Γ)

$$\mathsf{CSP}(\Gamma) \downarrow \\ \mathsf{Pol}(\Gamma) = \{h: \Gamma^n \to \Gamma \mid n \ge 1, h \text{ homomorphism}\}$$

"Polymorphism clone"

"poor" $\Gamma \Leftrightarrow$ "rich" Pol(Γ) "rich" $\Gamma \Leftrightarrow$ "poor" Pol(Γ)

In the following:

$$\mathsf{CSP}(\Gamma) \\ \downarrow \\ \mathsf{Pol}(\Gamma) = \{h: \Gamma^n \to \Gamma \mid n \ge 1, h \text{ homomorphism} \}$$

"Polymorphism clone"

"poor" $\Gamma \Leftrightarrow$ "rich" Pol(Γ) "rich" $\Gamma \Leftrightarrow$ "poor" Pol(Γ)

In the following:

• Γ poor : \Leftrightarrow CSP(Γ) in P

$$\mathsf{CSP}(\Gamma) \\ \downarrow \\ \mathsf{Pol}(\Gamma) = \{h: \Gamma^n \to \Gamma \mid n \ge 1, \ h \text{ homomorphism} \}$$

"Polymorphism clone"

"poor" $\Gamma \Leftrightarrow$ "rich" Pol(Γ) "rich" $\Gamma \Leftrightarrow$ "poor" Pol(Γ)

In the following:

- **Г** poor : \Leftrightarrow CSP(Г) in P
- $\blacksquare \ \Gamma \ rich \ :\Leftrightarrow CSP(\Gamma) \ NP-hard$

$$\mathsf{CSP}(\Gamma) \downarrow \\ \mathsf{Pol}(\Gamma) = \{h: \Gamma^n \to \Gamma \mid n \ge 1, h \text{ homomorphism} \}$$

"Polymorphism clone"

"poor" $\Gamma \Leftrightarrow$ "rich" Pol(Γ) "rich" $\Gamma \Leftrightarrow$ "poor" Pol(Γ)

In the following:

- Γ poor : \Leftrightarrow CSP(Γ) in P
- **\square** Γ rich : \Leftrightarrow CSP(Γ) NP-hard

Goal:

$$\mathsf{CSP}(\Gamma) \downarrow \\ \mathsf{Pol}(\Gamma) = \{h: \Gamma^n \to \Gamma \mid n \ge 1, h \text{ homomorphism} \}$$

"Polymorphism clone"

"poor" $\Gamma \Leftrightarrow$ "rich" Pol(Γ) "rich" $\Gamma \Leftrightarrow$ "poor" Pol(Γ)

In the following:

- **Г** poor : \Leftrightarrow CSP(Γ) in P
- $\blacksquare \ \Gamma \ rich \ :\Leftrightarrow CSP(\Gamma) \ NP-hard$

Goal:

Characterize these by structural properties of Pol(Γ).

$$\mathsf{CSP}(\Gamma) \downarrow \\ \mathsf{Pol}(\Gamma) = \{h: \Gamma^n \to \Gamma \mid n \ge 1, h \text{ homomorphism} \}$$

"Polymorphism clone"

"poor" $\Gamma \Leftrightarrow$ "rich" Pol(Γ) "rich" $\Gamma \Leftrightarrow$ "poor" Pol(Γ)

In the following:

- **Г** poor : \Leftrightarrow CSP(Γ) in P
- **\square** Γ rich : \Leftrightarrow CSP(Γ) NP-hard

Goal:

- Characterize these by structural properties of Pol(Γ).
- When is Pol(Γ) "rich" / "poor"?

ONE conjecture for infinite CSPs

Michael Pinsker

■ algebraic structure: identities (universally quantified equations) Example: $\forall x, y, z$. u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y))

- algebraic structure: identities (universally quantified equations) Example: $\forall x, y, z$. u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y))
- topological / metric structure:

 $(f_i)_{i \in \omega} \to f : \leftrightarrow \forall \overline{c} \ (f_i(\overline{c}) = f(\overline{c}) \text{ eventually}).$

- algebraic structure: identities (universally quantified equations) Example: $\forall x, y, z$. u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y))
- topological / metric structure: $(f_i)_{i \in \omega} \rightarrow f :\leftrightarrow \forall \overline{c} \ (f_i(\overline{c}) = f(\overline{c}) \text{ eventually}).$

Theorem (Bodirsky + P '11)

Let Γ , Δ be ω -categorical.

- algebraic structure: identities (universally quantified equations) Example: $\forall x, y, z$. u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y))
- topological / metric structure: $(f_i)_{i \in \omega} \rightarrow f :\leftrightarrow \forall \overline{c} \ (f_i(\overline{c}) = f(\overline{c}) \text{ eventually}).$

Theorem (Bodirsky + P '11)

Let Γ , Δ be ω -categorical.

Suppose $Pol(\Gamma)$, $Pol(\Delta)$ have identical structure:

- algebraic structure: identities (universally quantified equations) Example: $\forall x, y, z$. u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y))
- topological / metric structure: $(f_i)_{i \in \omega} \rightarrow f : \leftrightarrow \forall \overline{c} \ (f_i(\overline{c}) = f(\overline{c}) \text{ eventually}).$

Theorem (Bodirsky + P '11)

Let Γ , Δ be ω -categorical.

Suppose $Pol(\Gamma)$, $Pol(\Delta)$ have identical structure: $\exists \xi \colon Pol(\Gamma) \rightarrow Pol(\Delta)$, bijective, preserving identities, uniformly cont.

- algebraic structure: identities (universally quantified equations) Example: $\forall x, y, z$. u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y))
- topological / metric structure: $(f_i)_{i \in \omega} \rightarrow f : \leftrightarrow \forall \overline{c} \ (f_i(\overline{c}) = f(\overline{c}) \text{ eventually}).$

Theorem (Bodirsky + P '11)

Let Γ , Δ be ω -categorical.

Suppose Pol(Γ), Pol(Δ) have identical structure: $\exists \xi \colon Pol(\Gamma) \to Pol(\Delta)$, bijective, preserving identities, uniformly cont.

Then $CSP(\Gamma)$ and $CSP(\Delta)$ are polynomial-time equivalent.

- algebraic structure: identities (universally quantified equations) Example: $\forall x, y, z$. u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y))
- topological / metric structure: $(f_i)_{i \in \omega} \rightarrow f : \leftrightarrow \forall \overline{c} \ (f_i(\overline{c}) = f(\overline{c}) \text{ eventually}).$

Theorem (Bodirsky + P '11)

Let Γ , Δ be ω -categorical.

Suppose $Pol(\Gamma)$, $Pol(\Delta)$ have identical structure: $\exists \xi \colon Pol(\Gamma) \to Pol(\Delta)$, bijective, preserving identities, uniformly cont.

Then $CSP(\Gamma)$ and $CSP(\Delta)$ are polynomial-time equivalent.

Henceforth assume ω -categoricity.

ONE conjecture for infinite CSPs

Michael Pinsker

Poorest polymorphism clone:

Poorest polymorphism clone:

Clone **P** of projections on domain $\{0, 1\}$.

Poorest polymorphism clone:

- Clone **P** of projections on domain $\{0, 1\}$.
- Polymorphism clone of a structure with NP-complete CSP.

Poorest polymorphism clone:

- Clone **P** of projections on domain $\{0, 1\}$.
- Polymorphism clone of a structure with NP-complete CSP.
- **P** \rightarrow Pol(Γ) (preserving structure: identities + topology) for any Γ .

Poorest polymorphism clone:

- Clone **P** of projections on domain {0, 1}.
- Polymorphism clone of a structure with NP-complete CSP.
- $\blacksquare \ \textbf{P} \to \mathsf{Pol}(\Gamma) \text{ (preserving structure: identities + topology) for any } \Gamma.$

Theorem (Bodirsky + P '11)

If $Pol(\Gamma) \rightarrow \mathbf{P}$, then $CSP(\Gamma)$ is NP-hard.

Poorest polymorphism clone:

- Clone **P** of projections on domain $\{0, 1\}$.
- Polymorphism clone of a structure with NP-complete CSP.
- **P** \rightarrow Pol(Γ) (preserving structure: identities + topology) for any Γ .

Theorem (Bodirsky + P '11)

If $Pol(\Gamma) \rightarrow \mathbf{P}$, then $CSP(\Gamma)$ is NP-hard.

Richness:

Poorest polymorphism clone:

- Clone **P** of projections on domain $\{0, 1\}$.
- Polymorphism clone of a structure with NP-complete CSP.
- $\blacksquare \ \textbf{P} \to \mathsf{Pol}(\Gamma) \text{ (preserving structure: identities + topology) for any } \Gamma.$

Theorem (Bodirsky + P '11)

If $Pol(\Gamma) \rightarrow \mathbf{P}$, then $CSP(\Gamma)$ is NP-hard.

Richness:

Theorem (Barto + P '16)

Pol(Γ) → **P**, even after some preprocessing \Leftrightarrow Pol(Γ) contains u, v, s: u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y)) "Pseudo-Siggers".

Poorest polymorphism clone:

- Clone **P** of projections on domain {0, 1}.
- Polymorphism clone of a structure with NP-complete CSP.
- $\blacksquare \ \textbf{P} \to \mathsf{Pol}(\Gamma) \text{ (preserving structure: identities + topology) for any } \Gamma.$

Theorem (Bodirsky + P '11)

If $Pol(\Gamma) \rightarrow \mathbf{P}$, then $CSP(\Gamma)$ is NP-hard.

Richness:

Theorem (Barto + P '16)

Pol(Γ) → **P**, even after some preprocessing \Leftrightarrow Pol(Γ) contains u, v, s: u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y)) "Pseudo-Siggers".

Dichotomy Conjecture (Bodirsky + P '11)

For a certain class of Γ , richness of Pol(Γ) forces CSP(Γ) into P.

ONE conjecture for infinite CSPs

Michael Pinsker

Alternative poverty:

 $Pol(\Gamma) \dashrightarrow \mathbf{P}$ if there exists a mapping preserving linear identities (no nesting), uniformly continuous.

Alternative poverty:

 $Pol(\Gamma) \dashrightarrow \mathbf{P}$ if there exists a mapping preserving linear identities (no nesting), uniformly continuous.

```
Theorem (Barto + Opršal + P '15)
```

If $Pol(\Gamma) \dashrightarrow \mathbf{P}$, then $CSP(\Gamma)$ is NP-hard.

Alternative poverty:

 $Pol(\Gamma) \rightarrow \mathbf{P}$ if there exists a mapping preserving linear identities (no nesting), uniformly continuous.

```
Theorem (Barto + Opršal + P '15)
```

If $Pol(\Gamma) \dashrightarrow \mathbf{P}$, then $CSP(\Gamma)$ is NP-hard.

New Dichotomy Conjecture (Barto + Opršal + P '15)

For a certain class of Γ , new richness of Pol(Γ) forces CSP(Γ) into P.

Alternative poverty:

 $Pol(\Gamma) \rightarrow \mathbf{P}$ if there exists a mapping preserving linear identities (no nesting), uniformly continuous.

```
Theorem (Barto + Opršal + P '15)
```

If $Pol(\Gamma) \dashrightarrow \mathbf{P}$, then $CSP(\Gamma)$ is NP-hard.

New Dichotomy Conjecture (Barto + Opršal + P '15)

For a certain class of Γ , new richness of Pol(Γ) forces CSP(Γ) into P.

■ $Pol(\Gamma) \rightarrow \mathbf{P} \implies CSP(\Gamma) NP$ -hard

Alternative poverty:

 $Pol(\Gamma) \rightarrow \mathbf{P}$ if there exists a mapping preserving linear identities (no nesting), uniformly continuous.

```
Theorem (Barto + Opršal + P '15)
```

If $Pol(\Gamma) \dashrightarrow \mathbf{P}$, then $CSP(\Gamma)$ is NP-hard.

New Dichotomy Conjecture (Barto + Opršal + P '15)

For a certain class of Γ , new richness of Pol(Γ) forces CSP(Γ) into P.

■
$$Pol(\Gamma) \rightarrow \mathbf{P} \implies CSP(\Gamma)$$
 NP-hard
■ $Pol(\Gamma) \dashrightarrow \mathbf{P} \implies CSP(\Gamma)$ NP-hard

Alternative poverty:

 $Pol(\Gamma) \rightarrow \mathbf{P}$ if there exists a mapping preserving linear identities (no nesting), uniformly continuous.

Theorem (Barto + Opršal + P '15)

If $Pol(\Gamma) \dashrightarrow \mathbf{P}$, then $CSP(\Gamma)$ is NP-hard.

New Dichotomy Conjecture (Barto + Opršal + P '15)

For a certain class of Γ , new richness of Pol(Γ) forces CSP(Γ) into P.

Pol(
$$\Gamma$$
) \rightarrow **P** \implies CSP(Γ) NP-hard

$$\blacksquare \operatorname{Pol}(\Gamma) \dashrightarrow \mathbf{P} \implies \operatorname{CSP}(\Gamma) \operatorname{NP-hard}$$

■ $Pol(\Gamma) \not\rightarrow P$ (even after preprocessing) \Rightarrow Pseudo-Siggers $\stackrel{'}{\Rightarrow}$ CSP(Γ) in P

Alternative poverty:

 $Pol(\Gamma) \dashrightarrow \mathbf{P}$ if there exists a mapping preserving linear identities (no nesting), uniformly continuous.

Theorem (Barto + Opršal + P '15)

If $Pol(\Gamma) \dashrightarrow \mathbf{P}$, then $CSP(\Gamma)$ is NP-hard.

New Dichotomy Conjecture (Barto + Opršal + P '15)

For a certain class of Γ , new richness of Pol(Γ) forces CSP(Γ) into P.

Pol(
$$\Gamma$$
) \rightarrow **P** \implies CSP(Γ) NP-hard

$$\blacksquare \operatorname{Pol}(\Gamma) \dashrightarrow \mathbf{P} \implies \operatorname{CSP}(\Gamma) \operatorname{NP-hard}$$

■ $Pol(\Gamma) \not\rightarrow P$ (even after preprocessing) \Rightarrow Pseudo-Siggers $\stackrel{'}{\Rightarrow}$ CSP(Γ) in P

■ Pol(
$$\Gamma$$
) /-+ **P** $\stackrel{?}{\Rightarrow}$ CSP(Γ) in P

ONE conjecture for infinite CSPs

Michael Pinsker

Preprocessing:

Preprocessing:

 replacing Γ by its model-complete core (obtaining Aut(Γ) = End(Γ))

Preprocessing:

- replacing Γ by its model-complete core (obtaining Aut(Γ) = End(Γ))
- **adding finitely many constants to** Γ (making Pol(Γ) poorer).

Preprocessing:

- replacing Γ by its model-complete core (obtaining Aut(Γ) = End(Γ))
- **adding finitely many constants to** Γ (making Pol(Γ) poorer).

Irrelevant for $Pol(\Gamma) \dashrightarrow \mathbf{P}$, but not for $Pol(\Gamma) \to \mathbf{P}$.

Preprocessing:

- replacing Γ by its model-complete core (obtaining Aut(Γ) = End(Γ))
- **adding finitely many constants to** Γ (making Pol(Γ) poorer).

Irrelevant for $Pol(\Gamma) \dashrightarrow \mathbf{P}$, but not for $Pol(\Gamma) \to \mathbf{P}$.

Theorem

Let Γ be the countable atomless Boolean algebra. Then $Pol(\Gamma) \dashrightarrow \mathbf{P}$, but $Pol(\Gamma) \nrightarrow \mathbf{P}$ after preprocessing.

Preprocessing:

- replacing Γ by its model-complete core (obtaining Aut(Γ) = End(Γ))
- **adding finitely many constants to** Γ (making Pol(Γ) poorer).

Irrelevant for $Pol(\Gamma) \dashrightarrow \mathbf{P}$, but not for $Pol(\Gamma) \to \mathbf{P}$.

Theorem

Let Γ be the countable atomless Boolean algebra. Then $Pol(\Gamma) \dashrightarrow \mathbf{P}$, but $Pol(\Gamma) \nrightarrow \mathbf{P}$ after preprocessing.

Theorem

Any such Γ must have at least double exponential orbit growth: For every $n \ge 1$, $\Gamma^n / \text{Aut}(\Gamma)$ has at least 2^{2^n} elements asymptotically.

ONE conjecture for infinite CSPs

Theorem

Let Γ be first-order definable in a finitely bounded homogeneous structure. Then the following are equivalent:

- **Pol**(Γ) $\not\rightarrow$ **P** after preprocessing.
- Pol(Γ) ---→ **P**.
- Pol(Γ) satisfies the Pseudo-Siggers identity.
- ? $CSP(\Gamma)$ in P.

Theorem

Let Γ be first-order definable in a finitely bounded homogeneous structure. Then the following are equivalent:

- **Pol**(Γ) $\not\rightarrow$ **P** after preprocessing.
- Pol(Γ) ---→ **P**.
- Pol(Γ) satisfies the Pseudo-Siggers identity.
- ? CSP(Γ) in P.

The Open Problem

Are the above equivalent to the satisfaction of linear identities?

Theorem

Let Γ be first-order definable in a finitely bounded homogeneous structure. Then the following are equivalent:

- **Pol**(Γ) $\not\rightarrow$ **P** after preprocessing.
- Pol(Γ) *-*→ **P**.
- Pol(Γ) satisfies the Pseudo-Siggers identity.
- ? CSP(Γ) in P.

The Open Problem

Are the above equivalent to the satisfaction of linear identities?

Examples:

Theorem

Let Γ be first-order definable in a finitely bounded homogeneous structure. Then the following are equivalent:

- **Pol**(Γ) $\not\rightarrow$ **P** after preprocessing.
- Pol(Γ) ---→ **P**.
- Pol(Γ) satisfies the Pseudo-Siggers identity.
- ? CSP(Γ) in P.

The Open Problem

Are the above equivalent to the satisfaction of linear identities?

Examples:

- Temp-SAT problems (rational order)
- Graph-SAT problems (random graph)
- Poset-SAT problems (random partial order)

Thank you!

ONE conjecture for infinite CSPs